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Abstract— In this paper we consider a distributed optimiza-
tion problem, where a set of agents interacting through a
communication graph have as common goal the minimization
of a function expressed as a sum of (possibly non-convex)
differentiable functions. Each function in the sum corresponds
to an agent and each agent has associated an equality constraint.
In this paper we investigate how the standard method of
multipliers can be used to solve an optimization problem with
equality constraints in a distributed manner. The method of
multipliers is applied to a lifted optimization problem whose
solution embeds the solution of the original problem. We modify
the standard convergence results to deal with the fact the (local)
minimizers of the lifted optimization problem are not regular,
as a results of the distributed formulation.

I. Introduction

Multi-agent, distributed optimization algorithms received a
lot of attention in the recent years due to their applications in
network resource allocation, collaborative control, estimation
and identification problems. In these type of problems a
group of agents has as common goal the optimization of
a cost function under limited information and resources. The
limited information may be induced by the fact that an agent
can communicate with only a subset of the total set of agents,
or/and by the fact that an agent is aware of only a part of
the cost functions or constraint sets.

A distributed optimization algorithm was introduced in
[16], where the convex optimization cost is expressed as a
sum of functions and each function in the sum corresponds
to an agent. In this formulation the agents interact with each
other subject to a communication network, usually modeled
as a undirected graph. The algorithm combines a standard
(sub)gradient descent step with a consensus step; the latter
being added to deal with the limited information about the
cost function and about the actions of the agents. Extensions
of this initial version followed in the literature. [14], [17] in-
clude communication noise and errors on subgradients, [10],
[12] assume a random communication graph, [14], [19] study
asynchronous versions of the algorithm, [11] considers state-
dependent communication topologies, while [4] assumes
directed communication graphs. Another modification of the
algorithm described in [16] was introduced in [8], where
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the authors change the order in which the consensus-step
and the subgradient descent step are executed. Consensus-
based distributed optimization algorithms were further used
to solve constrained convex optimization problems where
all agents have the same constraint set [9], [14], [17] or
where each agent has its own set of constraints [15], [19].
Other approaches for obtaining distributed algorithms use
dual decomposition [20], augmented Lagragian [6], [7], or
in particular, distributed versions of the Alternating Direction
Method of Multipliers (ADMM) algorithm [3], [18], [22].

In this paper we study as well a distributed optimization
problem whose goal is to minimize an objective function
expressed as a sum of functions. Each function in the sum
is associated to an agent that has assigned an equality
constraint, as well. We propose a distributed algorithm based
on the method of multipliers applied to a lifted constrained
optimization problem; a problem whose solution embeds the
solution of the original optimization problem. This method is
based on solving a sequence of unconstrained minimization
subproblems, that have to be solved in a distributed manner.
We show that the solutions of each of these problems can be
obtained in a distributed manner, using a first order method.
The main message of this paper is that standard optimization
techniques can be used to solve optimization problems in
a distributed manner, provided appropriate changes in the
convergence proofs are made to deal with the fact that the
standard assumptions no longer hold as a result of lack of
complete information. We make no convexity assumptions
on the cost and constraint functions, but we assume they
are continuously differentiable. Consequently, our conver-
gence results are local. Distributed algorithms for solving
constrained, non-convex optimization problems were also
proposed in [13] and [23]. In [13] the solution of the
first-order necessary conditions is obtained using a first-
order numerical algorithm, while in [23] an approximate
dual subgradient algorithm is used to solve a non-convex
optimization problem with inequality constraints.

The paper is organized as follows: in Section II we for-
mulate the constrained optimization problem and introduce a
distributed optimization algorithm for solving this problem.
Section III presents the origins of the algorithms by demon-
strating that our initial optimization problem is equivalent to
a lifted optimization problem. Section IV introduces a set of
results used for the convergence analysis of the algorithm;
analysis detailed in Sections V and VI.

Notations and definitions: For a matrix A, its (i, j) entry
is denoted by [A]i j and its transpose is given by A′. If A is
a symmetric matrix, A ≻ 0 (A ≽ 0) means that A is positive
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(semi-positive) definite. The nullspace and range of A are
denoted by Null(A) and Range(A), respectively. The symbol
⊗ is used to represent the Kronecker product between two
matrices. The vector of all ones is denoted by 1. Let {Ai}Ni=1
be a set of matrices. By diag(Ai, i= 1, . . . ,N) we understand a
block diagonal matrix, where the ith block matrix is given by
Ai. By S(x;ε) we refer to a neighborhood around x, of radius
ε. Let f : Rn→R be a function. We denote by ∇ f (x) and by
∇2 f (x) the gradient and the Hessian of f at x, respectively.
Let F : Rn ×Rm → R be a function of variables (x,y). The
block descriptions of the gradient and of the Hessian of F
at (x,y) are given by ∇F(x,y)′ =

(
∇xF(x,y)′,∇yF(x,y)′

)
, and

∇2F(x,y) =
(
∇2

xxF(x,y) ∇2
xyF(x,y)

∇2
xyF(x,y) ∇2

yyF(x,y)

)
,

respectively.

II. Problem description

In this section we describe the setup of our problem. We
present first the communication model followed by the opti-
mization model and the distributed optimization algorithm.

A. Communication model
A set of N agents interact with each other through a

communication topology modeled as an undirected commu-
nication graph G = (V,E), where V = {1,2, . . . ,N} is the set
of nodes and E = {ei j} is the set of edges. An edge between
two nodes i and j means that agents i and j can exchange
information (or can cooperate). We assume that at each time
instant k the agents can synchronously exchange information
with their neighbors. We denote by Ni , { j | ei j ∈ E} the set
of neighbors of agent i. Consider the set of pairs {(i, j), j ∈
Ni, i = 1, . . . ,N} and let N̄ =

∑N
i=1 |Ni|, where | · | denotes the

cardinality of a set. We denote by S ∈RN̄×N the (weighted)
edge-node incidence matrix of graph G, for which each row
number corresponds to a unique pair (i, j) from the previously
defined set. The matrix S is defined as

[S ](i j),l =


si j i = l,
−si j j = l,
0 otherwise,

(1)

where si j are given positive scalars.
Remark 2.1: It is not difficult to observe that the matrix

L = S ′S is a (weighted) Laplacian matrix corresponding to
the graph G and Null(L) = Null(S ).�
In the next sections we are going to make use of a set of
properties of the matrix S ; properties that are grouped in the
following remark.

Proposition 2.1: The matrix S defined with respect to a
connected graph G satisfies the following properties:
(a) The nullspace of S is given by Null(S ) = {γ1 | γ ∈R};
(b) Let S = S ⊗ I, where I is the n-dimensional identity

matrix. Then the nullspace of S is given by Null(S) =
{1⊗ x | x ∈Rn}.�

B. Optimization model

We consider a function f : Rn→R expressed as a sum of
N functions f (x) =

∑N
i=1 fi(x), and a vector-valued function

h : Rn → RN where h , (h1,h2, . . . ,hN)′, with hi : Rn → R

and N ≤ n.

We make the following assumptions on the functions f
and h and on the communication model.

Assumption 2.1: (a) The functions fi(x) and hi(x), i =
1, . . . ,N are twice continuously differentiable;

(b) Agent i has knowledge of only functions fi(x) and hi(x),
and scalars si j, for j ∈ Ni;

(c) Agent i can exchange information only with agents in
the set of neighbors defined by Ni;

(d) The communication graph G is connected.
The common goal of the agents is to minimize the

following optimization problem with equality constraints

(P1) minx∈Rn f (x),
subject to: h(x) = 0,

under Assumptions 2.1. Throughout the rest of the paper we
assume that problem (P1) has at least one local minimizer.

Let x∗ be a local minimizer of (P1) and let ∇h (x∗) ,
[∇h1 (x∗) ,∇h2 (x∗) , . . . ,∇hN (x∗)] be a matrix whose columns
are the gradients of the functions hi(x) computed at x∗. The
following assumption is used to guarantee the uniqueness of
the Lagrange multiplier vector ψ∗ appearing in the first order
necessary conditions of (P1), namely ∇ f (x∗)+∇h (x∗)ψ∗ = 0.

Assumption 2.2: Let x∗ be a local minimizer of (P1).
The matrix ∇h (x∗) is full rank, or equivalently, the vectors
{∇hi (x∗)}Ni=1 are linearly independent.
Together with some additional assumptions on f (x) and h(x),
Assumption 2.2 is typically used to prove local convergence
for the “original” method of multipliers applied to Problem
(P1) (see for example Section 2.2, page 104 of [2]). As
we will see in the next sections, the same assumption
will be used to prove local convergence for a distributed
version of the method of multipliers used to solved a ‘lifted‘
optimization problem with equality constrains.

Remark 2.2: We assumed that each agent has an equality
constraint of the type hi(x) = 0. All the results presented in
what follows can be easily adapted for the case where only
m ≤ N agents have equality constraints.

C. Distributed algorithm
Let x∗ be a local minimizer of (P1) and let xi,k denote agent

i’s estimate of x∗, at time-slot k. In addition, let us denote
by xk ∈ RnN , µk ∈ RN and λk ∈ RnN̄ the vectors xk =

(
xi,k
)
,

µk = (µi,k) and λk = (λi,k), with λi,k = (λi j,k) for all j ∈Ni. We
propose the following distributed algorithm to solve (P1),
denoted henceforth Algorithm (A1), which is the algorithm
behind the method of multipliers for solving an optimization
problem equivalent to (P1) :

xk = argmin
x

∑
i

fi(xi)+µi,khi(xi)+

+
∑
j∈Ni

λi j,k si j(xi − x j)+
ck

2
hi(xi)2 +

+
ck

2

∑
j∈Ni

(s2
i j + s2

ji)xi(xi − x j), x0 = x0, (2)

µi,k+1 = µi,k + ckhi(xi,k), µi,0 = µ
0
i , i = 1, . . . ,N, (3)

λi j,k+1 = λi j,k + ck si j(xi,k − x j,k), λi j,0 = λ
0
i j, j ∈ Ni, (4)

where, x0, µ0
i and λ0

i j are given initial conditions, {ck} is
an non-decreasing sequence of positive numbers known by
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all agents, and si j are positive scalars chosen by the agents.
At each time instant k, we need to solve the unconstrained
optimization problem (2). Note that in Algorithm (A1) itera-
tions (3)-(4) can be implemented in a distributed manner,
since they use only local information, that is, µi, hi, xi,
si j and λi j, and information from neighbors, that is, x j.
For Algorithm (A1) to be distributed we need to provide
a distributed algorithm that solves (2). Due to the structure
of the cost function in (2), such an algorithm results from
using a gradient-descent method, namely

xi,τ+1 = xi,τ −ατ
[
∇ fi(xi,τ)+µi,k∇hi(xi,τ)+

+
∑
j∈Ni

(si jλi j,k − s jiλ ji,k)+ ck∇hi(xi,τ)hi(xi,τ)

+ ck

∑
j∈Ni

(s2
i j + s2

ji)(xi,τ − x j,τ)], i = 1, . . . ,N (5)

with xi,0 = (xk)i, and where {ατ} is a globally known
sequence of step-sizes for the iteration (5). Note that we
denote by τ the iteration counter for the algorithm used to
solve (2). In addition, excluding the globally known sequence
of stepsizes {ατ}, each agent uses only local information,
that is, xi, ∇ fi(xi), ∇hi(xi) si j, λi j, µi, and information from
neighbors, that is, x j, s ji and λ ji, for j ∈ Ni. Consequently,
Algorithm (A1) is indeed distributed. We would like to em-
phasize that unless the communication topology is assumed
undirected, the last sum in (5) cannot be implemented in a
distributed manner since an agent would require information
from agents not in its neighborhood.

III. An equivalent optimization problem with equality
constraints

In this section we define a lifted optimization problem,
from whose solution we can in fact extract the solution of
problem (P1). As made clear in what follows, Algorithm (A1)
comes as a result of applying the method of multipliers on
the lifted optimization problem.

Let us define the function F : RnN → R given by F(x) =∑N
i=1 fi(xi), where x′ = (x′1, x

′
2, . . . , x

′
N), with xi ∈Rn. In addi-

tion we introduce the vector-valued functions h : RnN →RN

and g : RnN → RnN , where h(x) = (h1(x),h2(x), . . . ,hN(x))′ ,
with hi : RnN → R given by hi(x) = hi(xi), and g(x)′ =
(g1(x)′,g2(x)′, . . . ,gN(x)′) , with gi : RnN → R|Ni |n given by
gi(x) = (gi j(x)), where gi j(x) = si j(xi − x j), with si j positive
scalars. The vector valued function g(x) can be compactly
expressed as g(x) = Sx, where S = S ⊗ I, with I the n-
dimensional identity matrix and S defined in (1). We in-
troduce the optimization problem

(P2) minx∈RnN F(x), (6)
subject to: h(x) = 0, (7)

g(x) = Sx = 0. (8)

The Lagrangian function of problem (P2) is a function L :
RnN ×RN ×RnN̄ →R, defined as

L (x,µ,λ) , F(x)+µ′h(x)+λ′Sx. (9)

The following proposition states that by solving (P2) we
solve in fact (P1) as well, and vice-versa.

Proposition 3.1: Let Assumptions 2.1 hold. The vector x∗

is a local minimizer of (P1) if and only if x∗ = 1⊗ x∗ is a
local minimizer of (P2). �

Remark 3.1: We note from the above proposition the
importance of having a connected communication topology.
Indeed, if G is not connected, then the nullspace of S
is much richer than {1 ⊗ x | x ∈ Rn}, and therefore the
solution of (P2) may not necessarily be of the form x∗ =
1⊗ x∗. However, the fact that we search a solution of (P2)
of this particular structure is fundamental for showing the
equivalence between the two optimization problems.

IV. Characterization of the solution of Problem (P2)

In this section we introduce a number of results concerning
the optimization problems (P1) and (P2). They will be used
for analyzing the local converging properties of algorithm
(A1).

The next proposition recalls a well known result on the
properties of the tangent cone to the constraint set at a local
minimizer of (P1).

Proposition 4.1: Let Assumptions 2.1-(a) and 2.2 hold,
let x∗ be a local minimizer of (P1) and let Ω denote the
constraint set, that is, Ω = {x | h(x) = 0}. Then the tangent
cone to Ω at x∗ is given by TC(x∗,Ω)=Null (∇h(x∗)′) , where
∇h (x∗) , [∇h1 (x∗) ,∇h2 (x∗) , . . . ,∇hN (x∗)].�

Let x∗ = 1 ⊗ x∗ denote a local minimizer of
(P2) and let ∇h(x∗) denote the matrix ∇h(x∗) ,
[∇h1(x∗),∇h2(x∗), . . . ,∇hN(x∗)] . The vectors ∇hi(x∗)
are the gradients of the functions hi(x) at x∗ with a structure
given by

∇hi(x∗)′ =

0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

, ∇hi(x∗)′︸   ︷︷   ︸
ith component

,0, . . . ,0︸ ︷︷ ︸
n zeros

, . . . ,0, . . . ,0︸ ︷︷ ︸
n zeros

 ,
(10)

as per definition of the function hi(x).
The second result of this section is concerned with the

nullspace of the matrix [∇h(x∗),S′], which will be used to
characterize the tangent cone at a local minimizer of (P2).

Proposition 4.2: Let Assumptions 2.1 and 2.2 hold.
The nullspace of the matrix [∇h(x∗),S′] is given by
Null ([∇h(x∗),S′]) =

{
(0′,v′)′ | v ∈ Null (S′)

}
.�

We now have all the machinery necessary to characterize
the tangent cone at a local minimizer of (P2).

Proposition 4.3 ([13]): Let Assumptions 2.1-(a) and 2.2
hold, let x∗ = 1 ⊗ x∗ be a local minimizer of (P2)
and let Ω denote the constraint set, that is, Ω =
{x | h(x) = 0,Sx = 0}. Then the tangent cone to
Ω at x∗ is given by TC(x∗,Ω) = Null

(
[∇h(x∗),S′]′

)
=

{1⊗h | h ∈ Null (∇h(x∗)′) = TC(x∗,Ω)} .�
Let x∗ = 1⊗ x∗ denote a local minimizer of (P2). From

the theory concerning optimization problems with equality
constraints (see for example Chapter 3, page 15 of [21],
or Chapter 3, page 253 of [1]), the first order necessary
conditions for (P2) ensure the existence of λ∗0 ∈R, µ∗ ∈RN

and λ∗ ∈RnN̄ so that λ∗0∇F(x∗)+∇h(x∗)µ∗+S′λ∗ = 0.
Note that since S is not full rank, and therefore the

matrix [∇h(x∗),S′] is not full rank either, the uniqueness
of µ∗ and λ∗ cannot be guaranteed. The following result
characterizes the set of Lagrange multipliers verifying the
first order necessary conditions of (P2).
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Proposition 4.4 (first order necessary conditions [13]):
Let Assumptions 2.1 and 2.2 hold and let x∗ = 1⊗ x∗ be a
local minimizer for problem (P2). There exist unique vectors
µ∗ and λ∗ ∈ Range(S) so that ∇F(x∗)+∇h(x∗)µ∗ + S′λ = 0
for all λ ∈ {λ∗+λ⊥ | λ⊥ ∈ Null (S′)}. �
Under the assumption that the matrix ∇h(x∗) is full rank, the
first order necessary conditions of (P1) are given by ∇ f (x∗)+
∇h(x∗)ψ∗ = 0, h(x∗) = 0, where the vector ψ∗ is unique (see
for example Proposition 3.3.1, page 255, [1]). An interesting
question is whether or not there is a connection between ψ∗

and µ∗ shown in the first order necessary conditions of (P2).
As shown in the following, the two vectors are in fact equal.

Proposition 4.5 ([13]): Let Assumptions 2.1 and 2.2
hold, let x∗ = 1 ⊗ x∗ be a local minimizer of (P2) and
let ψ∗ and µ∗ be the unique Lagrange multiplier vectors
corresponding to the first order necessary conditions of (P1)
and (P2), respectively. Then ψ∗ = µ∗.�

V. Specialized results for the method of multipliers applied
to (P2)

In this section we prove a set of results that will be used
to give conditions under which Algorithm (A1) converges to
a local minimizer of (P1). The results are modifications of
standard results concerning the method of multipliers (see for
example Section 2.2, [2]). In the standard case, a regularity
assumption on the minimizers is used to prove convergence
of the method of multipliers. In our setup, this is not the
case anymore and therefore, the standard results need to be
modified accordingly.

The augmented Lagrangian function of problem (P2) is
given by

Lc (x,µ,λ) , F(x)+µ′h(x)+λ′Sx+
c
2
∥h(x)∥2 + c

2
x′S′Sx. (11)

The gradient and the Hessian of Lc(x,µ,λ) with respect to
x are given by

∇xLc(x,µ,λ) = ∇F(x)+∇h(x)µ+ c∇h(x)h(x)+S′λ+ cS′Sx, (12)

and

∇2
xxLc(x,µ,λ) = ∇2F(x)+

N∑
i=1

µi∇2hi(x)+

+c
N∑

i=1

(
hi(x)∇2hi(x)+∇hi(x)∇hi(x)′

)
+ cS′S, (13)

respectively. Note that the Hessian ∇2
xxLc does not depend

on λ∗. Convergence of many numerical optimization algo-
rithms are based on the properties of the aforementioned
Hessian, such as positive-definitiveness or invertibility. The
next proposition, which appeared originally in [5], states that
the Hessian ∇2

xxLc(x∗,µ∗,λ∗) can be made positive definite,
provided the scalar c is chosen large enough.

Proposition 5.1 ([5]): Let (x∗,µ∗,λ∗) be a local
minimizer-Lagrange multipliers pair of (P2) and assume
that z′∇2

xxL0(x∗,µ∗,λ∗)z > 0 for all z ∈ TC(x∗,Ω). Then
there exists a positive scalar c̄, such that the Hessian
∇2

xxLc(x∗,µ∗,λ∗) ≻ 0 for all c ≥ c̄.�
For notational simplicity we are going to group the La-

grange multipliers in one vector, that is, η′ = [µ′,λ′]. When

we mention a Lagrange multiplier vector η∗ corresponding
to a local minimizer x∗, we will understand that its subcom-
ponent λ∗ is the unique vector in Range(S). In addition, let
us group the equality constraints functions of (P2) into one
vector-valued function, that is, h̃(x)′ = (h(x)′,x′S′).

The convergence of the method of multipliers is based on
the following result, which is an adaptation of the Proposition
2.4, page 108 of [2] so that it fits our setup.

Proposition 5.2: Let Assumptions 2.1 and 2.2 hold, let
(x∗,η∗), be a local minimizer-Lagrange multipliers pair of
(P2), and assume that z′∇2

xxL0(x∗,η∗)z > 0 for all z ∈
TC(x∗,Ω). In addition let c̄ be a positive scalar such that
∇2

xxLc̄(x∗,η∗) ≻ 0. There exists positive scalars cmax, δ, ε
and M such that:
(a) For all

(
η,c
)

in the set D ⊂RN+nN̄+1 defined by

D =
{(
η,c
) | ∥Tη−η∗∥ < cδ, c̄ ≤ c ≤ cmax

}
, (14)

where
T =
[

I 0
0 I−J

]
,

with J the orthogonal projection operator on Null (S′),
the problem

min Lc(x,η) (15)
subject to x ∈ S(x∗;ε)

has a unique solution denoted by x(η,c). The function
x(·, ·) is continuously differentiable in the interior of D,
and for all

(
η,c
) ∈ D, we have

∥x(η,c)−x∗∥ ≤ M∥η−η∗∥/c. (16)

(b) For all
(
η,c
) ∈ D, we have

∥η̃(η,c)−η∗∥ ≤ M∥η−η∗∥/c, (17)

where
η̃(η,c) = Tη+ ch̃[x(η,c)]. (18)

(c) For all
(
η,c
) ∈ D, the matrix ∇2

xxLc[x(η,c),η] is positive
definite.�

The proof of this proposition is rather lengthy and is not
included in the paper. Generally speaking, the proof follows
the same lines as the proof of Proposition 2.4, [2]. However,
since the local minimizer x∗ is not regular, some changes in
the statement of the proposition were needed compared to the
original result, and consequently the proof had to be adapted
accordingly. Compared to Proposition 2.4, page 108 of [2],
our results have three main differences. The first difference
consists of imposing an upper bound on c, namely cmax. The
reason we introduced cmax is to ensure that a certain Jacobian
matrix that depends on c is invertible. Basically the entire
proof of this proposition is based on the spectral properties
of the Jacobian of the system of equations

∇F(x)+∇h̃(x)η̃ = 0, (19)
h̃(x)+ t+γ

(
η∗ − η̃) = 0, (20)

with respect to (x, η̃) at the solution (x∗,η∗), where t =
T(η−η∗)

c and γ = 1
c (and consequently γ ∈ [0,1/c̄]). The

Jacobian of (19)-(20) is given by[
∇2

xxL0(x∗,η∗) ∇h̃(x∗)
∇h̃(x∗)′ γI

]
. (21)

Using Proposition 5.1, it can be checked that for any γ > 0,
the Jacobian defined in (21) is invertible. For γ = 0, however,
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it can be checked that the nullspace of the matrix (21) is
given by {(0′,0′,w′)′ | w ∈ Null(S′)}, and therefore, unlike
in Proposition 2.4, [2], the Jacobian is no longer invertible
at γ = 0. By choosing an arbitrarily large positive scalar cmax
so that c̄≤ c≤ cmax, we in fact make sure that the matrix (21)
is invertible for all considered values of c. Although finite,
cmax can be made arbitrarily large. The price paid for this is
the prevention of reaching a superlinear rate of convergence
for Algorithm (A1).

The second difference is the introduction of the operator
T. This operator acting on η ensures that λ̃(η,c) ∈ Range(S)
for all (η,c) ∈ D, where η̃ = (µ̃, λ̃). In defining the set D,
the matrix T induces a neighborhood around η∗ were only
points η = (µ,λ), with λ ∈ Range(S) are considered. In this
neighborhood, η∗ = (µ∗,λ∗) is a unique Lagrange multiplier
vector corresponding to the local minimizer x∗.

The third difference is the definition of η̃ in (18). Com-
pared to the original statement1 of Proposition 2.4, [2], we
introduce the operator T that multiplies η, to deal with
the fact that x∗ is not a regular local minimizer. As a
consequence, we will have that λ̃(η,c) ∈ Range(S) for all
(η,c) ∈ D, where η̃ = (µ̃, λ̃).

Given a minimizer-Lagrange multiplier pair (x∗,η∗) of
(P2), let us define the following matrix

M =
{
∇h̃(x∗)′

[
∇2

xxLc
(
x∗,η∗

)]−1∇h̃(x∗)
}−1
− cI (22)

for any c for which ∇2
xxLc

(
x∗,η∗

)
is invertible. In addition,

it can be shown that if
[
∇2

xxL0
(
x∗,η∗

)]−1
exist, then

M =
{
∇h̃(x∗)′

[
∇2

xxL0
(
x∗,η∗

)]−1∇h̃(x∗)
}−1

, (23)

respectively.
The following proposition characterizes the lower bound

for c, that ensures that ∇2
xxLc

(
x∗,η∗

)
is positive definite.

Proposition 5.3 ([2]): Let Assumptions 2.1 and 2.2 hold,
let (x∗,η∗), be a local minimizer-Lagrange multipliers pair of
(P2) that satisfies z′∇2

xxL0
(
x∗,η∗

)
z > 0 for all z ∈ TC(x∗,Ω).

For any scalar c, we have ∇2
xxLc

(
x∗,η∗

) ≻ 0 if and only if
c > max{−e1, . . . ,−enN} (or equivalently M+ cI ≻ 0), where
e1, . . . ,enN are the eigenvalues of M.

The following result is the equivalent of Proposition 2.7
of [2]. Our result does not include the case of superlinear
rate of convergence since we upper bound the scalar c and
its statement is adapted so that it fits to the characteristics of
Problem (P2).

Proposition 5.4: Let Assumptions 2.1 and 2.2 hold, let
(x∗,η∗), with η∗ = (µ∗,λ∗) be a local minimizer-Lagrange
multipliers pair of (P2) that satisfies z′∇2

xxL0
(
x∗,η∗

)
z > 0

for all z ∈ TC(x∗,Ω). In addition, let c̄, δ and cmax be
as in Proposition 5.2 with c̄ > max{−2e1, . . . ,−2enN}, where
e1, . . . ,enN are the eigenvalues of M defined in (22). Then
there exists δ1 with 0 < δ1 ≤ δ such that if {ck} and η0 satisfy

∥Tη0 −η∗∥ < δ1c0, c̄ ≤ ck ≤ ck+1 ≤ cmax ∀k, (24)

then for the sequence {ηk} generated by

ηk+1 = Tηk + ckh̃
[
x(ηk,ck)

]
, (25)

1η corresponds to λ in Proposition 2.4, [2].

we have ηk→ η∗ and x(ηk,ck)→ x∗. Furthermore if ηk , η∗
for all k, there holds

lim sup
k→∞

ηk+1 −η∗
ηk −η∗

≤ max
i=1...nN

∣∣∣∣∣ ei

ei + cmax

∣∣∣∣∣ .� (26)

The previous proposition is the backbone of the convergence
result for the Algorithm (A1), as shown in the next section.

VI. Convergence analysis of Algorithm (A1)

In this section we analyze the convergence properties of
Algorithm (A1). An inspection of the iteration (5), shows
that it is a gradient descent method that can be used to find
a local minimizer of the unconstrained optimization problem

min
x
Lc(x,µk,λk),

while the iteration (2)-(4) is the method of multipliers
applied to Problem (P2).

Algorithm (A1) can be compactly written as

xk = argmin
x
Lck (x,µk,λk), x0 = x0, (27)

µk+1 = µk + ckh(xk), µ0 = µ
0, (28)

λk+1 = λk + ckSxk, λ0 = λ
0. (29)

Let x∗ = 1⊗ x∗ be a local minimizer of (P2) with corre-
sponding unique Lagrange multipliers vector (µ∗,λ∗), with
λ∗ ∈ Range(S) (consequently, (x∗,µ∗) is a local minimizer,
Lagrange multiplier pair of (P1)).

In the following we show that under some conditions,
Algorithm (A1) ensures the convergence of each xi,k to x∗
and the convergence of µi,k to µ∗i , where µ∗ = (µ∗i ). The
algorithm does not guarantee convergence of λi j,k to λ∗i j,
where λ∗ = (λ∗i j), for j ∈ Ni and i = 1, . . . ,N. In fact, if
convergence is achieved, λk converges to the set λ∗+Null(S′).
To simplify the convergence analysis, we make the follow-
ing variable transformation: λ̄k = (I− J)λk, where J is the
projection operator on Null(S′). Making the observation that
S′ = S′(I−J) and that (I−J)λ̄k = (I−J)λk, iterations (27)-(29)
become

xk = argmin
x
Lck (x,µk, λ̄k), x0 = x0, (30)

µk+1 = µk + ckh(xk), µ0 = µ
0, (31)

λ̄k+1 = (I−J)λ̄k + ckSxk, λ̄0 = λ̄
0. (32)

The following result gives conditions under which Algo-
rithm (A1) converges to a local minimizer x∗ of Problem
(P1).

Corollary 6.1: Let Assumptions 2.1 and 2.2 hold, let
(x∗,ψ∗) be a local minimizer-Lagrange multipliers pair of
(P1). In addition, let x∗ = 1⊗ x∗ be a local minimizer of
(P2) (as stated by Proposition 3.1), with unique Lagrange
multipliers (µ∗,λ∗) and λ∗ ∈ Range(S). Assume also that
z′
(
∇2 fi(x∗)+ψ∗i∇2hi(x∗)

)
z > 0 for all z ∈ TC(x∗,Ω) and let

c̄, cmax and δ be as in Proposition 5.4. Then there exists
0 < δ1 ≤ δ so that if

c̄ > max{−2e1, . . . ,−2enN }, (33)

where e1, . . . ,enN are the eigenvalues of M defined in (22),
and the sequence {ck}, µ0 and λ0 satisfy(

∥µ0 −ψ∗∥2 + ∥(I−J)λ0 −λ∗∥2
)1/2

< δ1c0, (34)
c̄ ≤ ck ≤ ck+1 ≤ cmax, (35)
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then for the sequences {xi,k} and {µi,k} generated by the itera-
tion (30)-(32), we have xi,k→ x∗ and µi,k→ ψ∗i . Furthermore
if µi,k , ψ∗i for all k, the rate of convergence of {µi,k} is linear.

Proof: By Proposition 4.5 we have that
µ∗ = ψ∗. Using the definition of the Lagrangian
function introduced in (9), we have ∇2

xxL (x∗,µ∗,λ∗) =
diag
(
∇2 fi(x∗)+µ∗i∇2hi(x∗), i = 1, . . . ,N

)
. In Proposition 4.3

we showed that TC(x∗,Ω) = {1⊗h | h ∈ TC(x∗,Ω)} , and
therefore the assumption x′

[
∇2 fi(x∗)+µ∗i∇2hi(x∗)

]
x > 0

for all x ∈ TC(x∗,Ω) is equivalent to x′∇2
xxL (x∗,µ∗,λ∗)x >

0 ∀x ∈ TC(x∗,Ω). Let δ1 be as in Proposition 5.4. All
assumptions of Proposition 5.4 are satisfied and the result
follows.

Remark 6.1: At each step of Algorithm (A1), we use
iteration (5) to obtain the solution of (2), and therefore the
convergence is dependent on solving

min Lc(x,ηk)
subject to x ∈ S(x∗;ε).

The solution of the above problem is well defined if it
is ”close enough” to the local minimizer x∗. However, the
unconstrained optimization problem may have multiple local
minimizers. Thus for the algorithm to converge to the correct
solution, xk must remain in a neighborhood of the same
local minimizer, at least after some time instant k. Practice
showed that using xk as starting point in (5) to compute
xk+1 tends to ensure that the solutions of the unconstrained
optimization problems remain in a neighborhood of the
same local minimizer. In addition to starting closed enough
from x∗, appropriate step-sizes ατ must be used so that (5)
converges. A ”sufficiently small” constant sequence (ατ = α)
or a slowly diminishing sequence (ατ → 0,

∑
τατ = ∞) can

be chosen. Conditions on the stepsize sequence that ensure
convergence can be found in [1] (Propositions 1.2.3 and
1.2.4).�

Remark 6.2: Corollary 6.1 shows that we can use the
method of multipliers to compute a local minimizer for
the Problem (P1). Note the change in the condition the
initial values η0 must satisfy, compared to the original result,
namely the projection of λ0 on Range(S). This change was
necessary as a result of the lack of regularity of the local
minimizer; lack of regularity that also prevented us from
showing that Algorithm (A1) can achieve a (theoretical)
superlinear rate of convergence due to the upper-bound
imposed on the sequence {ck}.�

VII. Conclusions

We presented a distributed algorithm for solving an op-
timization problem with equality constrains; where the cost
function is expressed as a sum of functions and each agent
is aware of only one function of the sum and has its own
local equality constraint. The algorithm was inspired by
the methods of multipliers applied to a lifted optimization
problem equivalent to the original one. We gave conditions
for the (local) convergence of the algorithm and emphasized
the changes needed for proving such results compared to the
standard result, due to the distributed formulation. As a result

of the loss of regularity of the local minimizers, we were not
able to guarantee that the algorithm can reach superlinear rate
of convergence, but can get arbitrarily close to it.
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