
Non-Commutative Probability Models in
Human Decision Making: Binary

Hypothesis Testing ?

Aneesh Raghavan ∗ John S. Baras ∗

∗ Institute for Systems Research, University of Maryland, College
Park, USA (e-mail: raghava,baras@umd.edu).

Abstract: In this paper, we consider the binary hypothesis testing problem, as the simplest hu-
man decision making problem, using a von-Neumann non-commutative probability framework.
We present two approaches to this decision making problem. In the first approach, we represent
the available data as coming from measurements modeled via projection valued measures (PVM)
and retrieve the results of the underlying detection problem solved using classical probability
models. In the second approach, we represent the measurements using positive operator valued
measures (POVM). We prove that the minimum probability of error achieved in the second
approach is the same as in the first approach.
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1. INTRODUCTION

Networked multi-agent systems are ubiquitous systems
which have become an integral part of life and work. Ex-
amples of such systems include networked vehicles, smart
rooms and, collaborative robots. Often, humans interact
with these systems. Hence, it has become essential to
understand how humans make decisions and judgments
under uncertainty. Psychologists have studied human cog-
nition and decision making for a long time, Tversky and
Kahneman (1974), Tversky and Kahneman (1981), Frisch
and Clemen (1994) and Buchanan and O Connell (2006).
Recent experiments, Trueblood and Busemeyer (2012),
Busemeyer and Bruza (2012), Khrennikov et al. (2014),
Wang et al. (2014), Busemeyer et al. (2015), Trueblood
et al. (2017), have reavealed the following characteristics
of human judgments: (i) When a question is asked, the
state of the human changes from an indefinite state to a
definite state with respect to the question; (ii) The order in
which questions are asked can influence the answers to the
questions; (iii) The law of total probability is violated. For
more details, we refer to chapter 1 of Busemeyer and Bruza
(2012) and the other reference mentioned above. Let us
consider a classical probability model for human decision
making. The sample space could include events from pol-
itics, science, finance, sports, etc. Finding the joint distri-
bution between all possible events in these domains is diffi-
cult. Hence, it is reasonable to assume that all these events
do not belong to the same sample space. Further, fallacies
like the conjunction and disjunction fallacy are observed
when classical probability models are used to model human
decision making, Busemeyer and Bruza (2012). Psycholo-
gists have used Quantum Probability Models (QPM) to
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explain some of the fallacies observed (Busemeyer and
Bruza (2012)). That is the underlying probability models
are von-Neumann probability models, Neumann (1955),
where the events are represented by subspaces of a Hilbert
space rather than subsets of a set (as in the classical
Kolmogorov probability theory), Hayashi (2006), Holevo
(2003). There is no quantum physics involved here, just
the underlying logic of events is different than the classical
one. These are the non-commutative probability models in
the title of the paper.

In Trueblood and Busemeyer (2012), three different sit-
uations are examined, where judgments related to causal
inference problems produce unexpected results. Von Neu-
mann probability models (VNPM) were used to explain
the experimental findings in all three situations. It has
also been shown that other models like Bayes net and
belief adjustment model only account for a subset of find-
ings. In Trueblood et al. (2017), the authors propose a
hierarchy of models for human cognition which could be
adopted in different situations. The different models arise
due to different assumptions imposed on the existence of
joint distribution between the events. Using the results
of three experiments they show that their modeling ap-
proach explains five key phenomena in human inference
including the order effects, reciprocity, memorylesness,
violations of Markov conditions and anti-discounting. In
Khrennikov et al. (2014), the authors analyze the ap-
plicability of VNPM to two basic properties of opinion
polling: (i)response replicability and (ii) question order
effect. It is mentioned that VNPM can account for one
of the properties but not both. They conclude that ei-
ther problems where VNPM are applicable need to be
characterized or more general representations than POVM
are needed. In Borie (2013), the authors reformulate von
Neumann and Morgenstern’s approach, Von Neumann and
Morgenstern (1947), to modeling human decision maker
behavior using non-commutative probability theory. They



Fig. 1. Two possible models

show that their generalization allows for decision makers
to make a distinction between representations of a set of
events and enables several paradoxes and inconsistencies
in traditional expected utility theory (e.g., Allais paradox,
etc.) to be better understood. In Frisch and Clemen (1994),
the authors assert that a good decision making process
must be concerned with how decision makers evaluate
potential consequences of decisions, the extent to which
they identify and evaluate the risks associated with the
decisions and their approach to making the final choices.

The question that arises is, given data which of the two
probability models (classical Kolmogorov-like and non-
classical von Neumann-like probability models) is more ap-
propriate for modeling human decision policies (figure 1),
measured by the relative accuracy of the model’s predic-
tions for actual human decisions. Hence two fundamental
questions arise: (i) how to represent(i.e. model) measure-
ments (and the data they generate), (ii) what metrics to
use to model human decision making. In this paper, the
objective is to compare the probability of error achieved
when the hypothesis testing problem is solved in the clas-
sical (Kolmogorov) probability framework and in the non
classical (von Neumann, quantum-like) probability frame-
work. We consider a single observer. In the first phase, the
observer collects observations and knows the true hypoth-
esis under which the observations were generated. Using
the frequentist approach empirical distributions are built.
In the second phase, using the empirical distributions, hy-
pothesis testing problems are formulated in classical prob-
ability and non-classical (non-commutative) probability
frameworks. When the measurements are represented by
a projection valued measure (PVM), Baras et al. (1976),
Baras (1979), Baras and Harger (1977), Helstrom (1969),
Holevo (2003), we show that the results of the detection
problem (optimal cost and decision policy) are identical
to that of the classical probability models. When mea-
surements are incompatible, they are represented using
positive operator valued measures (POVM), Baras (1987),
Baras (1988), Holevo (2003). The detection problem is
solved and through an example, we discuss the effect of
order in measurements on the minimum probability of
error.

Notation: Let H be a complex Hilbert space. Then
B(H)(B+

s (H)) denotes the space of bounded (positive,
Hermitian and bounded) operators which map from H to

H. T (H)(T +
s (H)) are subsets of B(H)(B+

s (H)) such that
trace of the operators is 1. P(H) is the subset of B+

s (H)
such that the operators are orthogonal projections. Tr
denotes the trace operator. For an operator O ∈ B(H),
OH denotes its conjugate transpose (The Hilbert spaces
here are finite dimensional).

2. PROBLEM FORMULATION

We consider a single observer. The observation collected
by the observer is denoted by Y , Y ∈ S, |S| = N where
S is a finite set of real numbers or real vectors of finite
dimension. Data strings consisting of observation and true
hypothesis are collected by the observer. From the data
strings, empirical distributions are built. Let phi , 1 ≤ i ≤ N
be the distribution under hypothesis h. The prior proba-
bilities of hypotheses can be found from the data and are
represented by ζ1 (for H = 1) and ζ0 (for H = 0). In the
quantum probability framework, there are multiple ways in
which measurements can be captured. Two of them are: (a)
Projection valued measures (PVM) (b) Positive operator
valued measures (POVM). In this section we discuss the
formulation of the detection problem in classical probabil-
ity framework and von Neumann probability framework
with both representations for measurements.

2.1 Classical Probability

Let Ω = {0, 1}×S be the sample space. Let F = 2Ω be the
associated algebra. An element in the sample space can be
represented by ω = (h, y), where h ∈ {0, 1} and y ∈ S. The
measure is P(ω) = ζhp

h
y . The probability space is (Ω,F ,P).

Given a new observation, Y = y the detection problem is
to find D such that the following cost is minimized:

EP[H(1−D) + (1−H)D],

i.e, the probability of error is minimized. H represents the
hypothesis random variable. Once the decision is found the
optimal cost also needs to be found.

2.2 Projection valued measure

Projection Valued Measure(PVM): Let (X,Σ) be a mea-
surable space. A projection valued measure is a mapping
F from Σ on to P(H) such that

(i) F (X) = I.
(ii) A,B ∈ Σ such that A ∩ B = ∅, then F (A ∪ B) =

F (A) + F (B).
(iii) If {Ai}i≥1 ⊆ Σ, such that A1 ⊂ A2 ⊂ ..., then

F (∪∞i=1Ai) = lim
i→∞

F (Ai).

For the detection problem, X = {1, 2, ..., N}, Σ = 2X . The
second condition implies that the minimum dimension of
the complex Hilbert space in consideration is N . We let
H = CN . The first objective is to find ρh ∈ T +

s (CN ) and
F : Σ→ P(CN ), such that

Tr[ρhF (i)] = phi , h = 0, 1, 1 ≤ i ≤ N, (1)

F (i)F (j) = ΘCN , 1 ≤ i, j ≤ N, i 6= j and

N∑
i=1

F (i) = ICN ,

(2)

where ΘCN is zero operator and ICN is identity operator.
Given the state and the PVM, we consider the formulation



of the detection problem mentioned in Baras (1979),
section 3.4. Let Cij denote the cost incurred when the
decision made is i while the true hypothesis is j. Since the
objective is to minimize the probability of error, we let
C10 = 1, C00 = 0, C01 = 1 and C11 = 0. The decision
policy, {α1

i }Ni=1 and {α0
i }Ni=1 denotes the probability of

choosing D = 1 and D = 0 respectively when observation i
is received. Given observation i, the probability of choosing
D = 1 (D is the decision) and the true hypothesis being 0
is ζ0Tr[ρ0F (i)]α1

i . Hence the probability of choosing D =

1 and true hypothesis being 0 is
∑N
i=1 ζ0Tr[ρ0F (i)]α1

i .
Similarly, the probability of choosing D = 0 and true

hypothesis being 1 is
∑N
i=1 ζ1Tr[ρ1F (i)]α0

i . Hence the
probability of error is :

Pe =

N∑
i=1

ζ0Tr[ρ0F (i)]α1
i +

N∑
i=1

ζ1Tr[ρ1F (i)]α0
i

= Tr

[
ζ0ρ0

[
N∑
i=1

α1
iF (i)

]
+ ζ1ρ1

[
N∑
i=1

α0
iF (i)

]]
We define the risk operators as :

W1 = ζ0ρ0, W0 = ζ1ρ1

and note that,
N∑
i=1

αhi F (i) ≥ 0, h = 0, 1

N∑
i=1

[
α1
iF (i) + α0

iF (i) = ICN

]
.

Instead of minimizing over the decision policies, we min-
imize over pairs of operators which are semi-definite and
sum to identity. Hence, the detection problem is formu-
lated as follows

P1 : min
Π1,Π0

Tr[W1Π1 +W0Π0]

s.t Π1 ∈ B+
s (CN ), Π0 ∈ B+

s (CN ),

Π1 + Π0 = ICN

The solution of the above problem, Π∗1, Π∗0 are the detec-
tion operators which are to be realized using the PVM:

P2 : ∃{α1
i }Ni=1 and {α0

i }Ni=1

s.t α1
i ≥ 0, α0

i ≥ 0, α1
i + α0

i = 1, 1 ≤ i ≤ N,

and Π∗1 =

n∑
i=1

α1
iF (i), Π∗0 =

n∑
i=1

α0
iF (i).

Suppose for two pairs of states, (ρ1, ρ0), (ρ̄1, ρ̄0) and PVM
F , (1) is satisfied,i.e.,

Tr[ρhF (i)] = Tr[ρ̄hF (i)] = phi , h = 0, 1, 1 ≤ i ≤ N.
If we consider the solution to P1 alone, the corresponding
detection operators (Π∗1, Π∗0), (Π̄∗1, Π̄∗0) and the minimum
costs achieved, Pe, P̄e could be different. However, if we
consider solution to P1 such that P2 is feasible, i.e., the
detection operators are realizable, then,

Pe = Tr[W1Π∗1 +W0Π∗0]

=

N∑
i=1

ζ0Tr[ρ0F (i)]α1
i +

N∑
i=1

ζ1Tr[ρ1F (i)]α0
i

=

N∑
i=1

ζ0Tr[ρ̄0F (i)]α1
i +

N∑
i=1

ζ1Tr[ρ̄1F (i)]α0
i ≥ P̄e.

Similarly, P̄e ≥ Pe. Hence P̄e = Pe. Hence for a fixed
PVM representation, the optimal cost does not change
with different state representations.

2.3 Positive operator valued measure

Consider the scenario where S ⊂ R2. In such a scenario
the observer collects two observations, Y1 and Y2. Two
measurements are said to be incompatible if they can-
not be measured simultaneously. The joint distribution
between the measurements does not exist. If Y1 and Y2 are
incompatible, then the order in which they are measured
could lead to different outcomes. Let Y1 ∈ Z1, |Z1| = η1

and Y2 ∈ Z2, |Z2| = η2. Then Y1 and Y2 can be individually
represented as PVMs in Hilbert space of dimension η,
η = max{η1, η2}. Let the PVM corresponding to Y1 and
Y2 be µ and ν respectively. Let the state be ρ. Suppose Y1

is measured first and value obtained is i ∈ Z1. Then the
state after measurement of Y1 changes from ρ to (Davies
(1976)) :

ρi =
µ(i)ρµ(i)

Tr[ρµ(i)]
.

After measuring Y1, Y2 is measured. The conditional
probability of Y2 = j given Y1 = i is,

Tr[ρiν(j)] =
Tr[µ(i)ρµ(i)ν(j)]

Tr[ρµ(i)]
=
Tr[ρµ(i)ν(j)µ(i)]

Tr[ρµ(i)]
.

Thus the probability of obtaining Y1 = i and then Y2 = j is
Tr[ρµ(i)ν(j)µ(i)]. Further, the measurement correspond-
ing to Y is, σ1(i, j) = µ(i)ν(j)µ(i), 1 ≤ i ≤ η1, 1 ≤ j ≤ η2.
If Y1 is measured after Y2, then the measurement corre-
sponding to Y is, σ2(i, j) = ν(i)µ(j)ν(i), 1 ≤ i ≤ η2, 1 ≤
j ≤ η1. Since for any (i, j), µ(i) and ν(j) do not commute,
σ1(i, j) and σ2(i, j) are not projections. They are positive,
Hermitian and bounded. Hence σ1, σ2 are not PVMs, and
belong to a larger class of measurements, i.e., the POVMs.

Positive Operator Valued Measure (POVM): Let (X,Σ) be
a measurable space. A positive operator valued measure is
a mapping M from Σ on to B+

s (H) such that, if {Xi}i≥1

is partition of X, then∑
i

M(Xi) = I (Strong Topology)

Further for A,B ∈ Σ such that A∩B = ∅, if M(A)M(B) =
ΘH, then M is a PVM. We consider the dimension of
the Hilbert space to be k, k ≥ 2. As in the previous
formulation, the first objective is to find states, ρ̂h ∈
T +
s (Ck), h = 0, 1 and POVM, M : Σ → B+

s (Ck) such
that

Tr[ρ̂hM(i)] = phi , h = 0, 1, 1 ≤ i ≤ N and

N∑
i=1

M(i) = ICk .

(3)

The probability of error calculation is analogous to the
previous section. We define the new risk operators as:

Ŵ1 = ζ0ρ̂0, Ŵ0 = ζ1ρ̂1

Given states and POVM, the detection problem with the
same cost parameters as P1, is formulated as:

P3 : min
Π̂1,Π̂0

Tr[Ŵ1Π̂1 + Ŵ0Π̂0]

s.t Π̂1 ∈ B+
s (Ck), Π̂0 ∈ B+

s (Ck)

Π̂1 + Π̂0 = ICk .

The decision policies {β1
i }Ni=1 and {β0

i }Ni=1 are found by
solving the following problem:



P4 : ∃{β1
i }Ni=1 and {β0

i }Ni=1

s.t β1
i ≥ 0, β0

i ≥ 0, β1
i + β0

i = 1, 1 ≤ i ≤ N,

and Π̂1 =

n∑
i=1

β1
iM(i), Π̂0 =

n∑
i=1

β0
iM(i).

Consider the problem:

P5 : min
Π̂1,Π̂0,{β1

i
}N
i=1

Tr[Ŵ1Π̂1 + Ŵ0Π̂0]

s.t Π̂1 ∈ B+
s (Ck), Π̂0 ∈ B+

s (Ck)

Π̂1 + Π̂0 = ICk .

0 ≤ β1
i ≤ 1, 1 ≤ i ≤ n.

Π̂1 =

n∑
i=1

β1
iM(i), Π̂0 =

n∑
i=1

(1− β1
i )M(i).

Let the feasible set of detection operators for P3 be S1 and
for P5 be S2. Due to additional constraints in P5, S2 ⊆ S1.
The detection operators obtained by solving P3 may or
may not be realizable,i.e., P4 may not be feasible. In P5,
the optimization is only over detection operators which are
realizable. If the solution of P3 is such that P4 is feasible
then it is the solution for P5 as well. It is also possible
that P3 is solved, P4 is not feasible and P5 is solved.
The objective is to understand the minimum probability
of error which can achieved by detection operators which
are realizable. Hence, we consider the solution of P5 and
compare it with the minimum error achieved in PVM
approach.

Let M be set of all POVMs on Σ. Let S ⊂ T +
s (Ck) ×

T +
s (Ck) ×M be the set of, pairs of states and a POVM

such that (3) is satisfied. Let S̄ ⊆ S be the triples for which
the optimization problem P5 can be solved. For a triple
(ρ̂0, ρ̂1,M) in S̄, we define Q(ρ̂0, ρ̂1,M) to be the optimal
value achieved by solving P5.

3. SOLUTION

3.1 Classical Probability

It suffices to minimize,

EP[H(1−D) + (1−H)D|Y = y].

EP[H|Y = y] =
p1yζ1

p1yζ1+p0yζ0
. D = 1 if p1

yζ1 ≥ p0
yζ0 else

D = 0. Thus the cost paid when the observation is y is
min{p1yζ1,p

0
yζ0}

p1yζ1+p0yζ0
. The expected cost is :

N∑
i=1

[
min{p1

i ζ1, p
0
i ζ0}

p1
i ζ1 + p0

i ζ0

]
× P(Y = i) =

N∑
i=1

min{p1
i ζ1, p

0
i ζ0}.

3.2 Projection valued measure

Define,

ρh =

p
h
1

. . .

phN

 and F (i) = eie
H
i ,

where ei represents the canonical basis in CN . Clearly
equations (1) and (2) are satisfied.

Theorem 1. (Baras (1979), Baras (1987)). There exists a
solution to the problem

minTr[W0Π0 +W1Π1]

over all two component POM’s , where W0,W1 ∈ B+
s (CN ).

A necessary and sufficient condition for Π∗i to be optimal
is that:

W0Π∗0 +W1Π∗1 ≤Wi, i = 0, 1 (4)

Π∗0W0 + Π∗1W1 ≤Wi, i = 0, 1 (5)

Furthermore, under any of above conditions the operator

O = W0Π∗0 +W1Π∗1 = Π∗0W0 + Π∗1W1

is self-adjoint and unique solution to the dual problem.

To solve P1, we invoke the above theorem. Hence Π∗1 and
Π∗0 are optimal for P1 if and only if

W1Π∗1 +W0Π∗0 ≤W1, W1Π∗1 +W0Π∗0 ≤W0

Π∗1,Π
∗
0 ∈ B+(CN )and Π∗1 + Π∗0 = ICN .

Further, Π∗1 and Π∗0 are optimal for P1 if and only if they
satisfy the above constraints and are diagonal matrices.
The realisability condition in P2 forces Π∗1 and Π∗0 to
be diagonal matrices. Let Π∗1 = diag(n1

1, . . . , n
1
N ) and

Π∗0 = diag(1− n1
1, . . . , 1− n1

N ). Then for optimality,

for 1 ≤ i ≤ N,
{
ζ0p

0
in

1
i + ζ1p

1
i (1− n1

i ) ≤ ζ0p0
i ,

ζ0p
0
in

1
i + ζ1p

1
i (1− n1

i ) ≤ ζ1p1
i

For both inequalities to hold, it follows that if ζ0p
0
i ≥ ζ1p1

i ,
then n1

i = 0. Else n1
i = 1. The minimum cost achieved is :

P∗e =

N∑
i=1

min{ζ0p0
i , ζ1p

1
i } ≤ min{ζ0, ζ1}.

Clearly αji = nji , 1 ≤ i ≤ N, , j = 1, 0. As in the
classical probability scenario, we obtain pure strategies,
i.e , when measurement i is obtained , if ζ0p

0
i ≥ ζ1p1

i then
the decision is 0 with probability 1, else decision is 1 with
probability 1.

Let ρ̄h, h = 0, 1 be another pair of states and G : Σ →
P(CN ), be another PVM such that equations(1) and (2)
are satisfied. Since each G(i) is a rank one matrix,

∃vi ∈ CN s.t vHi vi = 1, G(i) = viv
H
i , 1 ≤ i ≤ n

vHi vj = 0, 1 ≤ i, j ≤ n, i 6= j.

Let T = [v1; v2, ..., vn]. T is a n×n matrix with its columns
composed by vectors vi. Thus,

THT = TTH = ICN , THG(i)T = F (i), 1 ≤ i ≤ n
Since T is an isometry, ρ̃h = TH ρ̄hT ∈ T +

s (CN ), h = 0, 1.
Hence,

Tr[ρ̄hG(i)] = Tr[ρ̄hTT
HG(i)TTH ] =

Tr[TH ρ̄hTT
HG(i)T ] = Tr[ρ̃hF (i)].

Hence the optimal cost does not change with different
PVM and state representations. The proof can be ex-
tended, for state and PVM representations in CM ,M > N .

3.3 Positive operator valued measure

To find the states and the POVM, a new numerical method
is proposed. If a feasibility problem is formulated with the
state and POVM as optimization variables, the resulting
problem is nonconvex. Hence we consider a finite set of



states, S ⊂ T +
s (Ck), |S| < ∞. For a pair of states,

(ρ̂0, ρ̂1) ∈ S × S, ρ̂0 6= ρ̂1, the following feasibility solved:

P6 : min
t∈R,{M(i)}N

i=1
⊂Ck×k

t

s.t Tr[ρ̂hM(i)]− phi = t, h = 0, 1, 1 ≤ i ≤ N

M(i) ≤ −t, 1 ≤ i ≤ N,
N∑
i=1

M(i)− ICk = tICk .

If for a particular pair of states, ρ̂0, ρ̂1 the optimal value
of the above feasibility problem, t∗ is less than or equal to
zero, then the corresponding minimizers, {M(i)}Ni=1 is the
POVM. If for every pair of states, the optimal value of the
feasibility problem is grater than zero, then optimization
problems need to be solved for a new set of states.

Theorem 2. (Naimark’s dilation Theorem), [Busch et al.
(1997)]. Let M : Σ → B+

s (H) be POVM. There exists a
Hilbert Space K, a PVM P : Σ → P(K) and an isometry
T : H → K such that

M(S) = T ∗P (S)T ∀ S ∈ Σ,

where T ∗ is the adjoint of the operator T .

For completeness, we find the isometry T when H = Ck.
For any vector x ∈ H, let xe be representation of the
vector in the standard canonical basis of H. Let L =⊕N

i=1H. Let {ei}N×ki=1 be the canonical basis of L. For
vector v ∈ L, there exist unique coefficients vij such that

v =
∑N
i=1

∑k
j=1 vije(i−1)×N+j . Let vi = [vi1; vi2; . . . , vik]

and ve = [v1, . . . , vN ]. Let M = diag(M(1), . . . ,M(N)).

Note that M = M
H

. The inner product on L is defined
as:

〈v, u〉 = vHe Mue =

N∑
i=1

vHi M(i)ui

Let N = {v ∈ L : 〈v, v〉 = 0}. We define K =
⊕N

i=1H/N .
Thus T : H → K can be defined as: T (v) = (v, . . . , v). In
the standard canonical basis, the matrix representation of
T would be

V H = [ICk ICk . . . ICk ,]
k×(N×k)

.

Let the matrix representation of T ∗ in the canonical
basis be U . From the adjoint equation it follows that
(Uye)

Hxe = yHe MV xe, ∀ xe ∈ Ck and ∀ ye ∈ CN×k.
Hence U = V HM =

[M1 M2 . . . MN ]
k×(N×k)

, UV = ICk .

Let P : Σ→ P(CN×k) be defined as :

P (i) =


ΘCk ΘCk . . .
ΘCk . . .

... (ICk)i,i . . .
ΘCk


(N×k)×(N×k)

P (i) is a collection of N2, k × k matrices, where the i
diagonal matrix is the identity matrix and the rest are zero
matrices. Hence M(i) = UP (i)V . Let ρ̃h ∈ T +

s (CN×k) be
equal to V ρ̂hU for h = 0, 1, then

j×k∑
i=(j−1)×k+1

eHi ρ̃hei = phj , h = 0, 1, j = 1, 2, . . . N.

Lemma 3. If S̄ 6= ∅, let,

Q∗e = min
(ρ̂0,ρ̂1,M)∈S̄

Q(ρ̂0, ρ̂1,M).

Then,

Q∗e = P∗e (6)

Proof. For a triple (ρ̂0, ρ̂1,M) ∈ S̄, let (Π̂∗1, Π̂
∗
0) and

{β1,∗
i , β0,∗

i }i=ni=1 solve P5. Then,

Tr[Ŵ1Π̂∗1 + Ŵ0Π̂∗0] =

= Tr[Ŵ1

n∑
i=1

β1,∗
i M(i) + Ŵ0

n∑
i=1

β0,∗
i M(i)]

=

n∑
i=1

ζ0Tr[ρ̂0M(i)]β1,∗
i + ζ1Tr[ρ̂1M(i)]β0,∗

i

=

n∑
i=1

ζ0Tr[ρ̂0UP (i)V ]β1,∗
i + ζ1Tr[ρ̂1UP (i)V ]β0,∗

i

=

n∑
i=1

ζ0Tr[V ρ̂0UP (i)]β1,∗
i + ζ1Tr[V ρ̂1UP (i)]β0,∗

i

=

n∑
i=1

ζ0Tr[ρ̃0P (i)]β1,∗
i + ζ1Tr[ρ̃1P (i)]β0,∗

i

=

n∑
i=1

ζ0p
0
iβ

1,∗
i + ζ1p

1
i (1− β

1,∗
i )

For any other pair of realizable detection operators
(Π̂1, Π̂0), with decision policy {β1

i , β
0
i }i=ni=1 ,

Tr[Ŵ1Π̂∗1 + Ŵ0Π̂∗0] =

n∑
i=1

ζ0p
0
iβ

1
i + ζ1p

1
i (1− β1

i ).

Hence for any decision policy {β1
i , β

0
i }i=ni=1 ,

n∑
i=1

ζ0p
0
iβ

1,∗
i + ζ1p

1
i (1− β

1,∗
i ) ≤

n∑
i=1

ζ0p
0
iβ

1
i + ζ1p

1
i (1− β1

i ).

Thus,

β1,∗
i =

{
1, if, ζ1p

1
i ≥ ζ0p0

i ,
0, otherwise.

T r[Ŵ1Π̂∗1 + Ŵ0Π̂∗0] =

N∑
i=1

min{ζ0p0
i , ζ1p

1
i } = P∗e

Since the above result is true for every triple in S̄, (6)
follows. Since every PVM is a POVM, S̄ is non empty for
k ≥ N .

Given the PVM P , by Gleason’s theorem (Baras, 1979)
∃ρ̄h ∈ T +

s (CN×k) such that Tr[ρ̄hP (i)] = phi . Suppose
there exists ρ̂h such that ρ̄h = V ρ̂hU , then

phi = Tr[ρ̄hP (i)] = Tr[V ρ̂hUP (i)] = Tr[ρ̂hM(i)]

Hence theorem 2 gives a possible approach to solve P6.
Note that ρ̄h = V ρ̂hU ⇒ ρ̂h = Uρ̄hV , but ρ̂h = Uρ̄hV ⇒
V ρ̂hU = V Uρ̄hV U . By the given construction of V and
U , V Uρ̄hV U 6= ρ̄h,. Hence ρ̂h = Uρ̄hV is not a possible
solution.

Consider the scenario described in the beginning of section
2.3. We describe a simple example of that scenario. Let



η1 = 3 and η2 = 2. When Y2 is collected after Y1,
the distribution of the observations under hypothesis 0
and 1 is tabulated in the second and third columns of
table 1 respectively. When Y1 is collected after Y2, the
distribution of the observations under hypothesis 0 and
1 is tabulated in the fifth and sixth columns of table 1
respectively. The prior distribution of the hypothesis is
set to (ζ0 = 0.4, ζ1 = 0.6). The minimum probability of
error when Y2 is measured after Y1 is 0.35. The minimum
probability of error when Y1 is measured after Y2 is 0.266.
Hence in this example the optimal strategy is first measure
Y2 and then measure Y1.

[Y1, Y2] h = 0 h = 1 [Y2, Y1] h = 0 h = 1

1, 1 0.1 0.15 1, 1 0.25 0.15

1, 2 0.2 0.3 2, 1 0.05 0.30

2, 1 0.2 0.15 1, 2 0.25 0.13

2, 2 0.15 0.25 2, 2 0.1 0.27

3, 1 0.25 0.1 1, 3 0.05 0.12

3, 2 0.1 0.05 2, 3 0.3 0.03

Table 1. Distribution of observations under
either hypothesis

4. CONCLUSION

In this paper we considered models for human decision
making using classical (Kolmogorov) and non-classical
(von Neumann, quantum like) probability models. We
consider a simple decision making problem, the binary
hypothesis testing problem with finite observation space.
Using a particular state and PVM representation for the
measurements, we formulated the detection problem with
the objective of minimizing the probability of error. The
solution to the detection problem was pure strategies
and the expected cost with optimal strategies was the
same as the minimum probability of error that could
be achieved using classical probability models. Further,
we proved that the minimum probability of error that
can be achieved does not change with different state and
PVM representations which achieve the distribution of
the observations. In another approach, we represented the
measurements using POVMs. We proved that the optimal
strategies are pure strategies. Through an example, we
discussed the effect of order in measurements.

As future work we are interested in considering other
metrics which account for risk involved with a decision and
low probability high impact events. Sequential hypothesis
testing problems can be considered in VNPM framework.
The trade off between the time to make decision, i.e., the
number of observations collected to make a decision and
the risk associated with the decision can be studied.
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