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Abstract

In this note we study the performance metrics (rate of convergence and guaranteed region of
convergence) of a multi-agent subgradient method for optimizing a sum of convex functions. We assume
that the agents exchange information according to a communication topology modeled as a random
graph, independent of other time instances. Under a strong convexity type of assumption, we express the
performance metrics directly as functions of the estimates of the optimal decision vector. We emphasize
how the probability distribution of the random graph affects the upper bounds on the performance
metrics. This provide a guide for tuning the parameters of the communication protocol such that good
performance of the multi-agent subgradient method is ensured. We perform the tuning of the protocol
parameters for two communication scenarios. In the first scenario, we assume a randomized scheme for
link activation with no-error transmissions while in the second scenario we use a pre-established order
of transmissions but we consider the interference effect. Both these scenarios are applied on a small

world type of topology.

I. INTRODUCTION

Multi-agents distributed optimization problems appear naturally in many distributed processing
problems (such as network resource allocation), where the optimization cost is a convex function
which is not necessarily separable. A distributed subgradient method for multi-agent optimization
of a sum of convex functions was proposed in [7], where each agent has only local knowledge of

the optimization cost, i.e. knows only one term of the sum. The agents can exchange information



according to a communication topology, modeled as an undirected, time varying graph, which
emphasizes the communication neighborhoods of the agents. The agents maintain estimates of the
optimal decision vector, which are updated in two stages. First stage consists of a consensus step
among the estimate of an agent and its neighbors. In the second stage, the result of the consensus
step is updated in the direction of a subgradient of the local knowledge of the optimization cost.
Another multi-agent subgradient method was proposed in [5], where the communication topology
is assumed time invariant and where the order of the two stages mentioned above is inverted.
In this note we study the performance metrics (rate of convergence and guaranteed region of
convergence) of the multi-agent subgradient method proposed in [7], for the case of a constant
stepsize. The communication among agents is modeled by a random graph, independent of
other time instances, and the performance metrics in this note will be viewed in expectation
sense. Random graphs are suitable models for networks that changes with time due to link
failures, packet drops, node failure, etc. An analysis of the multi-agent subgradient method
under random communication topology is addressed in [8]. The authors provide upper bounds
on the performance metrics as functions of a lower bound of the consensus step weights and
other parameters of the problem. More precisely, the authors give upper bounds on the distance
between the cost function and the optimal solution (in expectation), where the cost is expressed
as a function of the (weighted) time average of the optimal decision vector’s estimate. In this
paper, our main goal is the provide upper bounds on the performance metrics, which explicitly
depend on the probability distribution of the random graph. We first give an upper bound on
how close the cost function, evaluated at the estimate, gets to the optimal solution. Next, under a
strong convexity type of assumption, we focus on the squared distance between the estimate of
the optimal decision and some minimizer. We provide an upper bound for this metric, which will
give us the rate of convergence of the estimate to a guaranteed neighborhood of the optimum. The
performance metrics enumerated above are in expectation sense. The explicit dependence on the
probability distribution allows us to determine the optimal probability distributions that would
ensure the best guaranteed upper bounds on the performance metric. This idea has relevance
especially in the wireless networks case, where the communication topology has a random nature
with a probability distribution (partially) determined by the communication protocol parameters.
As example of possible applications of our results, we address two scenarios where the goal

is to tune the communication protocol parameters such that the performance of the multi-agent



subgradient method is improved. In the first scenario we consider that the agents use a randomize
scheme for enabling packet transmissions, where the agents decide to act like a transmitter or
a receiver with some probability. This probability will play the role of the protocol parameter.
In the second scenario, we assume that the transmissions happen according to a pre-established
order (TDMA based protocol) but they are affected by interferences. In this case, the power
allocated for transmissions is going to play the role of protocol parameters. Both scenarios are
applying on a small world type of communication topology.

Notations: Let X be a subset of R" and let y be a point in R". Using an abuse of notation,
by |ly—X]|| we understand the distance from the point y to the set X, i.e. ||y — X|| £ min,cx ||y — x]|.

Let f: R" - R be a convex function. We denote by df(x) the subdifferential of f at x, i.e.

the set of all subgradients of f at x:
f(x)={d e R"If(y) = f(x)+d'(y—x), Yy e R"}. (D

Let £ > 0 be a nonnegative real number. We denote by d. f(x) the e-subdifferential of f at x, i.e.

the set of all e-subgradients of f at x:
Of(x) ={d € R"|f() 2 f()+d'(y—x)—&, ¥y € R"}. (2)

We will denote by LEM and SLEM the largest and second largest eigenvalue of a stochastic
matrix, respectively. We will use MASM for multi-agent subgradient method and pmf for
probability mass function. By ||-|| we understand the standard two norm.

Paper structure: The second Section contains the problem formulation, more precisely presents
in details the communication and optimization models assumed in this note. In Section III, we
introduce a set of preliminary results, which mainly consist in providing upper bounds for a
number a quantities of interest. By combining the preliminary results, in Section IV we give
upper bounds for the expected values of two performance metrics: the distance between the cost
function evaluated at the estimate and the optimal solution and the (squared) distance between
the estimate and some minimizer. Section V, shows how our results can be used to tune the

parameters of a communication protocol, such that the performance of the MASM are improved.



II. PROBLEM FORMULATION
A. Communication model

Consider a network of N agents, indexed by i =1,...,N. The communication topology is time
varying and is modeled by a random graph G(k), whose edges corresponds to communication
links among agents. Given a positive integer M, the graph G(k) takes values in a finite set
G ={G1,Ga,...,Gy}. The underlying random process of G(k) is assumed i.i.d. with probability
distribution Pr(G(k) = G;) = p;, Yk >0, where Zf‘ﬁ | pi = 1. Throughout this note, we will consider
only bidirectional communication topology, i.e. G(k) is undirected.

Assumption 2.1: (Connectivity assumption) The graph resulted from the union of graphs in
G, ie. Ufil G;, is connected.

Let G be a graph of order N and let A € R¥*N be a row stochastic matrix, with positive
diagonal entries. We say that the matrix A, corresponds the graph G or the graph G is induced
by A if and only if any non-zero entry (ij) of A implies a link from j to i in G and vice versa.
Consider a matrix products of stochastic matrices of length m, []Z, A;. We say that the graph
induced by the aforementioned matrix product, is given by the union of graphs corresponding

to the matrices A;, i=1,...,m.

B. Optimization model

The task of the N agents consists in minimizing a convex function f: R" — R. The function

f 1is expressed as a sum of N functions, i.e.

N
f =) fitx), (3)
i=1

where f;: R" — R are convex. Formally expressed, the agents want to cooperatively solve the

following optimization problem
N

gﬁgZﬁ(x). @)

i=1
The fundamental assumption is that each agent i, has access only to the function f;. Let f* denote

optimal value of f and let X* denote the set of optimizers of f, i.e. X* = {x € R"|f(x) = f*}.
Let x;(k) € R" designate the estimate of the optimal decision vector of (4), maintained by agent
i, at time k. The agents exchange estimates among themselves according to the communication

topology described by the random graph G(k).



As proposed in [7], the agents update their estimates using a modified incremental subgradient
method. Compared to the standard subgradient method,the local estimate x;(k) is replaced by a

convex combination of x;(k) with the estimates received from the neighbors:
N

xille+ 1) = > ayj()x;(k) — a(k)diCh), (5)

j=1
where a;;(k) is the (i, /)" entry of a stochastic random matrix A(k) which corresponds to the

communication graph G(k). The matrix A(k) is an i.i.d random process taking values in a finite

M
i=1’

set of symmetric stochastic matrices with positive diagonal entries A = {A;} where A; is a
stochastic matrix corresponding to the graph G; € G, for i =1,..., M. The probability distribution
of A(k) is inherited from G(k), i.e. Pr(A(k) = A;) = Pr(G(k) = G;) = p;. The real valued scalar
a(k) is the stepsize, while the vector d;(k) € R" is a subgradient of f; at x;(k), i.e. d;(k) € 0 fi(x;(k)).

Assumption 2.2: (Subgradient Boundedness and Constant Stepsize) The subgradients of func-

tion f; at any point are bounded, i.e. there exists a scalar ¢ such that
ld|| < p,¥d € 0fi(x), VxeR", i=1,...,N,

and the stepsize a(k) is assumed constant, i.e. a(k) = @, Yk > 0.

Assumption 2.3: (Existence of an Optimal Solution) The optimal solution set X* is nonempty.

III. PrRELIMINARY RESULTS

In this section we lay the ground for our main results in Section IV. The preliminary results
introduced here revolve around the idea of providing upper-bounds on the quantities. The first
quantity is represented by the distance between an estimate of the optimal decision and the
average of all estimates. The second quantity is described by the distance between the average
of the estimates and the set of optimizers.

We introduce the average vector of estimates of the optimal decision vector, denoted by x(k)

and defined by
N

1
02 = ) xilk). (©6)

i=1
The dynamic equation for the average vector can be derived from (5) and takes the form

X(k+1) =x(k)— %h(k), ()



where h(k) = 3N | di(k).
We introduce also the deviation of the local estimates x;(k) from the average estimate x(k),

which is denoted by z;(k) and defined by
zi(k) = xij(k) - x(k), i=1,...,N. 8)

Let us define the aggregate vectors of estimates, average estimates, deviations and subgradients,

respectively:
x(k) £ [x1(k) , x2(k ..., xn(k)'] € RN,
(k) = [x(k),%(k),...,%(k)'] € RN,
2(k) = [z21(k),22(k) ,....zn (k)] € R
and

d(k)' £ [di(k),d2(K),....dn(K)] € RV,
From (6) we note the aggregate vector of average estimates is expressible as
x(k) = Jx(k),

where J = %]l]l’ ®1, with I the identity matrix in R and 1 the vector of all ones in R".

Consequently, the aggregate vector of deviations can be written as
z(k) = (I = Dx(k). ©)

The next Proposition characterize the dynamics of the vector z(k).

Proposition 3.1: The dynamic equation of the aggregate vector of deviations is given by
z(k+1) = W(k)z(k) — a(k)(I — J)d(k), (10)

where W(k) = (A(k)— +11")®1, with solution
k-1
z(k) = ®(k,0)z(0) — Z a(s)D(k, s+ 1)d(s), (1)
s=0
where ®(k, s) is the transition matrix of (10) defined by ®(k,s) = W(k—1)W(k—2)--- W(s), with
Ok, k) =1.

Proof: From (5) the dynamics of the aggregate vector of estimates is given by

x(k+1) = (A(k) ® Dx(k) — a(k)d(k). (12)



From (9) together with (12), we can further write
zk+1)=U-D)x(k+1)=(Ak)®I - J)x(k)— a(k)(I - J)d(k).
By noting that
(A)®I—-J)z(k) = (A()® I - ) - J)x(k) = (Ak) I — J)x(k),

we obtain (10). Solution (11) follows from (10) together with the observation that ®(k, s)(I —J) =
D(k, s). [ ]

Remark 3.1: The transition matrix ®(k,s) of the stochastic linear equation (10) can also be
represented as

ﬁA(k—i)

i=1

Dk, s) = ®I-J, (13)

where J = (%]l]l’)@l. This come form the fact that for any i € {1,2,...,s—1} we have
Ak-DRQI-N)Ak—-i-1)QI-J)=Ak-DAk-i—-1)QI—J.

Remark 3.2 (On the first and second moments of the transition matrix ®(k,s)): Let m be a pos-
itive integer and consider the transition matrix ®(k+m,k) = W(k+m—1)... W(k), generated by
a sequence of length m of random graphs, i.e. G(k)...G(k+m—1), for some k > 0. The random
matrix ®(k +m,k) takes values of the form W; W;,---W; , withi;e€{1,2,...,M}and j=1,...,m.
The norm of a particular realization of ®(k+m,k) is given by the LEM of the matrix product
W; W,;,---W, or the SLEM of A; A;,---A;,, denoted henceforth by A;, ; . Let p; ; = HT:I Pij

be the probability of the sequence of graphs G;, ...G;,, to appear during the time interval [k, k+m].

Im
Define the set of sequences of length m of indices Im = {inia..iglij€{1,2,..., M}, j=1,...,m}
with cardinality mM and let 10 = {i1ir.. .0y U;”:l G; = connected}, i.e. the set of sequences of
indices of length m for which the corresponding union of graphs produces a connected graph.
Using the previous notations, the first and second moments of the norm of ®(k+m,k) can be

expressed as

E®k +m, Nl = 17m, (14)
E®K +m, k)1 = pm, (15)

where 17y, = 2 jegon pjdj+ 1= 2 jcyon pj and py = 2 jepom pﬂl? +1 =2 jcqom pj. The integer j was

used as an index for the elements of set 7™,



The above formulas follow from results introduced in [4], Lemma 1, or in [14], Lemma 3.9,

which state that for any sequence of indices i ... i, € [, the product matrix A; ---A;, is ergodic,

Im
and therefore A; < 1, j € I'™. Conversely, if j¢ 1", then 1; = 1. We also note that Y, jerm Pj i
the probability of having a connected graph over a time interval of length m. Due to Assumption
2.1, for sufficiently large valued of m, the set "™ is nonempty. In fact for m > M, I'™ is always
non-empty. In general for large values of m, it may be difficult to compute all eigenvalue 4,

j€I™ . We can omit the necessity of computing the eigenvalues 1 j» and this way decrease the

computational burden, by using the following upper bounds on 1,, and p,,
P S Mg+ 1 =Py (17)

where L, = max;e o 4; and p,, = X jcjon pj is the probability to have a connected graph over a
time interval of length m. For notational simplicity, in what follows we will omit the index m
in the scalars 77, and p,,.

Throughout this note we will use the symbols m,  and p in the sense defined within the
Remark 3.2. Moreover, the value of m is picked such that /™ is nonempty. The existence of
such values is guaranteed by Assumption 2.1.

The next Proposition gives upper bounds on a series of quantities involving the transition
matrix O(k, s).

Proposition 3.2: Let r < s <k be three nonnegative integer values. Let m be a positive integer,
such that the set /™ is non-empty. Then, the following inequalities involving the transition

matrix ®(k,s) of (10), hold

ElIOk, )] < L7, (18)
ElIDk, )21 < pl 7], (19)
ElOk, Nk, Il < pl 7 Il 5], 20)

where 1 and p are defined in Remark 3.2.
Proof- First we note that by Assumption 2.1 there exist values for m such that the set /0™

is non-empty (choose m > M). Consequently, the probability to have a connected graph over a



time interval of length m is positive. Let ¢ be the number of intervals of length m between s and

[

and let s, s1,...,S; be a sequence of nonnegative integers such that s = 5o < 51 <... < s; <k where

k, 1.e.

sis1—si=mand i =0,...,m— 1. By the semigroup property of transition matrices, it follows that
O(k, s) = Ok, s)D(sz, 51-1) - (51, 9),

or

1D, I < 1DCss, s~DI -+ - 1D s, 9,

where we use the fact that [|®O(k,s;)|| < 1. Using the i.i.d. assumption on the random process

A(k), we can further write
E[[|Ok, )II] < END(ss, se—)II -+ - ET[DCs1, )N,

which together with (14) leads to inequality (18).
Similarly, inequality (19) follow from (15) and from the i.i.d. assumption on the random graph.

We now turn to inequality (20). By the semigroup property we get
E[|®k, Ok, 5)|I] < E[|OK, )IPIO(s, Ml < E[IDE, )IP1ELD(s, PI],

where the second inequality followed by independence of A(k). Inequality (20) follows from
(18) and (19). [ |
The following lemma gives upper bounds on the first and the second moments of the distance
between estimate x;(k) and the average of the estimates, X(k).
Lemma 3.1: Under Assumption 2.2, for the sequences {x;(k)};>0, i =1,...,N generated by (5)

with a constant stepsize a, the following inequalities hold

Elllx(k) ~ 5l < 8 VAL + @ @1
’%‘ +1_[Ell4)
Elllxik) - x0I] < NB2pln) + No2? (1 + 12—'”) L oNaBem’ L l Q)
-n)1l-p p—n

where 7, p and m are defined in Remark 3.2.
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Proof: Note that the norm of the deviation z;(k) = x;(k) — X(k) is upper bounded by the norm
of the aggregate vector of deviations z(k) (with probability one), i.e. ||z;(k)|| < ||z(k)||. Hence, by

Preposition 3.1, we have
k-1
il < ll2(0ll = |19k, 0)2(0) —a ) D(k, s+ (s,
s=0
or el
Ellz(0lll < B VNETI®(K,0)[[1+ap VN > Ell0k, s+ DI,
s=0
where use the fact that ||z;(0)|| <8 and ||d;(k)|| < ¢, Yk > 0.

By inequality (18) of Proposition 3.2, we get

k—s—1 J

k—1
Elllzi(k)l] < B VNgHn) + 0 VN 5
s=0

By noting that the sum Z’S‘;(l) UL%J can be upper bounded by

kel _

k_l Lk—S—IJ L J s 1_)7|'%J+1 1
n-om <m n=m 1 < ml s

s=0 s=0 1 -

inequality (21) follows.
We now turn to obtaining an upper bound on the second moment of ||z(k)||.

Let Z(k) € RV™Nn be a symmetric positive definite matrix, given by
Z(k) = z(k)z(k)’.
Using Preposition 3.1, we derive from the following equation for Z(k):
Z(k+1) = W(k)Z(k)W (k) + F(k), (23)
where F(k) is given by
F(k) = o*(I - Nd(k)d(k) (I - J) —aW(k)z(k)dKk) (I - JY —a(I - DHd(k)z(ky W(k) . (24)

The solution of (23) is given by
k-1
Z(k) = ®(k,0)Z(0)D(k,0)" + Z Ok, s+ 1)F(s)D(k,s+1)". (25)
s=0
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For simplicity, in what follows we will omit the matrix /—J from terms of F(k) since they

disappear by multiplication with the transition matrix (see Proposition 3.1). We can further write

k-1
IZK)|| < 1Ok, O)IFIZ(0)]| + Z Ok, s + D)F(s)D(k, s+ 1)'||
s=0

and by noting that ||Z(k)|| = ||lz(k)||?, we obtain
k—1

E[llz(k)|I*] < ETlI®(k, 0)|*1|[2(0)|I* + Z E[l|®k, s+ DF ()P(k, s + 1)1, (26)
5=0
From (19) of Proposition 3.2 we obtain
Elllok, 0[] < pl)
We now focus on the terms of the above sum in (26). We have
Ok, s+ DF(s)D(k, s + 1) = ?D(k, s+ Dd(s)d(s) Dk, s+ 1) —
—a®(k, s+ DW($)z(s)d(s) @k, s+ 1) —a®(k, s + 1)d(s)z(s) W(s)' O(k, s+ 1)

Using the solution of z(k) given in (11), we get

Ok, s+ DHYW(s)z(s)d(s) Dk, s+ 1) =
s—1

=Dk, s+ 1H)W(s)| O(s,0)z(0) — a Z O(s,r+ DA(r) [d(s) Dk, s+ 1)
r=0
s—1
= O(k,0)z(0)d(s) Pk, s+ 1) —a Z Ok, r+ DA(r)d(s) Pk, s+ 1) 27
r=0
Similarly,
DOk, s+ Dd(s)z(s) W(s) Ok, s+ 1) =
s—1
D(k, s + 1)d(s5)z(0) D(k,0) —a Z DOk, s+ Dd(s)d(r) Ok, r+1). (28)
r=0

We now give a more explicit formula of ®(k,s+ 1)F(s)D(k,s+1)":

Ok, s+ DF(s)Pk,s+1) = afzq)(k, s+ Dd(s)d(s) Dk, s+ 1) —
s—1
—a®(k,0)z(0)d(s) D(k, s+ 1)+ o’ Z Ok, r+ Dd(r)d(s) Dk, s+ 1) —
r=0
s—1
—a®(k, s + 1)d(s)z(0) D(k,0) + o’ Z DOk, s+ Dd(s)d(r) Ok, r+ 1)
r=0
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By applying the norm operator, we get

Dk, s + DF(s)D(k, s+ 1) || < N2 @?|| Ok, s + D)||>+

s—1 s—1
+NP@? Y NIk, r+ 1Dk, s + 1Y |+ Na?@? Y |0k, s + DDk, -+ 1Y |1+
r=0 r=0

+Nappll®(k, s + DDk, 0)' || + Napell Dk, 0)O(k, s + 1)’

or
IOk, s+ 1) F(s)D(k, s+ 1)|| < N&?@?||D(k, s + D)|[>+

s—1
#2Na*g? " |0k, r+ Dk, s+ 1Y ||+ 2NaBgll@(k, s + DK, 0) | (29)
r=0

We now give bounds for the expected values of each of the terms in (29). Based on the results

of Proposition 3.2 we can write

2y pl 5
E[|®k, s+ DI*] < pt
! it R k—s-1 L]
3 Ellock,r+ Dk s+ 1)1 < > ol Tl <mpl 57N <
r=0 r=0 r=0
11 —plml* s
S mp[]{TIJln— S mp[k m 1JL
1-n 1-n
and
=l 5
E[||®(k, s+ DD(k,0)°[[] < pt  Intm
Therefore we obtain
2 —5— —s— s+
E[ Dk, s + 1)F(s)Dk, s + 1] < Na2e? (1 ; 1_m) L5 L oNapepl St L5,
-1
We know compute an upper bound for ijl E[||®(k, s+ 1)F(s)®(k, s+ 1)’||]]. Using the fact that
u
k-1 |5 [/<—J+1 .
m Z < m1
s=o 5=0 P
and
k— K
Z 7 p ITl
s=0 s=0
ki pl% Je 85t
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we obtain

-1
2

> EN®k. s+ DF()®(k,s+1YIl] < Na*g? 1+ mym
s=0 I=n]1-p

\_%JH _U[EJH

+2Nozﬁgpmp
p—n
Finally we obtain an upper bound for the second moment of ||z(k)||:
k=1 k=1
& 2 (5 A+
Elllz(k)I?] < Nﬁzptfm +Na?? (1 + _m) LI 2Na'/3<,0mp i )
l-n)1-p p=1

|

The following result allow us to interpret iteration (7) as an e-subgradient (with & being a
random process).

Lemma 3.2: The vector d;(k) is an e(k)-subdifferential of f; at x(k), i.e. di(k) € Oe) fi(X(k))
and YN | d;(k) is an Ne(k)-subdifferential of f at %(k), i.e. X | di(k) € Oneqp f(X(K)), for any k>0
, Where

k=1

e(k) = 2¢B VN0, 0)]|+ 20> VN ) [0(k, 5+ D] (30)

s=0
Proof: The proof is somewhat similar to the proof of Lemma 3.4.5 of [6]. By the subgradient

definition we have that
filxi(k)) = fi(x(k)) + di(k) (xi(k) — %(k)) = fi(F(k)) = |ld; (RN (x;(k) = Xk,

or

fixi(k)) = fi(x(k)) = lldi(Ollllzi(KII.
Farther more, for any y € R” we have that
Ji®) 2 filxi(k)) + di(k) (v = xi(k)) = fi(xi(k)) + di(k)' (y = X(k) + %(k) = xi(k)) >
> fi(X(k)) +di(k) (y — X(k)) = 2|ld;(F)lllzi (k)| = fi(%(k)) +di(k) (y — X(k)) = 2¢pl|z(K)I,

or

fi) = fi(x(k)) + di(k) (y — %(k)) — e(k),

where g(k) = 2¢||z(k)||. Using the definition of the e-subgradient, it follows that d;(k) € O¢(x) fi(3(k)).
Summing over all i we get that Zf\; 1 di(k) € Onew) fi(X(k)). Note, that e(k) has a random charac-

teristic due to the assumption on A(k). [ |
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Under a strong convexity type of assumption on f, the next result gives an upper bound on

the second moment of the distance between the average vector X(k) and the set of optimizers of

f.
Lemma 3.3: Let {X(k)};>0 be a sequence of vectors generated by iteration (7). Also, assume

that Assumptions 2.2 and 2.3 hold and that there exists a positive scalar u such that

JCO ="z pllx = X7. €1y

Then, the following inequality holds

E[ll%(k) — X*|I*1 < |1%(0) — X*|** +

o202
46% N 4], @ [4’" W, 1), 32)

I=y\U 1-n
where y=1— 2% and 7 is defined in Remark 3.2.
Proof: We use the same idea as in the proof of Proposition 2.4 in [10], formulated under
a deterministic setup. Let x* € X* be an optimal point of f. By (7), where we use a constant

stepsize @, we obtain
1%k + 1) — x*|I* = [|%(k) — x* - %h(ﬂk))ll2 = ||x(k) — x> - Z%h(i(k))'(X(k) —x")+a’g?

Using the fact that, by Lemma 3.2, h(x(k)) is a Ne(k)-subdifferential of f at x(k), we have
() = f(x(k) + h(x(k)) (x" - %(k)) — Ne(k),

or, together with assumption (31),
—h(x(k))' (X(k) = ) < ~pllX(k) = 7] + Ne(k).

Further, we can write
1%k + 1) — x*||* < (1 - Z%)nx(k) — x"|* + 2ae(k) + a*¢?

or

Elllx(k *2<1 ZCL’,Ltk_O %112 k_ll 2aluk_s_12E 2 2 33
[IxX(k) — x7[|7] < A [1X(0) — x7|| +SZ=(:) N (aEle(s)]+a"¢”)  (33)

Note that the right-hand side of (33) converges only if a < % To simplify notation, let y =
(1 - 2%) It follows that
k-1

E[lI5(6) - xP] < YI%0) — X7 + > ¥ QaEle(s)] + %)
s=0
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By Preposition 3.1 and Lemma 3.1, we obtain the following upper bound for the expected

value of €(s)
k-1
E[(5)] < 268 VNE[I®(k, 0)ll1 + 209” VN ) ETll0(Kk, s+ DIlI <
s=0

|£] N 2a¢* VNm

S2<p,8\/ﬁ77 -

From above an upper bound for E[||x(k) — x*||?] follows

E[lIx(k) — x*|1*] < [1%(0) — x*|>v* +

l-y\ 1-7¢

By taking the minimum over x* € X* in the above relation, we obtain (32).

IV. MaIN RESULT - CONVERGENCE ANALYSIS

) 2 2
4a;0€\/ﬁn[ﬂ+a " (4m\/ﬁ+1].

In the following we provide upper bounds for three performance metrics of the MASM. First,

we give an estimate on the radius of the ball around the optimal valued f*, where the cost function

f, evaluated at the estimate x;(k), is guaranteed to converge. Next, we focus on the (squared)

distance between the estimate x;(k) and the set of optimizers X*. Under a strong convexity type

of assumption, we give an estimate of the radius of a ball around the zero point, where this

metric is guaranteed to converge. We also provide an upper bound for the rate of convergence

to the aforementioned ball. Although dependent on other parameters of the problem, we will

emphasize how the pmf of the random graph affects the performance metrics.

Corollary 4.1: Let Assumptions 2.1, 2.2 and 2.3 hold and let {x;(k)};>0 be a sequence gener-

ated by the iteration (5), i=1,...N. Then

0902

liminf E[f(x,(k)] < f* + \/Na#%(szn :

Proof: Using the subgradient definition we have
Ji(x(k)) = fi(xi(k)) + di(k) (x(k) — xi(k)) = fi(xi(k)) = lld (bl zi (Rl

or

Jitxi(k)) < fi(x(k)) + ¢llz;(k)|, for all i=1,...,N.

(34)



16

Summing over all i, we get
F(xi(k)) < f(x(k)) + Nellz(k)l.

By the results of Lemma 3.1, the following inequality holds

liminf E[f(x,(0)] < liminf E[f((k))] + N «/NWZ%]. (35)
Let x* € X* be an optimal point of f. By (7), where we use a constant stepsize @, we obtain

Hﬂk+D—XW2=Hﬂ@—xﬁ-%hGQMP=Hﬂ@—WﬂV—Z%h@%DTﬂ@—Xﬂ+a@9
and since, by Lemma 3.2, h(X(k)) is a Ne(k)-subdifferential of f at Xx(k), we have
I15Ck + 1) = 2717 < 1% (Kk) = "1 = 2a(f(3(K)) = ) + 28 (k) + o,

or

k-1 k-1
e+ 1) = X1 < 1170) = x*IP =20 > (FE(s) — )+ 20 ) &(s) +ka’¢’.
s=0 s=0

Since ||x(k+1)—x*|? >0

k-1 k-1
20 ) (f(R() = f*) < IFO) = ' IP+20 Y e(s) + kaP?,
s=0 s=0
or
k=1 k-1

2a ) (ELFR(N] = f7) < I150) = x| +20 ) Ele(s)] +ka’¢”.
s=0 s=0

By Preposition 3.1 and Lemma 3.1, we obtain the following upper bound for the expected value

of e(s).

s—1

E[e(s)] < 2¢B VNEI|®(s, 0)l[] + 209> YN > E[I®(s,r+ D] <

r=0
o1 2a¢’ VN

which in turn leads to

=~
—_

Ele(s)] < 2¢B \/N%] + k2ag02 \/N%I

N
I
(e]

Using the fact that
k=1

.....
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we get
a"P
2

Inequality (34) follows by combining (35) and (36). |

liminf E[f(x(k)] - f* < 2a¢* VN —n+ (36)

The next result shows that under a strong convexity type assumption, the convergence rate of
the MASM, in expectation sense, is linear for a sufficiently small constant stepsize. It also shows
that only convergence (in expectation sense) to a neighborhood can be guaranteed, neighborhood,
however, that can be made arbitrarily small.

Corollary 4.2: Let Assumptions 2.1, 2.2 and 2.3 hold and let u be a positive scalar such that

fOO=f" 2 ullx=X"IP, VxeR". (37)
Then, the sequence {x;(k)}x>0, generated by iteration (21) with the stepsize a < év , converges,
in expectation, (at least) R-linearly to a guaranteed neighborhood around some optimizer of f.

The R-factor equals max{y,n%} and the radius of the neighborhood equals

A+ B+ VAB,

T 1y (4m_‘/_ )

2m
B=na2 1420 )
l-n)1-p°

where

_ 2op

and where y = i

Proof: By the triangle inequality we have
[l; (k) = XN < llxik) — ZCOIl + [1%(K) — X,

or

Ilxi(k) = X*II” < llxiCk) = X + 2llxck) — KGONIFCk) — X || + [1%Ck) — X,
or
Ellxi(k) = X*|I*1 < Elllxi(k) = X(0)I[*1 + 2Ellxik) — X(III1%(K) = X (1] + ELII%(k) — X*[I7].
By the Cauchy-Schwarz inequality for the expectation operator, we get

Elllxi(k) - X*I1M] < Elllxi(k) — £(0)[121 + 2E[||x:k) — (|22 E[I%(k) — X*|21 + E[l|%(k) - X*|%].
(38)
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The guaranteed radius of the neighborhood around some optimizer of f follows by inequalities
(22) and (32) and by taking the limit as k goes to infinity of the above inequality.
By inequality (22) we have

k k
Elllxi(k) = X(k)II*] < arpm +agnn +as,

where a1, a; and a3 are some positive scalars derived from the right-hand side of (22). By noting

that > p, we can further write
k
E[llxi(k) - X(0)*] < arn +az (39)

where a; and a, are some positive scalars (different from the one in the previous inequality).

By inequality (32), we obtain
_ ) k k
ET||x(k) = X7|I"] < bry” + ban + b3,

where by, by and b3 are some positive scalars derived from the right-hand side of (32). We can
further write

E[|l%(k) — X*|[*1 < by max{y, nin }t + by, (40)

where b; and b, differ from the one used above. Using the notations c¢; = max{ai,b;} and

c2 = max{az, by}, by (38), (39) and (40), we obtain
Ellxi(k) - X*|2] < 4c1 max{y,nn ¥ + 4o,

which shows the R-linear convergence, with the R-factor given by max{y,n%}. [ ]

A. Discussion of the results

We obtained upper bounds on three performance metrics relevant to the MASM: the distance
between the cost function evaluated at the estimate and the optimal solution (Corollary 4.1), the
distance between the estimate of the decision vector and the set of optimizers and the rate of

convergence to some neighborhood around an optimizer of f (Corollary 4.2). The three upper

m
I-p

nn%, which show the dependence of the performance metrics on the pmf of G(k) and on the

bounds are functions of three quantities which depend on the scalars m, n and p: %7, and

corresponding random matrix A(k). The scalars n and p represent the first and second moments

of the SLEM of the random matrix A(k+1)...A(k+m), corresponding to a random graph formed
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over a time interval of length m, respectively. We can notice from our results that the performance

m_
> T—p
these quantities having as decision variables m and the pmf of G(k). Since the three quantities

of the MASM is improved by making %} and = as small as possible, i.e. by optimizing
are not necessarily optimized by the same values of the decision variables, we have in fact a
multi-criteria optimization problem:
m
1-

. 1
ming,,, {15 755-1"}

subject to: m>1
SYpi=1, pi>0
1
nm <y

(41)

The last constraint is due to the fact that the rate of convergence of the MASM is not entirely
dictated by 17%, but also by the choice of the stepsize «, through parameter y. The solution to
the above problem is a set of Pareto points, i.e. solutions points for which improvement in one
objective can only occur with the worsening of at least one other objective

We note that for each fixed value of m, the three quantities are minimized if the scalars r and
p are minimized as functions of the pmf of the random graph. In fact, we can focus only on
minimizing 7, since for every fixed m, both 1 and p are minimized by the same pmf. Therefore,
in problem (41), we have to find an appropriate value of m such that a Pareto solution is obtained,
which has a corresponding optimal pmf. Depending on the communication model used, the pmf
of the random graph can be a quantity dependent on a set of parameters of the communication
protocol (transmission power, probability of collisions, etc). Having an optimal pmf allow us to
tune these parameters such that the performance of the MASM are improved.

In what follows we provide a simple example where we show how 7, the optimal probability

distribution, %7 and 77% evolve as functions of m.

Example 4.1: Let G(k) be random graph taking values in the set G = {G,G>},with probability
p and 1 — p, respectively. The graphs G| and G, are shown in Figure 1. Also, let A(k) be a
(stochastic) random matrix , corresponding to G(k), taking value in the set A ={A1,A3}, with

1 1
31300 1000
1 1 1
Ll 2880, 0100
10130’20021
4 4 3 3
0 0 01 00 1 2
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G, G,

Fig. 1. The sample space of the random graph G(k)

In Figure 2 we present four graphs. Graph a) shows the optimal probability p* that minimizes
n for different values of m. Graph b) shows the optimized n (computed at p*) as a function of
m. Graphs c¢) and d) show the evolution of the optimized %7 and n% as functions of m, from

where we notice that a Pareto solution is obtained for m =5 and p* = 0.582.

06 4 0.9

o8
o7
0B
[1X3)

04

0.5 A 03

Fig. 2. a) Optimal p as a function of m; b) Optimized 7 as a function of m; c) Optimized %7 as a function of m; d) Optimized

L .
nm as a function of m

In order to obtain the solution of problem (41), we need to compute the probability of all
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possible sequences of length m produced by G(k), together with the SLEM of their corresponding
stochastic matrices. This task, for large values of m and M may prove to be numerically
expensive. We can somewhat simplify the computational burden by using in stead the bounds
on 1 and p introduced in (16) and (17), respectively. Note that every result concerning the
performance metrics still hold. In this case, for each value of m, n is minimized, when p,, is
maximized, which can be interpreted as having to chose a pmf that maximizes the probability
of connectivity of a random graph obtained over a time interval of length m. In our example,
the probability that the union of m consecutive graphs produced by G(k) results in a connected
graph is p,, =1-p" —(1-p)". We note that p; =0, since no single graph in G is connected.
For every fixed value of m, p,, is maximized for p = % Given that A(k) takes values Ay and
As with uniform distribution, the bounds on the curves of quantities 7, 77% and l’f—n are given in

) 1 .
Figure 3. We note that for m = 3, both bounds on n» and %7 are minimized.

as T T T T T a

as 1 088

as 1 086

as 1 082

as B 1)

a) b)

d)

Fig. 3. a) Optimal p as a function of m; b) Optimized bound on 7 as a function of m; c) Optimized bound on %} as a function

of m; d) Optimized bound on r]r]7 as a function of m

Even in the case where we try to minimize the bound on 7, it may be very difficult to compute
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the expression for p,,, for large values of m (the set G may in such a way that allows for a large
number of possible unions of graphs producing connected graphs). Another way to simplify even
more our problem, is to (intelligently) fix a value for m and to try to maximize p,, having as
decision variable the pmf. We note that m should be chosen such that, within a time interval
of length m, a connected graph can be obtained. Also, a very large value for m should be
avoided, since ﬁ it is lower bounded by m. Although in general the uniform distribution is not
necessarily minimizing 7, it becomes the optimizer under some particular assumptions, stated
in what follows. Let G be such that a connected graph is possible to be obtained only over a
time interval of length M (i.e. in order to form a connected graph, all graphs in G must appear
within a sequence of length M). Choose M as value for m. It follows that p,, can be expressed

as:
M

P :m!l—[pi.

i=1
We can immediately observe that p,, is maximized for the uniform distribution, i.e. p; = % for

i=1,...,M.

V. TUNING THE COMMUNICATION PROTOCOL FOR MASM

In the previous sections we derived upper bounds for the performance metrics of the distributed
subgradient algorithm as function of the probability distribution of the random graph modeling
the communication topology. Depending on the assumptions used for the communication model,
the probability distribution of the random graph can be a function on a set of communication
protocol parameters such as probability of collisions, transmission power, etc. which can play the
role of decisions variable in building distributions for the communication topology that minimizes
1, this way ensuring good performances of the MASM. We make the following fundamental
assumptions on the communication model.

Assumption 5.1: The communication among agents is assumed time slotted with slots nor-
malized to integral units and each half of time slot a package containing relevant information is
sent from a source to a destination.

Assumption 5.2: We consider bidirectional communication, i.e. at (the end of) a time slot, a

link is consider active if successful transmissions took place in both directions.
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Assumption 5.2 was made to accommodate the undirected graph assumption on the topol-
ogy made in Section II-A, which played an important role in computing the bounds on the
performance metrics.

We assume that the set G contains at least one connected graph, which allows us, for simplicity,
to choose m = 1. In this case n becomes the average SLEM of the random matrix A(k).

For a general graph, obtaining explicit formulas for the pmf of the random communication
topology, as function of the link probabilities is a difficult problem. That is why, in the following
we will consider a topological model which will simplify the computation of the probability
distribution of the random graph.

We consider that the N agents are placed equidistant on a circular structure. Each agent
can communicate with its two adjacent neighbors in a lossless manner, i.e. these links (called
henceforth short range links), exists with probability one. This communication model is a
representation a small world network, modeling many real-life complex networks [15]. We want
to study the effect of long range communication links (links between agents far away from each
other) on the performance metrics of the MASM studied above. This problem is related to the
consensus problem on small world graphs, studied in [1], where the authors showed that adding a
small number of long range communication links improves considerable the rate of convergence
to consensus. For simplicity we assume that the long range communication links are formed

only between the furthest away agents.

1
» — \
/ 2 \ links

N-1

Fig. 4. Group of N agents forming a circulant graph
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An agent can not be a source and a receiver simultaneously. The different role an agent takes is
determined by the communication protocol. We consider two scenarios about the communication
protocol. First we assume the agents use a simple randomized scheme, under which an agent
decides to send a packet with some probability g. By assuming no error-transmissions, we want
to find the best value for ¢, that minimizes 7. In the second scenario we consider that the agents
have a pre-established order for transmissions (for instance using a TDMA type of protocol). In
this case we take into account the interference generated by other agents and we want to study
the evolution of n with respect to the transmission powers.

In order to accommodate the bidirectional assumption on the communication links, we divide
the time-slot in two. A link is considered active, if during a time-slot successful communication
between two agents takes place in both direction (a link (a,b) is active during a time-slot if one
of the following information transfer itineraries takes place: a - b, b - a or b — a, a — b). In
both scenarios there will be a probability of a link to be active during a time-slot, denoted by p,
which will determine the probability distribution of the random graph (there is no index on p,
since as we will see later, under our assumptions all links are active with the same probability).

We note that we have a total of 2% possible topology (undirected graphs), with C’& number
of undirected graphs with i long-range links. The probability of a graph with i léng—range
links to appear is given by p(1 - p)%_i, for i = 1,...,%. We arrange the graphs in the set
G = {Go,Gl,...,Gﬁ_]} in the increasing order of their number of links. The first graph in Gy
has no long range communication links, and has the probability pg=1-— Z?: ! pi(l - p)§'i.

/1\ 1 /1\

& 2 g 2

s \2
SN/ / VaNa
J\ / /

o

\

6 6

~_

/

Fig. 5. Topologies Gy, G and G5 for N =8
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Let §; = Z;zoCév. For all j€{S; y,...,5;—1}, the graph G; has i long range links and a
2
probability p; = pi(1 —p)%_i, for i = 1,...%.

A. Randomized Communication Protocol

An agent can not be simultaneously transmitter and receiver. In case an agent receives a packet
while in transmitter mode, the packet is consider lost and no retransmission is attempted. If the
destination agent is in receiver mode, the packet is received without errors (this may be the case
when all links use orthogonal coding schemes, beamforming, and/or when links are specially
separated such that channel interference is negligible). In what follows we describe a simple
randomized scheme for package transmissions, in which a link is active during a time-lot if
both agents forming the link manage to successfully receive a package. We assume that at the
beginning of each half of time-slot, nodes randomly decide to transmit with probability g. If the
two agents are both source and receiver successively during a time-slot, then a link is active.
In all other possible situations, (two agents send simultaneously, an agents is twice a source or
a receiver, etc.) the link is considered inactive. The probability of a link to be active in a time
slot is p = 2¢*(1 —g)*. The integer 2 comes from the fact that a link (a,b) in a time-slot can
be given by two information transfer itineraries: a - b, b — a or b — a, a — b. The idea of
activating links with some probability is often used in network applications. For example in [12],
the authors use the randomized activation of links to implement a distributed approximation of
a power allocation scheme for networks with interference, while in [2] this idea appears in the
context of constrained coalitional games for networks of autonomous agents. Our goal is to tune
this protocol such that the performance of the MASM is improved. More precisely, we want
to find the best value for ¢ that ensures the tightest upper bound on the performance metrics,

which is obtained by solving the following optimization problem

minge(o 1) Zfo_l/ljl’j

subject to : p;=p'(1-p)N?>7 if je{S;q,...,5;—1}
P =2¢*(1-g)*
A;=SLEM(A)), i=1,...%

(42)

We first construct the matrices A; using a Laplacian based scheme. More precisely, to each

graph G; a Laplacian matrix L; is associated, and the stochastic matrix A; is computed according
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to the formula A; =1 - %L,- (the scaling factor % was chosen since an agent can engage in no
more then three communication links). Note that the formula of 7 depends on the second largest
eigenvalue of each the matrices A;. Unfortunately, even under our simplifying assumptions about
the communication topology, there is no know explicit formulas for computing the eigenvalues
of the matrices A;’s. Therefore, we have to resort to numerical methods to compute these
eigenvalues, which in turn may inflict a high computational burden in the case of large number
of possible topologies.

In Figures 6, 7 and 8 we present simulation results for N =4, N =8 and N = 16. We present
the evolution of n as a function of the probability g, together with the distribution of the SLEM
of A; with the number of long-range communication links. Remarkable (or perhaps not that
remarkable due the symmetry imposed by our assumption), for all considered values of N, it
turns out that the best choice for ¢ is % We can easily note that this value of ¢ maximizes p,
which means that n becomes small as we increase the probability of activating the long-range

communication links.

033 0.3

0.334 B 03

0333

0332

033

0329

0328
[i}

rumber of edges for N = 4
b)

Fig. 6. a) n as a function of g for N =4; b) The distribution of A; with respect to the number of edges for N =4

The numerical simulations also show that the topology with the highest connectivity is not
necessarily the best with respect to SLEM it induces (Figure 8). In fact, there exists graphs
with only three long-range communication links which induce smaller SLEM compared with
the fully long-range connected graph. Figure 9 shows such an example, where Gs; having only

three long range communication links induces a SLEM A5; = 0.8333, while the fully long-ranged
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Fig. 7. a) n as a function of g for N = §; b) The distribution of A; with respect to the number of edges for N =8
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Fig. 8. a) n as a function of g for N = 16; b) The distribution of A; with respect to the number of edges for N = 16

connected graph G»s¢ induces a larger SLEM, Ay56 = 0.8535.

We have repeated the numerical simulations for the case where the matrices A; where designed
such that the SLEM is minimized under the given graph structure. This problem corresponds to
finding the fastest mixing Markov chain on a graph, studied in [3]. In the aforementioned note,
the fasted mixing Markov chain is obtained as a result of a semidefinite optimization problem
of the form

minimize s

subject to —sI < P— %]1]1’ <sl
P>0, P1=1, P=PF
Pij=0, (i,)) €&,

(43)

where < denotes the matrix inequality and P is a symmetric stochastic matrix representing the
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Fig. 9. Topologies with 3 and 8 edges respectively, for N = 16

decision variable, with a structure given by the set of edges &. The following figures show the
function n and the distribution of the SLEMs for the communication topologies corresponding
to N=4, N=8 and N = 16, respectively, where the stochastic matrices A; were obtained as

solutions of the optimization problem (43).
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a) n7 as a function of g for optimized SLEM and N = 4; b) The distribution of optimized A; with respect to the number

We note that even in the case of optimal SLEMs, comparable values for SLEM can be obtained

with a smaller number of long range communication links. As expected, the optimal value of n
is smaller in the case of optimal SLEM’s. However, the optimal value for ¢ remains unchanged,

1Le. g = % Although we improved the optimal value of 7, the disadvantage of using optimal
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stochastic matrices in the consensus step consists in the fact that each agent would have to know

the current global topology in order to apply the appropriate (optimal) coefficients in consensus

step, which may be an unrealistic assumption.

B. Communication protocol with interference

In the previous scenario we assumed that the communication was not affected by the inter-

ference. In the following, we account for transmission interferences in the random graph model.
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Unlike the previous case, we assume that there is a pre-established order of communication
between agents such that no collision due to simultaneous transmission between a pair of agents
forming a link can occur. For simplicity we assume that during the first half of a time-slot, agents
{1, %} send a packet to the remaining {% +1,...,N} agents (in a one to one manner, i.e. 1 sends
to %+ 1, 2 sends to %+2, etc.) In the second half of a time slot, the last half of the agent set,
sends to the first one. Although no collision can occur due to simultaneous transmissions of a
pair of agents, packets can still be lost due the interference created by other transmitting agents.
If the transmissions during a time slot are successful (i.e. no package is lost), a link between
two communicating agents is considered active.

Let Py,..., Py denote the powers each agent invest for the transmission of a packet in a (half of
a) time slot. The power received from transmitter 7 at receiver j is given by G;;F;;P;, where G;;
is a positive scalar representing the path gain from transmitter i to receiver j and F;; is a random
variable modeling the fading of the channel between i and j. The scaler G;; represents for us
a distance dependent power attenuation, but can also be interpreted as log-normal shadowing,
cross correlation between codes in a code division multiple access system or a gain dependency

on antenna direction. In particular, we assume that G;; is given by
. — -
Gl] — Cdlj )

where ¢ represent a constant scalar depending on the physical characteristics of the transmitter
antenna and d;; is the distance between the two communicating agents, with @ taking values in
{1,2}, depending on the environment. We assume independent Rayleigh models for channels and
therefore each F;; has an exponential distribution with unit mean. At each receiver i, the affect
of a white Gaussian noise of power 0'1.2 will also be sensed. Given that agent i is a receiver and
agent j is a transmitter, the signal to interference-plus-noise ratio SINR;; at agent j is given by
F;;iG;;P;
0’?+Zl¢i,jFlelel.

SINRij = 44)

We define the outage of a link (i, j) as the event when a packet transmission fails. The outage
event can be translated as the event when the S INR;; is less then a threshold S ;. The threshold S ;
depends on the physical layer parameters such as rate transmissions, modulation and coding. The

probability of a successful transmission of a packet is given by Pr(SINR;; > S ;). The probability
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of a successful packet transmission (in a half-time slot) can be explicitly written as
S jo4 —
Pr(SINR,-szj):e_# ﬁ .(1+%) 1 (45)
1=1,1#i,j
The same model for the outage (success) probability of a link was used in [9] or [13], where
the authors designed power allocation schemes in the case of interference-limited fading wireless
channels and for solving the completion time minimization and robust power control problem,
respectively.
By assuming that the statistics of the noise and the SINR threshold are the same at all receivers
and that the agents use the same power for transmissions, the probability of a link to be active

can be expressed as:

N
82 T SGyj 2
p=e “GP 1+ , (46)
s G
Jj=2
where o2 represent the noise variance, S denotes the SINR threshold, P is the transmission
power, G is the power attenuation between agents i and %+i (for any i e{1,..., %}).

We noted that in the randomized protocol scheme a large value of p ensures a small value
for n. In the current scenario p is maximized as the power P converge to infinity. In Figure V-B
a), b) and c¢) we represent the evolution of n (for optimized SLEM) as a function of the power
P, for N=4, N=28 and N = 16, respectively.

For the numerical simulations we chose the following values for the communication model
parameters: R = 10 where R denotes the range of the circular graph, S = 0.1, ¢ =1 and the
variance of the noise o> = 0.04. As expected, n decreases asymptotically with the power P to
some value which depends on the SINR threshold and on the attenuation values. However, for
large values of P the decrease in n becomes smaller and smaller, the above analysis providing
a basis for choosing a value for P that ensures a small enough value for 1, while keeping the

transmission power limited.

VI. CoNCLUSIONS

In this note we studied a multi-agent subgradient method under random communication
topology. Under an i.i.d. assumption on the random process governing the evolution of the

topology we derived upper bounds on three performance metrics related to the MASM. The first
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Fig. 13. a) p as a function of power P for N =4; b)  as a function of power P for N =8§; ¢) n as a function of power P for

N=16

metrics is given by the radius of the ball around the optimal solution where the cost function
evaluated at an estimate converges. The second and the third metrics are represented by the
radius of a ball around the zero point where the distance between an estimate and the set of
optimizers is guaranteed to converge and the rate of convergence to this ball, respectively. All the
aforementioned performance measures were expressed in terms of the probability distribution of
the random communication topology. We then studied how these upper bounds can be improved
by tuning the parameters of the communication protocol in the case of two scenarios. In the first
scenario, we assume a randomized scheme for link activation with lossless transmission while
in the second scenario we used a pre-established order for transmissions, where the interference

effect was accounted for. Both these scenarios were applied on small world type of topology.
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