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CONTINUOUS AND DISCRETE INVERSE
CONDUCTIVITY PROBLEMS

JOHN BARAS, CARLOS BERENSTEIN, and FRANKLIN GAVILANEZ

ABSTRACT. Tomography using CT scans and MRI scans is now well-known
as a medical diagnostic tool which allows for detection of tumors and other
abnormalities in a noninvasive way, providing very detailed images of the in-
side of the body using low dosage X-rays and magnetic fields. They have both
also been used for determination of material defects in moderate size objects.
In medical and other applications they complement conventional tomography.
There are many situations where one wants to monitor the electrical conduc-
tivity of different portions of an object, for instance, to find out whether a
metal object, possibly large, has invisible cracks. This kind of tomography,
usually called Electrical Impedance Tomography or EIT, has also medical ap-
plications like monitoring of blood flow. While CT and MRI are related to
Euclidean geometry, EIT is closely related to hyperbolic geometry. A question
that has arisen in the recent past is whether there is similar “tomographic”
method to monitor the “health” of networks. Our objective is to explain how
EIT ideas can in fact effectively be used in this context.

1. Introduction and preliminaries

Networks have become ubiquitous in present society and thus it has become
important to avoid and detect disruptions. In particular, it is important to prevent
malicious intruders from disrupting them. To achieve this sufficiently early, it
is essential to count on a mathematical model that can allow early detection of
attacks to the network. The mathematical tool that we consider to accomplish
the early detection of disruptions is based on the use of tomographic ideas. One
of the questions we are considering is how to find out whether an attack against
the network by traffic overload is taking place by monitoring traffic only at the
periphery of the network (input-output map), and hence, the use of a tomographic
approach.

2000 Mathematics Subject Classification. Primary 05C40, 35R30; Secondary 94C12.

Key words and phrases. Tomography, electrical impedance tomography, inverse conductivity
problem, w—harmonic functions.

This write-up is an extended version of the invited lecture given by the second author at PASI
2003. Prof. Berenstein acknowledges support from grants NSF-DMS0070044, ARO-DAAD19-01-
1-0494.

Work of Gavildnez is supported by ARO-DAAD19-01-1-0494.

© 2004 American Mathematical Society
33



34 JOHN BARAS, CARLOS BERENSTEIN, AND FRANKLIN GAVILANEZ

We present first a general idea on how tomography can be used to do such
monitoring and implemented as a diagnostic tool. Consider subsets A and € in R?
such that A ¢ © and let f € C,(R?) be such that SuppfC(). Assume A represents
an object from which we want to get some information. We could just ask for f to
be rapidly decaying for z— oc.

Let ® be the collection of all the straight lines in  connecting any pair of
points a and b where a, b€, a#b, i.e., ® ={( line /a,b € ¢NosY, a # b}, and f(x)
represents the distribution or density at the pointz € (2. Let the Radon transform

(11) R(f) = ] f(z)da
=

be the set of all line integrals of the function f.

The concept of tomography then can be understood as the reconstruction of
the function f from the set of values given by R(f). To recover f is thus the same
as finding the inverse of the operator R . Hence, we are able to know the value of
f at any point r in Q without having access to the interior of Q.

A well-known example of tomography is transmission CT in diagnostic radi-
ology, [31], where CT stands for computerized tomography. Essentially the setup
consists of a detector and an X-rays beam source. A cross-section of the human
body is scanned by a thin X-rays beam. Because the density of the tissue of the
human body changes from its surface to its interior, there is a intensity loss which is
recorded by the detector and processed by a computer to produce a two-dimensional
image which in turn is displayed on a screen. Given that the X-rays go through
the tissue, it is clear the X-rays absorption is related to the attenuation coefficient.
Let f(z) be the X-ray attenuation coefficient of the tissue at the point z. Taking
a close look, X-rays traversing a small distance Az at x suffer a relative intensity
loss,

AT
(1.2) - = flx)Az.
If the X-rays are considered as straight lines, as indeed they essentially are, let ¢ be
the straight line representing the beam, I, the initial intensity of the beam, and

I, its intensity after having traversed the body. It follows from (1.1) that

(1.3) 2~ expl-~ [ fla)dr)
¢

thus the scanning process provides us with the line integral of the function [ along
each of the lines ¢. From the set knowledge of all of these integrals the problem is to
reconstruct f. Equally well known by now is MRI, magnetic resonance tomography,
where the underlying space is R® and the integrals take place over the family of all
planes in R®.

See [25] for other examples of imaging and detecting equipment based on tomo-
graphic principles and [34] as a recent overview of this kind of problems discussed
here. We refer to [5] for more details on MRI.

Sections 2 and 3 are provide the background information on the Radon trans-
form. In section 4, we also consider tomographic examples like the geodesic Radon
transform in the hyperbolic plane, which appears naturally in relation to the inverse
conductivity problem and, possibly, to internet tomography. We conclude in section
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5 with some new results on this last subject. The key ingredient is the attempt to
understand what happens in a network from “boundary measurements”, that is, to
determine whether all the nodes and routers are working or not and also measure
congestion in the links between nodes by means of introducing test packets (ICMP
packets) in the “external” nodes, that is, the routers. The question of finding out
whether there are nodes that are in working order is a classical question in graph
theory. For networks, it is also interesting to try to predict future problems due to
congestion. (Note that nodes could fail to work for other reasons than congestion
on the links starting at a given node.) This requires to monitor also traffic inten-
sity, also known as load, congestion, etc., in different contexts. There is another
analogy to mathematical tomography that arose independently and maybe closer
to the consideration of this question in the context of electrical networks. Curtis
and Morrow have done very interesting work in this context, both theoretical and
in simulations, see, for instance, [20] and [19]. Another analogy in the same di-
rection arises when we consider verv large networks, as the internet, which could
be considered as the discretization of an underlying continuous model. In this way,
we can see the analogy with the well-known inverse conductivity problem and we
could try to profit from the large body of mathematical research in this area. The
analogy with this particular inverse problem indicates that if one were to pursue
this “abstract” approach the “correct” geometry is closer to be hyperbolic than to
be Euclidean [7]. On the other hand, as of this moment, we have found that those
tomographic analogies are more useful for providing directions of research and meth-
ods to consider these problems than providing an exact correspondence between the
two phenomena. It is in this context that [9] modelled “internet tomography” as an
inverse Dirichlet-to-Neumann problem for a graph with weights. In this situation,
one can prove that characteristics of the graph, namely, its connectivity and the
traffic along links can be uniquely determined by boundary-value measurements as
shown in [9] which is the natural analogue of the continuous inverse conductivity
problem.

Among the questions that arise naturally using the inverse conductivity prob-
lem as a guiding model there are a number of questions that have been previously
addressed using other points of view. Namely, the problems already addressed in
[17] for internet tomography are:

1. Link-level inference, in other words link-level parameter estimation based on
end-to-end path-level traffic measurements. Examples of this are unicast inference
of link loss rates, unicast inference of link delay distributions, topology identifica-
tion, loss rates by using multicast probing and so on.

2. Path-level inference (origin-destination tomography OD) in other words
sender-receiver path-level traffic intensity estimation based on link-level traffic mea-
surements. One example of this is time-varying OD traffic matrix estimation.

We would like to conclude by thanking the editors and the referee for his useful
comments.

2. The Radon transform in &2

Let w € S', then w = (cos#,sinf), and take p € R. The locus of equation
T -w = p represents the line [ that is perpendicular to the line r passing through
the origin and forming an angle # with the real line R. If B is the intersection of !
and 7, the euclidean distance d (signed) from B = pw to the origin is equal to p.
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Consider a nice function f or any reasonable function f , for instance fcontinuos
and compactly supported, then consider the line integral with respect to Euclidean
arc length ds,

o

(2.1) Rf(w,p) := ] f(r)ds:/f(ro+twj”)dt

T-w=p —oo

where 7, is a fixed point in [, i.e. it satisfies z, - w = p, and w* = (cosf, —sinb),
the rotation of w by 7/2. When p and w range over R and S'respectively, we get
all of the lines in R?. Usually z, is taken as pw.

The map f — Rf is called the Radon transform and Rf is called the Radon
Transform of f. We refer to [31], and others there in, for a detailed exposition of
the Radon transform. Clearly Rf is a function defined on S x R, i.e. the family
of all lines in R? with the compatibility condition mentioned in [8]:

(2.2) (Rf)(-w,—p) = Rf(w,p)

Given that [ doesn’t change when w and p are changed to Aw and Ap, A # 0, A € R,
then the Radon transform can be extended from S* x R to R? x R. The pair (Aw,Ap)
is identified with (w.p), and the extension of the Radon transform satisfies

(2.3) Ru(Mw, Ap) = Ru(w, p),

therefore, the Radon transform can be extended as an homogeneous function of
degree zero, a very important property of this transform.
Rf can also be defined as

(2.4) Rﬂwpw=L;ﬂwap—wme

with d the 1-dimensional delta, which allows us to obtain easily the properties below
in the natural coordinate space of lines. In particular for w = (w1, ws) with |w| =1,
then

(2.5) R(afé:;p}) = wy aRJ;(:'p)
and SR ) 5
Rf(w.p) _ - Vw
o *apr(Iz )w,p)

hence, it follows that if P, (x) is a homogeneous polynomial with constant coefficient
of degree m and |w| =1,

(26) R(Pn(02) f(w,p) = Pa(w) - TEL00)
and .
Pal@.)(RF (@) = (-1 5 R(P(a) f(w.9)
where
o, 0 0 a a

and obviously r = (z1,z2).
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One can similarly define the Radon transform in R™ and verify that the prop-
erties (2.5) and (2.6) extend to this case. In particular for the Laplacian A in
R"™,

*Rf(w,p)

op?
where, for each direction w € S"~! the right hand side is the Laplace operator in
dimension 1. Note that in general

(2.7) R(Af) =

*Rf(w,p)

Op?
As a consequence, if the function f depends also on time, and O, represents the
wave operator in n dimensions we conclude that

RO, f = O,R{.

therefore, the Radon transform in n dimensions is localizable if and only if the
wave equation is localizable. Fixing w € S™!, one can express this identity by

. - 2 .
saying that the Radon transform interwines the wave operator [, = A — gt—? in
. . . 2 2 - . .
n—dimensions with the wave operator [J; = 5—‘13 — gg in 1—space dimension. It

follows that the Radon transform can not be localized in even dimensions [10].
In spite of this observation one can obtain an almost localization of the Radon
transform in R?. The key elements is the use of wavelets as it will be described
in the next section. Meanwhile, for the sake of completeness we remind the reader
of the standard inversion formula for the Radon transform in R2. It depends on
the following identity, usually called the Fourier slice theorem. Namely, writing the
Fourier transform Fy(f) of a nice function f in R? in polar coordinates (s,w) we
have

R(Af)(w,p) = (W2 + -+ -+ +u?)

(2.8) f(z) e do = [ Rf(w.p)e="Pdp, z€R?
R2 —o0

or, in a more concise form,

Fa(f) = F(Rf)
where, clearly, F» stands for the 2-dimensional Fourier transform and F stands for

the 1-dimensional Fourier transform in the variable p which provides one standard
inversion formula for the Radon transform

(2.9) f = F;'F(Rf)

There is another inversion formula that has a number of advantages for us, and
we proceed to explain it now. To simplify we work in X = S(R?), the Schwartz
space of functions f and ¥ = S(S! x R) the Schwartz space of functions g. Let
fi, foe X and g, g2 €Y, and {f1, F2)x s (o, g2}y the inner products in X and Y
respectively, then because of the linearity of the operator R, we write the equation
that defines R*, the adjoint operator of R

(2.10) (Rf,9)y = (f\R"g) x
The explicit expression for R*g is given by

(2.11) fSl gw,w-x)dw = R*g
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R* is called the backprojection operator.
The function R*g is such that for z fixed

R*g(x) :/ g(w,w - x)dw
S]

is the integral of g over all lines passing through .
In order to get a formula for f from the Radon transform value, the next
important property of the backprojection operator holds.

(2.12) (R7g) « f = R*(¢9 ® Rf)

where ® stands for the convolution with respect to the second argument, and the
Radon inversion formula is then given by.

(2.13) j eﬂ”"%IFg(R*Rf)(q)dc = f(x)

RZ
Introducing the square root A of the Laplacian operator A, we have
(2.14) A(R*Rf)(z) = f(z)

which is usually called the backprojection inversion formula.

3. Localization of the Radon transform

As explained above, we can not in general reconstruct the function f in a disk
D(a,r) of R? using only lines ! passing through D(a,r). One can localize up to a
baseline value of the function f, that is, one can recover for a disk D(a, ) by using
only the data Rf(I) for passing through D(a,r + ), for arbitrary £ > 0, up to an
additive constant [11] and [12] . The key element is the use of wavelets.

Let us recall the basic properties of the continuous wavelet transform (CWT)
and the discrete wavelet transform (DWT).

Let b € R be and f, the translation of f by b, i.e. fy(z) = f(z —b), then

Fals) = e 27§ (g)

where } is the Fourier transform of f. Now let D, f be the dilation of f by the
scaling factor a € R, a > 0 where D, f is defined as D, f(x) = %f(%) where the

term ﬁ is chosen such that || f||, = |[Daf||, . ie., f and D, f have the same energy,
then one has

(3.1) (Daf) () = Dy/af(s) = vaf (as)

As pointed out in [27], equation (3.1) tells us that the Fourier transform

——

(Dof)(5) is dilated by 1/a , then we lose in the ¢—domain (frequency) what we
gained in x—domain (time). In other words, there is a trade-off between time and
frequency localization if ¢ and = stand for frequency and time respectively.

3.1. Wavelets as a tool. In what follows for f € Li(R) (or f € S(R) ) we
denote

(32) Q= [ sy e e

the usual Fourier transform of f. Let us recall from [27] the definition of the con-
tinuous wavelet transform (CWT) associated to a “mother” wavelet ¥. Namely,
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following [8], given a “mother” wavelet ¥ € Ly(R) N L(R) and f € Ly(R), we
define the wavelet transform of f as

. - b, dt
(33) Was@)= [ 10 T < 0,000 >,

b,a € R, a > 0, where, for a function g and b € R we let g,(t) = g(t — b)
One requires that the “mother” wavelet ¥ to be oscillatory, i.e. f V(z)dr =
0. In fact, one assumes stronger condition

(3.4) Cy = fx

S

o2
¥(s)

ds < o0,

called the admissibility condition. The admissibility condition is satisfied when ¥
has several vanishing moments,i.e., for 0 < k < s

/ o U(z)dr =0

The functions D, ¥, are called the wavelets
The function f can be reconstructed from its wavelet transform by means of
the “resolution identity” formula

f:C‘\jf f < [y D Uy(t) >1, D Wy(t)dt

where Cy < oc since W € Ly (R).We refer to [27] for the general theory of wavelets.
Proposition 1 explains how to use wavelets to obtain (almost) localization.

PROPOSITION 1. [10] Let n be an even integer, and h € Lo(R) a function with

compact support such that for some integer m > 0 h is n+m-1 times differentiable
and satisfies

o~ (R)
1L, 'th ( Ve Li(R)NL(R) for 0K j <m, 0€k<m+n-—1
2. f t)dt =0 for 0< j < m+1, i.e.,, h has m + 1 vanishing moments
Then
I"ht) = o(|t| " ™ as |t| — oo
and

t n+1n—II lfnh c Lz(R)

The fact that I 1~"h(t) = o(|t| ™™ ™) as |t| — oo tells us that I 1~"h
decays as [t|”""™ "V and therefore, it does a good localization job.

For practical purposes, the continuos wavelet transform, CWT, is discretized
and the discrete wavelet transform, DWT, is obtained. In order to discretize it,
consider m,n € Z and the values a,b that appear in Wy f(a, b) are restricted to
only discrete values a = a', b = nb,al’, a, > 1, b, > 1 fixed. (The fact that
a, > 1, b, > 1 it really does not matter because m,n can be negative). The
discrete wavelet transform DWT of f is defined as

(3.5) W (f) =a;™? / | f()¥(a; ™t — nb,)
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where, as before, it holds that ff‘; W(t) =0, and the wavelets are given by

Upn(z) = a;™?W(a; ™z — nb,)

= a;™?W(a;™(x — nboa™)

hence ¥,,,, is localized around nb,al* in time, (3.5) can be also expressed as
(fy ¥m,n) which are called the wavelet coefficients.

It is important to point out that in the discrete case, in general, there does not
exist a resolution of the identity formula to recover f, so the recovering of f must
be done by using some other means , for instance numerical ones. The choice of the
wavelet W is essentially only restricted by the requirement that the admissibility

P 2
¥(<)

condition holds, i.e., Cy = [~ —ds is finite. Following [21], the discretization

is only restricted to positive values of a then the admissibility condition becomes

2 2

~

. W(s)
o= [ d‘zf_:hT:T

and since a, b will be discrete values only, then the dilation parameter is chosen as
a™ m e Z and a, # 1 is fixed (usually a, > 1). The value b, is also fixed and it is
chosen such that ¥(x — n b,) covers the whole line.

Now, for reasonable ¥ and suitable a,, b,, there exist ¥, ,, so that the discrete
wavelet coefficients { f, ¥, ») characterize completely f which is given by

f = Z ( fs “I'm.n) “pm.n

ds < o0

then any function in Lz(R) can be written as a superposition of the wavelets ¥,,, ,,.

3.2. Wavelets and the Radon transform. Now we want to state some
results that relate wavelets and the Radon transform, which is of interest for to-
mography, [11], [12].

PROPOSITION 2. Let p € Lo(R) real valued, even, and satisfying

o 2
(3.6) /oo Mdr < 00

r3

—0C
where p stands for the 1-dimensional Fourier transform of p. define the radial
function ¥ in R? by

F¥(s) = ﬂ%lq'_“

where as before, Fy is the 2-dimensional Fourier transform, then W is a wavelet for
n=2 and the wavelet transform of f is such that

i) =a 2 [ (W,R. f)(ab)de
Sl

where R, [ is such that R, f(p) = Rf(w,p).
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PROPOSITION 3.  Let W be a separable 2-dimensional wavelet, Gy

U(z) = W (21)T%(22), z= (x1,22)

where for i=1,2 "i(fy) < Ci(1+ [4])7* for all ¥ € R. Defining the family of the

one-dimensional functions {p,},cs1 by

Pu (7) = % v £1(7W1}£2(7'W2)- w = (w1, ws)
i.e. py =F{ '(ps). Then for every f € Ly(R?) N Ly(R?),

(W f)(a,z) = a‘”szI (W, Ruf)(a,z w)dw

The proposition shows that the wavelet transform of a function f (z) given any
mother wavelet and at any scale can be obtained by backprojecting the wavelets
transform of the Radon transform of f using wavelets that vary with each angle,
the argument of w, but which are admissible for each angle, i.e. Cg < oc.

4. The hyperbolic Radon transform and EIT

In this section we discuss the Radon transform on the hyperbolic plane, state
some formulae analogous to the ones that were given in section 2 to invert the
Radon transform. The backprojection inversion formula is one of them, and later
we will see how the hyperbolic Radon transform is related to electric impedance
tomography (EIT).

In [6] and (7] it is shown that the hyperbolic Radon transform is involved in
the problem of reconstructing the conductivity distribution on a plate by using
electrical impedance tomography EIT.

4.1. The hyperbolic Radon transform. Let D be the unit disk of the
complex plane, i.e. D = {z € C/ |z| < 1}. In D, a Riemannian structure is defined
through the hyperbolic metric of arc-length ds given by

2 |dz|

4.1 il = e
. (1— 2%

with dz the Euclidean distance in R?, and the hyperbolic distance between two
points z,w € D is given by

d(z,w) = arcsin h ( |z — w )

(1= |2[)12(1 = fw|*)1/2

The set of lines that are diameters of D, and the set of intersections between the Eu-
clidean circles and D such that the resultant lines (intersections) are perpendicular
to the boundary 0D of D are the geodesics or h-lines for the metric (4.1).

If z € D is expressed in polar coordinates by (w,r) where w = 20| 2], r=
d(z,0), then the metric (4.1) becomes

ds® = dr? + sinh? r dw?
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where dw? is the usual metric on OD. This indicates that the area in hyperbolic
geometry is exponential on the radius r. Let us recall that if E is a set contained
in the hyperbolic disk D, then the hyperbolic area of E. h-area(E), is given by

h-area( E) = // d;t'dy#d:rdy. z=(z,y)
E (1= z*)?

and the hyperbolic length of any curve v in D, h — length(7), is given by

h — length(y) = /

¥ 1—| 2|2

2|dz|

In terms of the Euclidean Laplacian A, the Laplace-Beltrami operator Ay in polar
coordinates on D can be expressed as

2
(l - |z|2) 92 2 e
. - O it
(4.2) AngA—w—i-cothva-&smh e
and in the Euclidean coordinates, z = (z,y), (4.2) becomes
1 — 172 1 62 82
AH = M(MQ_ + _2)
4 dx dy
Following [8], we denote the Radon transform of a function f within the hyperbolic
plane by Ry f which is a function on the family of geodesics in D. It is defined as
follows,

(4.3) A= Badl) = ] f(2)ds(z), vgeodesic in D,

where f is a function such that (4.3) makes sense. For instance, if f is a function
with compact support, i.e.. f € Co(D) or f € S(D). the Schwartz space, which
is the space of functions rapidly decaying as |z| — 1. In fact, f has to decay a
bit faster than e~ " because the element of length ds(z) grows as e”. (As ds* =
dr? + sinh® r dw?, ds grows as ¢”). If T' is the space of all the geodesics in D, then
the dual (adjoint) transform R* (backprojection operator) is given by

R®(z) = fr B(~)dp=(7)
where T', is the set of all the geodesics passing through z and dp. is the normalized
measure of T, .

Any geodesic passing through the point z € D depends only on one of the end
points. (The other end point determines the same geodesic through z.) Therefore,
T. is completely determined by @D = S hence I', can be parametrized by w € S*
and dy, is naturally associated to élr;d.w.

Having done this parametrization, the purpose now is to invert the operator
Ry . In order to invert Ry one can proceed in the spirit of Radon’s inversion formula.
See [24]. Following [10], one try to find a filtered backprojection type formula like
2.13. Recall that if k € L},.([0,00)) we can associate a radial kernel such that for
f € C,(D), the convolution operator with respect to this radial kernel k is defined
as

(4.4) kx f(2) =k oa £(2) = /D F(w)k(d(z,w))dm(w)
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where dm(w) is the measure for the hyperbolic area which in polar coordinates is
given by

dm = sinh rdrdw
Recall the formula for R* R can be written as

2
R'Rf = — % f.
||
The analogous result for the hyperbolic Radon transform R H is given by
1
: R = here k(t) =
(4.5) Bt ¥, uhere B3] msinht

In [7] and (8] it is shown that by letting f S(¢) = cotht — 1, we obtain
1
(4.6) EAH Sxg RyRy =1,

the analogue to the backprojection inversion formula given before.
The Fourier transform in the hyperbolic disk D for a radial function k is given
by

~

k(A) = 27r/ k(t)Pix_1/2(cosht)sinhtdt, for A€ R
0

where P,(r) is the Legendre function if index . If m is another radial function
then

e

(k+m)(A) = k(N)m(X)

as we know it, [8]. It follows that as ;(A) # 0 VA € R then the operator Ry, which
takes f to k*g f, is injective.

4.2. Electrical impedance tomography (EIT). EIT has a number of ap-
plications to medicine and non-destructive evaluation. For instance, to determine
the existence and lengths of internal cracks in the wings of an airplane. These
applications are related to the inverse problem which is formulated now.

Let D the unit disk in R? and 3 an strictly positive function defined on D which
is unknown and represents the conductivity distribution inside the disk. When
currents are introduced at the boundary 8D, let ¥ be a given integrable function
representing such currents and such that the average of the values of ¥ on 9D is
Zero

Pds = ()
aD
and consider the boundary problem with Neumann conditions

div(fgrad u) =0, in D
,@gﬁ =WV, on 8D

where W is given and n is the outer unit normal vector on 9D. This problem has
a unique solution u where the uniqueness of  is up to an additive constant. The
function u is the potential distribution on D so grad v is the electrical field. The
variation of u on 8D has to correspond to the known values of ¥ on aD, then, if s
represents the tangent vector to 8D, it follows that the tangential derivative of u,
‘g—’;‘, depends linearly on ¥. So, for ¥ given and 3, the unknown conductivity, there
exists a solution u. This defines a mapping

(4.7)
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du

B¥ — —
B Jds

where 3 is the only remaining function to be found.
Let Ag be

ou

Ag: U -

& 7 Bs

Ap is a linear operator from the Sobolev space H*(8D) into H* '(8D) , and /3
determines Ag.Given that /3 is to be found, then we consider the nonlinear mapping

(4.8) ,3 — AB

Now the problem (Calderén’s problem) consists in determining 5 once Ag is given.
In other words, the problem is to find the inverse of the mapping (4.8), and this
problem is called the inverse conductivity problem.

Some questions arise here. Is the mapping (4.8) injective?. If so, how can
the inverse of Ag be found?. The injectivity of it in two dimensions was proven
by Nachman [29] and for dimensions higher than two by Sylvester and Uhlmann
[34] and [33]. See [4] and references therein for some uniqueness results. For the
linearized problem, the injectivity was proven by Calderon [13]. What we explain
next is how to try to find an approximate inverse.

4.3. The approximate solution to the EIT problem. As it was stated
before, /3 is called the conductivity distribution (of some object, for instance, lungs
tissue), and 1/3 is called impedance, hence the name of EIT. The value of 3 cor-
responding to different constituents like human lungs tissue, blood and so on are
already known, then one only looks for a profile of the areas occupied by them. EIT
can measure the rate of pumping of the heart. In fact, there is already a patented
device based on EIT that measures that rate.

In the case of the determination of cracks, if 4 > 0, 3 can be assumed as known,
then the curves and the existence of them are to be determined.

We want to emphasize that 3 is generally not a constant but in the case we
consider now (3 is close to being a constant positive value [3,. Assume that 3, is
initially known, and what we want to know is how much it deviates from 3, where
3,. To simplify we set 3, = 1 so the deviation of 3 is governed by

B=1+43

where |§3| << 1, and 6 is a function depending on the position. If §3 = 0 at some
point w in the object being studied D, then there is no any “abnormal” situation
at w. Tt is also assumed that there is no any deviation on dD, i.e. 63 =0. If U is
the solution of (4.7) for 3 =1, i.e.,

div(grad U) =0, in D
%% =W, on 0D

and since div(grad U) = AU (the Laplacian of U), it follows that

AU =0, 4n D
(45) { %’; =", on 9D

now let u be the corresponding solution of (4.7) for the perturbed conductivity
3 =1+ 4873, then there is a perturbation §U, hence u = U + §U. The perturbation
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oU satisfies
A(8U) = —(grad 683,grad U), in D
8U — _(68)¥, on 8D
and since ¥ represents the input of the currents and they can be arbitrarily chosen
with the only constraint
/ Wds =0
aD

then the input ¥, can be well approximated by linear combination of dipoles where
a dipole at a point w € @D is given by —w;%éu,, 0, the Dirac delta at w. It follows
that the problem (4.9) for the dipole (input) —Tl’é% 4, at w becomes

{AUW:O, in D

(4.10) Qg# — —'n‘%d‘w, on 0D

and the solution U, of (4.10) has level curves which are arcs of circles that pass
through w and are perpendicular to dD. Therefore, the level curves of U,, are
exactly the geodesics given by the hyperbolic metric. At this point, the hyperbolic
Radon transform is involved in the problem and can be used to solve it.

In (7] is shown that the linearized problem can in fact be described explicitly
in the context of hyperbolic geometry using Ry and a radial convolution operator
with kernel k. Let k be given by

_cosh™(t) — 3cosh™*(t)

k(t
(t) o
then, as the boundary data function p = Qﬁ% defined on the space of the geodesics

in D, the relation between 63 and u can be shown to be
Ru(kx*p 68) = p
and because of the backprojection operator, one obtains
RyRu(k«g 63) = Ryp
hence
4.11 -
(4.11) rym

Computing the hyperbolic Fourier transform of k, E, which can be done exactly,
it can be seen that E(A) # 0, VA € R, and consequently, the convolution operator
with kernel or symbol k, kg is invertible. Formula (4.11) requires to invert the
convolution operator of symbol k to compute §3. Barber and Brown [2] proposed
an approximate inversion and Santosa and Vogelius [32] shows that the inversion
formula suggested by [2] is a generalized radon transform.

To numerically implement the reconstruction of 83 it is necessary to invert
the geodesic Radon transform and perform a deconvolution. The difficulty of nu-
merically implementing (4.11) lies in the fact that it is complicated to numerically
implement a two-dimensional non-Euclidean convolution on the hyperbolic space.
In [26], Lissianoi and Ponomarev focus on the problem of numerically inverting the
geodesic Radon transform by developing an algorithm, and the problem regarding
the deconvolution is also considered there. For this purpose, they consider the
inversion formula (4.6) and use it to derive an inversion formula for the geodesic
Radon transform that it is more suitable for computations. The interesting open
problem here is to be able to define a class of “discrete hyperbolic wavelets” that

Au(S*g (Ryp)) =k*y o8
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provides the localization described in section 3 for the Euclidean Radon transform
and has computation properties similar to those of the Euclidean wavelets. For
examples of discrete hyperbolic wavelets, we refer to [22]and[23].

5. A similar problem on networks

To conclude this report, we would like to mention a question raised by the
second author in his PASI 2003 lecture and the new results obtained since then. The
question we refer to is what is now being called Internet Tomography [17] and [1].
The problem is to be able to find out whether a network, usually a communications
network, is suffering some sort of breakdown. By that we mean that traffic along
the network either can not reach every node in the network, or when we add a
measure of traffic around nodes, the traffic is so large in some parts of the network
that it would take very long to go from one node to another. When the network
is large, the information is naturally gathered at the “periphery” of the network
and hence the name of internet tomography. The similarity to usual tomography
becomes closer when one uses as a way to measure the traffic “packets” sent from
the “boundary of the network” and measures whether they arrive to the other
boundary points and, more often, how long it takes to get there.

Computer scientists have done “experimental” work on this subject and have
suggested that the natural model of internet tomography is a graph situated in a
portion of the 2-sphere or, what is essentially the same thing, in the hyperbolic plane
[28]. Before we proceed further, let us note that we have alluded to two natural
types of “disruptions” of the network. First, when thought as a planar graph, if
a node or collection of nodes have ceased to exist because of an “intrusion”, the
“topology” of the network has changed. There has been very significant work on this
direction by experts on graph theory. The important work of Fan Chung and her
collaborators offers crucial insights into this question. (See, for instance [14], [15]
and [16].) Another situation, that resembles more what “conventional” tomography
is supposed to help with, arises when traffic among certain nodes starts to increase
to levels where the graph structure remains intact but there is significant slow down
due to this large amount of traffic. Communication networks and, regretfully, road
networks are a well known example of this second phenomenon. In either case, the
desire is to be able to detect this problem when it is incipient to try to devise a
solution to it. It is the latter problem that is of interest to us. One can see that
Munzner’s suggestion leads to a question closely resembling EIT, and it is natural
to consider it a prablem in hyperbolic tomography of the kind described earlier.
On the other hand, we have just obtained a significant result on the inversion of
the Neumanu-Dirichlet problem by studying it directly on “weighted” graphs [9].

Let us explain now a bit more in detail what these recent results are and what
new questions they open up. To understand the ideas better let us consider a very
simple example of a planar network, the square network G [20]. This network is
constructed as follows. The nodes of G are the integer lattice points p = (7, j) with
0<i<n+1land0<j<n+1 and exclude the points (0,0), (n+1,0), (0,n+1),
and (n+1,n+1). Let V be the set of nodes, and int V the interior of V' consisting
of the nodes p = (i, j) with 0 <4 < n and 0 < 7 < n. The boundary of G is denoted
9% and it is equal to V \ intV. Let p be a node then it has four neighboring nodes
which are the nodes at unit distance from p. Call the set of these neighboring nodes
as N(p). If p is an interior node then N(p) is in V, and if p is on 92 then it has
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only one neighboring node which is the interior node that has unit distance from
p. If a line segment ! connects a pair of neighboring nodes p and ¢ in intV or if
it connects a boundary node p to its neighboring interior node ¢ is called edge or
conductor and denoted pq. In the case in which p is on the boundary, the edge is
called a boundary edge. The set of edges is denoted by E, and usually the graph
G is denoted by G(V, E).

Let w a non-negative real-valued function on E, the value w(pq) is called the
conductance of pg and 1/w(pq), the resistance of pq, and w is the conductivity (w is
also called a weight). A function u : V — R gives a current across each conductor
pq by Ohm’s law, I = w(pq)(u(p) — u(g)) (I the current). The function w is called
w-harmonic if for each interior node p,

Y w(pg)(ulg) — u(p)) =0

qEN(p)

then the sum of the currents flowing out of each interior node is zero, and this
is Kirkhoff s law. Let @ a function defined at the boundary nodes, the network
will acquire a unique w-harmonic function u with u(p) = ®(p) for each p € 4G in
other words, ® induces u and u is called the potential induced by ®. Considering a
conductor pq then the potential drop across this conductor is Au(pg) = u(p) —u(q).
The potential function u determines a current I (p) through each boundary node
p, by Is(p) = w(pg)(u(p) — u(q) , ¢ being the interior neighbor of p. As in the
continuous case, for each conductivity w on E, the linear map A, from boundary
functions to boundary functions is defined by A,® = I where the boundary func-
tion @ is called Dirichlet data, the boundary current Iy is called Neumann data,
and the map A, is called the Dirichlet-to-Neumann map.

The problem to consider is to recover the conductivity w from A, which is
analogous to the the inverse problem in the continuous case. The two basic problems
are the connectivity and conductivity of the network. Note that the connectivity of
the network or the situation where the network remains connected but some edges
disappear is a topological problem, the configuration of the graph has changed. For
detailed theory about electrical networks, planar graphs, recovering of a graph and
harmonic functions, we refer to [18] and the work of Curtis and Morrow [19].

The discrete or finite nature of graphs makes working on graphs basically easier
than investigating these problems in the continuous case, although it gives rise to
several disadvantages. For example, solutions of the Laplace equation for graphs
have neither the local uniqueness property nor is their uniqueness guaranteed by the
Cauchy data, contrary to the continuous case where they are the most important
mathematical tools used to study the inverse conductivity problem and related
problems [9]. The inverse problem that we study is to identify the connectivity of
the nodes and the conductivity on the edges between each adjacent pair of nodes.

Given a network with a pattern of traffic measured as the “usual” load between
adjacent nodes (e.g., number of messages) one can associate to it a Laplace operator
denoted A, where the weight w is a sequence of values representing the usual loads
between every pair of adjacent nodes in the network.

We define the degree d,r of a vertex in the weighted graph G with weight w
by

dyr = Z w(z,y)

yeV
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and the weighted w-Laplacian A, f by
Bof = Yliw) - F@L2Y s ey

d,r
yev
A graph § = S(V', E’) is said to be a subgraph of G(E,V)if VI C V and E/ C E.
In this case, we call G a host graph of S. The integration of a function f: G — R
on a graph G = G(V, E) is defined by

= dw ; i 1 dw
/Gf Zf(a:)  or simply jc;f

zeV

For a subgraph S of a graph G = G(V, E) the (vertex) boundary 05 of S is defined
to be the set of all vertices z € V' not in § but adjacent to some vertex in S, i.e.,

95 :={z€V | z ~y for some y € S}
and we define the inner boundary (%S by

0S8 :={z€ 8|y~ z for some y € 35}
Also, by S we denote a graph whose vertices and edges are in SUS.The (outward)
normal derivative B—‘i%(z) at z € 0S5 is defined to be

af wlz,
() =TI ) - 2D

d z '
yeSs w

where d, 2 =3 s w(2,y)

An attack by saturation corresponds to a new weight w’ where the load on each
edge has either remained the same or increased (substantially in some parts of the
network).

Associated to the weight w there is a Laplace operator in the network we
consider the response to diagnostic “proves” applied to the outside boundary. The
boundary observations (outputs) correspond to the Neumann-to-Dirichlet map for
the Laplacian A,.

The theorem below shows that the Neumann-to-Dirichlet map for A, is dif-
ferent to that for A,.

THEOREM 1. [9] Let wy and wy be weights with w, < wp on § x S, G a graph
and fi, f : S — R be functions satisfying that for j=1, 2,
ANy fi(z) =0, z €8
9 (1) = ®(z), 2 €8S

B,,jn
IS fidw, = K

for a given function ® : 9S — R with fas ® =0, and for a suitably chosen number
K > 0.
If we assume that
(i) wi(z,y) = wa(z,y) on 8S x 4S
(i) files =f2los, then we have
fi=faonS
and

wi=waon S xS
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whenever fi(z) # fi(y) and fa(z) # fa(y) -
Note that

A f(z)=0,z€ 8
{ 2L (2) =®(2), 2€ 88

n
is known as the Neumann boundary value problem NBVP. In [9] it is shown that
the NBVP has a unique solution up to an additive constant.

The second conclusion of the theorem shows not only whether or not each pair
of nodes is connected by a link, but also how nice the link is. Moreover, the proof
gives an algorithm to detect if the weights change on the edges.

The conditions wy < wy (monotonicity condition) and [, f;d., = K (the nor-
malization condition) are essential for the uniqueness of the result. We know that
the NBVP has a unique solution up to an additive constant; therefore, the Dirichlet
data f|,5, z € 95 is well-defined up to an additive constant. Here we have dis-
cussed the inverse conductivity problem on the network (graph) S with nonempty
boundary, which consists in recovering the conductivity (connectivity or weight) w
of the graph by using the Dirichlet-to-Neumann map with one boundary measure-
ment. In order to deal with this inverse problem, we need at least to know or be
given the boundary data such as f(x), a—'i-%(z) for z € S and w near the bound-

ary. So it is natural to assume that f| __, %Lﬁ and w| _ are known (given or

measured). But even though we are given all these data on the boundary, we are
not guaranteed, in general, to be able to identify the conductivity w uniquely. For
more details and counterexample, see [9].

There are many problems to be answered, for instance what happens if the
number of nodes is not finite? What is the hyperbolic version of the discrete case?.
If we allow to consider also w = 0 then the presence of zero weights tells us that the
conductivity on the edge ( a particular one) is either down or the nodes connected to
that edge “disappear” in the sense that the edge length becomes infinite and this is
because uniqueness is not true. We still need to get stronger results to determine the
configuration of a network (connectivity). Let us add that very recently Bensoussan
and Menaldi [3] have given a slightly different proof of theorem 4 relying on the
fact that A, is a positive operator.
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