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NETWORK TOMOGRAPHY
Carlos Berenstein!?, Franklin Gavilanez!, and John Baras?

ABSTRACT. While conventional tomography is associated to the Radon trans-
form in Euclidean spaces. electrical impedance tomography. or EIT, is associ-
ated to the Radon transform in the hyperbolic plane. We discuss some recent
work on network tomography that can be associated to a problem similar to
EIT on graphs and indicate how in some sense it may be also associated to
the Radon transform on trees.

1. Introduction

As communication networks have become an cssential part of everyday life,
disruptions may have very serious consequences. Thus, the need to prevent or, at
least, detect them ecarly one has become very important. In order to do that we
discuss two models of the problem. one based on weighted graphs and the second
based on trees. The first one is the diserete equivalent of the inverse conductivity
problem, that is, of Electrical Impedance Tomography. The scecond model was
wentioned recently by E. Jonckheere and his collaborators [29]. The reason we can
think abont this problemn as a tomographic problem is that in both cases, the data
we collect are obtained by monitoring traffic only at distinguished subsets of the
network. We think about this subset as being the periphery of the network.

This paper is an expository version of onugoing work done by the authors in this
subject and the proofs for results mentioned here can be found in [9] and [11].

2. The weighted graph model

In this case we model our network in the following way. We have a collection
of nodes and edges between the nodes in a finite planar simple connected graph G.
We denote by V' the sct of nodes of G and by F the set of edges of . Usually, the
graph G is denoted by G(E, V). A particular subset of the vertices of this graph
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G is denoted by 9G and called the boundary of &. In our context these are the
nodes accessible to whoever is trying to monitor the traffic in G. The boundary
edges are those edges whose two endpoints are in dG. We assume that G remains
connected even if we remove the boundary edges. For our present purposes, the
boundary edges play no role. thus we may as well assume that there are none. We
also assume that dG  is not empty.

Furthermore, we assume that to every cdge in E we have an associated non-
negative number w(x,y) which corresponds to the traffic between the endpoints x
and y of the edge. The weight w(z.y) can be extended to all V' x V by defining
w(z,y) = 0 for the pairs (z,y) of vertices which are not linked by an edge. Note
that this is a static model and we are really thinking that the graph is a planar
graph. although this is not used anywhere in the reasoning. We define the degree
d_r of a node r in the weighted graph GG with weight w by

d,r = Z w(zr.y)
yeV
the Laplacian operator corresponding to this weight w is defined by

Auf(a) =Y [fly) = flo)) ==
yev
Using arguments similar to those in [23] we can sec that this Laplacian satisfies
the maximum principle. On the other hand, as pointed out in [21]. the elliptic-
ity in the usual sense does not hold. For instance, one can construct non-trivial
w—harmonic functions that are constant in a proper subset of G. the analogue of
an open set in the non discrete case. but the function is not identically constant in
G.
A graph S = S(V',E’) is said to be a subgraph of G(E. V) if V' C V" and
E' C E. In this case, we call G a host graph of S. The integration of a function
f:G — Ronagraph G = G(V, E) is defined by

/ f= Z flr)d, x or simply / fd,
. ]

rel’ G
For a subgraph S of a graph G = G(V. E) the (node) boundary 05 of S is defined
to be the set of all nodes z € V not in S but adjacent to some node in S. i.e.,

S ={:€V |z¢ 8 and z ~ y for some y € S}
and the inner boundary (%S by
S ={: € S |y~ : for some y € IS}

where z ~ y means that the two nodes : and y are connected by an edge in E.
Also. by § we denote a graph whose nodes and edges are in SUJS. The (outward)

normal derivative = (z) at z € 95 is defined to be
af - Lo w(z,y)
—(2) =Y [f(2) = fly)]—=,
7l et a,z

where d z = > w(z,y)
=

u
[n this model, there are two kinds of disruptions of traffic data that could arise.
In one of them, disruptions occurs when an edge “ceases™ to exist. in this case
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the “topology™ of the graph has changed, and we refer to the important work of
Fan Chung and her collaborators which offers crucial insights into this question.
(Sec. for instance (16}, (17} and {18]). In the other. the weights change because of
“increase” of traffic. that is. the network configuration remains the same but the
weights have either increased or remained the same. In this second situation, we
can appeal to the following theorem. whose proof appears in (11]

_ THEOREM 1. Let w; and u be weights with &y < ws on S x S, and fi. fa
S — R be functions satisfying for j = 1.2.

A,_,J flr)=0.res§
2 ()= @(z), €S

(’in‘J

Jofdo, =K
for any given function ¢ : 9S — R with faqq’ = 0. and «a given constant K
with W > my, where my ]1121;113’{777]'[ ~vol(S.wy). m; .rg(l,%fJ(:)J = 1.2 and

vol(Sow,) = S d_, . If we assume that
(Dwi(z.y) = walz.y) on 38 x IS
(1) filos = falos,

then we have
tnd

Jorall v and y in S.

The condition that A_f(r) = 0 corresponds to the fact that the value flar)is
the weighted average of the values of f at the adjacent nodes.

We conclude that the data distinguishes the two cases. That is. we can decide
whether there is an increase of traffic somewhere in the network or not. While this
is only a uniqueness theorem. nevertheless, we can cffectively compute the actual
weights from the knowledge of the Dirichlet data for convenient choices of the input
Neumann data in a way similar to that done in [21] and {23] for lattices. Similarly,
the Green function of this Neumann boundary value problem can be represented
by an explicit matrix.

What we want to discuss now is the relationship between the above results to
the problem of understanding a large network like the internet.

One way to make more concrete this problem was discussed by T. Munzner in
[32] and [33] on visualizing the internet. It implies that the natural domain might
be a hyperbolic spacc of dimension higher than 2. One can see that Munzner’s
suggestion leads to a question closely resembling EIT, and it is natura)l to consider
it a problem in hyperbolic tomography [7], [8]. On the other hand. we have just
obtained a significant result on the inversion of the Neumann-Dirichlet problem by
studying it directly on “weighted™ graphs {11]. Similarly, the Radon transform in
the hyperbolic plane has been studied in [7), [8], and [27].

In addition. in a recent lecture E. Jonckheere [29] indicated that internet traffic,
at least locally, could be modelled as being part of a tree and therefore it can be
visualized using 2-dimensional hvperbolic geometry. As a consequence, a different
way to locally study these kinds of networks would be by the use of the Radon
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transform on trees. As it turns out. an inversion formula for the Radon transform
on trees is already known and it can be found in [9].

For the sake of completeness, we will describe here a simplified version of the
Radon transform on trees and its inversion formula. As explained below. this seems
to be enough to deal with the network problems we are interested in.

3. The Radon transform on homogeneous trees

Let us now remind the reader what do we mean bv a tree T. A tree T is a
finite or countable collection V' of vertices {v,. j = 0.1.....} and a collection E
of edges e;x = (v;.vx). in other words, pairs of vertices. We orient the edge e
by thinking that v, is the first node and v the second node. We always include
the edges ek, in this collection. which have the reverse orientation. Given two
vertices u and v,we say thev are neighbors if (u, ) is an edge and write u «~ v in

this case. A geodesic ¥ from ug to u; is a collection ugy . uy , ...... uy -y . w of pairwise
distinct vertices such that ug «~ up . u; — us . ... ;- wy . If it turns out that

uwy ~ u; then we consider the closed geodesic path 4 by adding the edge (uy ,ug )
to ~. Unless explicitly mentioned, our geodesics will not be closed. To simplify
the notation. for any geodesic v = up «~ wy > uy -~ Uy ~ - W -~ Y
open or closed, we denote by =5 the geodesic with the opposite orientation |, i.e.,
Yy =1Uu Uy - ... ~ uy . The collection of all (open) geodesies is denoted by T
If T is infinite. then a complex valued function is defined to be in LYT) if ‘

Z pfle)] <~
vel’
The Radon transform R of a function f € LY(T) is simply the bonnded function
Rf on I' defined by
RI(7) = f(v)
vey

Given a node v we denote by () the number of edges that contain ¢ as an
endpoint. This number is sometimes called the degree of the node. We will assume
throughout that we always have v(v) > 3 to ensure that the Radon transform in
injective. (In our applications this is only nceded for nodes v that lie in supp(f).
In the terminology of [9] we are assuming there are neither black holes nor flat
points in 7. Under these conditions. the Radon transform in a tree is invertible. In
fact, the explicit inversion formula resembles that of the inversion for the Radon
transform in the Euclidean plane [10], {12}, {13!, and [27]. Unfortunately, even in
this case, we need to introduce a significant amount of auxiliary notation. For the
purpose of illustration we describe the inversion formula here only for the case of
homogeneous trees and we refer to [9] for the general case.

4. Inversion of the Radon transform on homogeneous trees

Consider a homogeneous tree T in which each vertex touches g + 1 edges with
g > 2. If n is a nonnegative integer, let v(,, be the number of vertices of T at
distance n from a fixed vertex of T. It follows that

I 1 ifn=0
W (gDt ifn 21
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We give the following definitions. Let v, w be two vertices in T that are connected by

a path (v = vg...... v, = w). then the distance between v and u' is the nonnegative
integer |v.w| = m. Also. for f € LY(T). let pu, be the average operator defined by
] .
tn f(v) _ S flw), forveT
It can be seen tha vasical convolution with radial kernel
|
J
) f —
Let /4 q/(2(g+1)) and R™ be the dual Radon transform defined for & € L=(I")
2" & [ ®(~)dp,( r
with respect to a suitable family {p, : v € T'} of measures on I where I',, is the set
of all of the | n e
I | ) i H S
op f n b { wlial 'l f gy -
1
Proro ON 1 [ g ) ) Ol Thi ( t
/ = S 23 L (1

holds tm LY(T). where the series is absolutely convergent in the convolution operator
norm on L*(T). thus providing a bounded extension of R*R to L*(T).

- THEOREM 2. [Theorem 3.4.9) The unique bounded extension to L*(T) of the
operator R* R is invertible on L*(T), and its inverse is the operator

COROLLARY 1. [Corollary 3.5.9] The Radon transform R:L'(T) — L>(T') is
mverted by
ER'Rf = f.
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