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Abstract 

This  paper  deals f irst  with the modeling of 
urban  traffic headway statistics. It is shown that 
a  composite  distribution  based on the  convex  com- 
bination of a  lognormal and a  shifted  exponential 
distribution  gives  a good f i t  to  observed  traffic 
data.  This statistical  model  is then  used to gener- 
ate  a model  for  the  formation and passage of "pla- 
toons" of vehicles. It i s  shown that  the  problem 
of estimating  the  time  at which a "platoon" passes 
a  detector,  as well a s  the  number of vehicles in 
the  "platoon", corresponds to  the  point process 
disorder problem. An optimal  estimator  for  the 
platoon size and passage  time,  based on detector 
data, is then derived  via known results  for  the 
point process  disorder problem. It is shown that 
the  computations  required by this  estimator can  be 
performed in a  microprocessor.  Furthermore, 
the  estimator  is  tested  against  the UTCS-1 traffic 
simulator and performs  very well. Parameter 
sensitivity  analysis of the  estimator is presented. 
Finally,  the  use of these  results to improve  the 
filter/predictor  described in a companion paper, 
and  vice  versa,  is explained. 

1. Introduction 

In a companion paper [ 141  we noted that  there 
is  considerable  current  interest in the  develop- 
ment of computer-based  systems  for  the  control of 
urban  traffic. In addition, we explained that  these 
systems  generally do not make a s  much use of data 
acquired in real  time  because of difficulties in es- 
timating  relevant  traffic  parameters  from  such 
data.  Finally, we presented  three  procedures  for 
estimating queue  length at  a  signal  from  detector 
data. 

This  paper  presents  a  procedure  for  estima- 
ting  the time  at which a  llplatoon" of traffic  passes 
a  detector  as well as  the  number of vehicles in the 
"platoon". Roughly, a  flplatoont' is a  group of ve- 
hicles  that  move with similar  velocities  and  com- 
paratively  small spacing. Although platoons of 
vehicles a re  observed in freeway  traffic a s  well, 
this phenomenon is  a  rather fundamental charac- 
teristic of traffic in an  urban  network and is  great- 
ly influenced by the  traffic  signals. Indeed the 
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periodic  variation of traffic  lights  tends  to  group 
vehicles  into  platoons.  Traffic  engineers  have long 
exploited  this  behavior by using  the  maximum 
through-band  synchronization  scheme. The techni- 
que  consists of offsetting  the  green  phase of suc- 
cessive  traffic  lights, with respect to  each  other, 
to  regulate  groups of moving vehicles  at  some  de- 
sired  speed without stopping.  Thus, it is believed 
that  estimates of platoon size and  passage  time may 
be  an  especially  relevant  traffic  parameter  for 
control  purposes. 

Furthermore,  it was explained in the  compan- 
ion paper  that  it  is  very  desirable to have  adaptive 
queue estimators. Such adaptive  estimators need 
information  about  estimation errors  that  is  largely 
independent of the  estimator  itself. To clarify  this 
point  and for  future  references we consider in fig- 
u re  1 two successive  signalized  traffic  intersec- 
tions. Loop detectors di a r e  typically  located so 
that  dl,  d2 are  relatively  close  to the  downstream 
traffic  light  (15-20  vehicle  lengths) and serve  as  
the  observations  for  the  queue  estimators  [5];  de- 
tector d3 can be located  either  directly  after  traf- 
fic light A to provide  observations on vehicle  dis- 
charge  (departures)  from  traffic  light A, or  near 
the  middle of the link AB to provide  observations 
about  the structure of upcoming traffic flow towards 
intersection B. In the former  case  the platoon es- 
timators  described  here  can  provide  an independent, 
delayed  estimate of the  queue at  traffic  light A. 
Thus,  the platoon estimator  also  has  potential  util- 
ity a s  a  device  for making the queue estimator  a- 
daptive  (actually  a  crude  estimator of this  short  is 
currently  used in UTCS-1 for  exactly  the  same 
reason). In the  latter  case  observations  from  de- 
tector  d3  are  very  important  (as well as  those  from 
detector  d ) to the  traffic  controller B. Indeed a 
platoon  es&mator in this  case can  provide advanced 
information  to  controller B 'about the structure of 
the  upcoming traffic demand  (e. g., platoon size, 
gaps,  etc. ) resulting in more efficient  control. 

In section 2 we present the  models  for platoon 
formation and flow. It is shown that  vehicle  head- 
way statistics  form  the  basis  for the  development. 
Furthermore  it is shown that two different  inter- 
pretations of the same  simple  stochastic  model 
lead  to  a  model  for  urban  traffic on one hand and 
to a  model  for  freeway  traffic on the  other. In 
section  3 we show that  estimation of platoon pass- 
age  time  corresponds to  the  point process  "dis- 
order" problem.  The  solution  to  this  problem  is 
then  given and means  whereby  the  required  calcu- 



lations  can  be  performed in a microprocessor  are 
explained.  The test and  evaluation of the  resulting 
estimator using  the UTCS-1 simulation are  briefly 
discussed in section 4. In section  5  results  per- 
taining to the parameter  sensitivity of the  proposed 
estimator  are  presented.  Finally in section 6 a 
brief  description of our  current  research on alter-  
native  solutions to this  estimation  problem  and on 
adaptive  urban  traffic  control is given. For  de- 
tailed  descriptions of the  results  presented  here 
we refer the reader to [ 51. [ 191 and [ 221. 

2. Models for Headway Statistics and 
Resulting Traffic Models 

It has been  recognized  that  one of the  most 
important  components in the  description of traffic 
flow is the  distribution of headways. Although sev- 
eral  definitions of headway exist, we will always 
mean  the  time  difference between the  passage of the 
leading  edges of successive  vehicles.  The statis- 
tical  distribution of headways has been  studied  ex- 
tensively  since  the  early  days of traffic  control. 
It is natural  for  our work for two reasons: 

(a)  it  is  relatively  easy to collect headway 

(b)  the  statistical  description of headways 
data  from  the existing  detectors. 

(interarrival  times in the  point process 
jargon)  is the essential  part in modelling 
the  underlying  point process and is the 
point of departure  for the modem  theory 
of estimation  for point processes  [1]-[4]. 

For  a  complete  description of the  traffic  pro- 
cess we need  to  include  the speed  measurements 
provided by the detectors [ 51. This is the  mark 
( i n  point process  jargon  [13]) of the  point process 
that  characterizes  traffic  detector output. Such 
measurements and  a  model similar to ours have 
been  effectively  utilized in [20] [ 211 to  describe 
freeway  traffic.  It is worth  emphasizing that [ 201 
provides a substantial  validation of the  aforemen- 
tioned  model. In this  paper, due to simplifying 
considerations and space  limitation, we consider 
only headway statistics. Speed statistics and  a 
more  complete development  based on a mixed head- 
warspeed model  will be given elsewhere. 

was  concerned only with the  probability  density  for 
headways. We hclude  here a  very  brief  survey of 
this work,  Our report [ 51 and [ 191 contain  a  con- 
siderably  more  detailed  survey. 

In one of the  earlier  studies Adams [6]  pro- 
posed a  negative  exponential headway probability 
density.  The  model  broke down  when traffic was 
no longer  freely flowing (e. g., due  to  traffic  lights 
o r  difficulty in passing). One of the  shortcomings 
of the  negative  exponential  density occurs  at  very 
short headways. This can be rather  easily  cor- 
rected with a  displaced  negative  exponential  den- 
sity. A more fundamental  limitation of this  density 
however is  its failure  to  describe  the  smaller var- 
iability in the  headways observed in groups of ve- 
hicles  that follow  each other (i. e., platoons). As 
a result, although the  displaced  negative exponen- 
tial  density is universally  accepted  [6]-[12], [ 2 0 ] -  
[ 211 a s  a  very good model for  relatively long  head- 
ways (i. e., corresponding  to  freely flowing and 

Most of the prior work on headway statistics 

nonfollowing vehicles)  different  types of densities 
were  proposed  for  short headways. Such models 
include  Erlang, Gamma  and lognormal  densities. 
From  these so called  single  density  models  the 
lognormal  density 

l o  , hcO 

(where u ,  u 2  a r e  the  mean and variance of hh) ,  (P 

shifted  lognormal  density  gave  the  best  results in 
fitting  observed  data  from platooning vehicles  [8], 
[9]. There  are  various  justifications  for  these 
findings  about  the  lognormal  density.  The  primary 
reason  is  that  multiplicative, independent, identi- 
cally  distributed  errors by various  drivers  attempt- 
ing to  follow  each other  combine to give  a lognormal 
density. 

The  implicit  concern about the different  statis- 
tical  behavior of short and  long  headways  eventually 
lead to  the  so-called  composite  density  models 
which gave better fits to  observed  data  than  single 
density  models [ 113, [ 201, [ 211. These  type of 
models  assumed  a  structure of traffic  consisting of 
two subpopulations:  one corresponding to  following 
traffic (i. e., traffic  grouped in platoons)  and one 
corresponding  to nonfollowing traffic (i. e.,  freely 
flowing vehicles  or  leaders of platoons).  The  head- 
way probability  density  assumes then  the form 

p(h)=$Pf(h)   f ( l -$)pnf(h)  (2.2) 
where 
pf = following  headway probability  density function 

pnf -tion (longer  headways). Usually  a displaced 

+ = degree of interaction. 
Since headway is dependent on traffic flow, the  de- 
gree of interaction  incorporates  this dependency. 
For  light  traffic  for example,  equals zero yield- 
ing a  composite  density  that is a  displaced  negative 
exponential. There  are  several  interpretations one 
can  give to $ and we shall  return  to  this point later. 
It has  been found [ 103, [ 201 that pf does not depend 
on the  position of the  vehicle within the platoon  and 
on the  size of the platoon. 

Such  a composite type model  has  been  recently 
described by Branston [ 111. This  model  provided 
excellent f i t  to data  from  various  traffic flow situa- 
tions [ 113. It utilizes  a  lognormal  density (2.1 ) for 
following headwa s and the  random platoon assump- 
tion of Miller [7r (that is the  gaps between  platoons 
follow an exponential  density).  The  resulting  prob- 
ability dens.ity for headwayshhas the  form 

(short  headways), - nonfollowing headway probability  density  func- 

negative  exponential  density. 

where g is  lognormal  density (2.1). 

el  attractive:  a) the parameters introduced by the 
model are  natural and a re  important  parameters 
for  filter/prediction  and  (or)  control,  b) the  model 

There  are  several  reasons  that make  this mod- 
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can  accomodate  all  traffic  conditions  (light,  mod- 
erate, heavy)  and is  valid  for  practically  all  ranges 
of traffic flow and speed  (a  property  that  has  been 
verified  from real data and which is not true  for 
simple  models),  c)  the  distributions involved  imply 
underlying  stochastic  processes  that  can  be  com- 
pletely  described by a  finite  number of moments 
(at  most two), an  important  fact  for  the  develop- 
ment of simple but effective  filter/predictors,  d) 
the two basic  assumptions of the  model a r e  the log- 
normal following  headway distribution and the  ex- 
ponential  interplatoon gap which a s  we discussed 
earlier  are  very well  documented  and  validated. 

A computational  drawback of this  model is the 
rather  complicated  expression  for  the nonfollowing 
headway density  (2.3).  Our  results in [5], [ 191 
indicate  that an  equally  valid  model is obtained if a 
displaced  negative  exponential  is  used to  model non- 
following headways. This is further  supported by 
the wide acceptance of this  density as  an  appropri- 
ate model for  longer headways. As a result of 
these  considerations  the  model adopted foi  the  first 
order headway density is given by (2.2) where pf is  
a s  in (2.1)  and pnf has  the  form 

X e  -(h-T)X , hzT 

0 PnfW = { (2.4) , h < T .  

We would like to emphasize  that  Breiman  et a1 
in [20]  [21] arrived  at  a  similar model for  free- 
way traffic.  Their  model did not specify  the  log- 
normal  density  as the  following  headway density, 
and  it was carefully  validated with a  sizable  data 
base. As discussed  earlier  there  are  very good 
reasons  for  our  proposal of the  lognormal  density 
and furthermore  our  results can be easily modified 
to accomodate  other  densities. It is then apparent 
that  our  proposed  model  applies  equally  well to 
urban  and  freeway  traffic. 

The  model  requires  five  parameters  for the 
headway density, $, 1, T, p , and 0. To completely 
specify  the  model  for  a  particular  link  or  section of 
a  link in a  traffic  network, it is  important to under- 
stand the variation of these  parameters with respect 
to traffic flow and  speed. Both Branston [ 111 and 
Breiman  et a1 [ 201, [ 211 report  that u ,  u are  fairly 
insensitive to traffic flow level while varying  from 
lane to lane and different  links.  The  parameters $ 
and X depend on traffic flow and are  rather  easily 
estimated [ 111, [ 201, [ 211 if one  utilizes  velocity 
(speed)  statistics  as well. Finally T varies between 
.25 to 4.00 sec and  can  be easily  estimated [ 201. 

The  probability  density given  does not provide 
in general  a  complete  description of the headway 
stochastic  process  at  a  particular point in a  traffic 
network.  Higher order  probability  density functions 
are  also needed because  there  may  exist  correlation 
between successive headways. On the other hand, 
we know from point process  theory  that  interarrival 
time  statistics  completely  characterize  the  process 
and, in particular, can  be  used to determine the 
"rate" of the process [4]  [ 13).  This  rate  plays  a 
central  role in estimation. To simplify  computa- 
tions and based on evidence  provided in [ 201 we 
analyze  for the balance of the  paper  a  model which 
employs  uncorrelated following  headways 

We are  currently investigating  the 
effects of this a  proximation which appear  to  be  in- 
significant. In 751, [ 193, [ 221 we have  developed 
a  model  that  utilizes  correlated following  headways 
a s  observed by Buckley [ 121. Since nonfollowing 
headways are  clearly independent  the resulting mod- 
el  assumes indep endent  successive headways. So 
we have  a  self  exciting  process with memory  1 [ 13E 
As a  result of these  simplifications  the headway 
process is characterized by the  first  order  density 
(2.2). 

We developed two interpretations  for  the mixed 
headway model.  The f i rs t  model is intended for 
use in estimating  gross  traffic  patterns  for  the  slow 
updating of traffic flow parameters (both in urban 
and m particular  freeway  traffic). In such  a  case $, 
which should  be interpreted  as the probability  that 
a  particular headway is  a following headway, should 
be  constant  for long time  intervals.  The  second 
model is intended for  use in urban  nets with small 
average link  lengths  and  traffic  signals. In such 
cases  it is crucial to  model  the  periodic  formulation 
and propagation of platoons o r  queues as  modulated 
by traffic  lights. Then + is  modelled as a  time 
function with values 1, corresponding to passing of 
a platoon o r  a queue discharge and 0 corresponding 
to non-following freely flowing traffic. 

We call the first  model average mixed headway 
model. The  point process  it  characterizes has rate 

where  p is given by (2.2). The  function 

h(t)  =i (2 .6)  

is sometimes  referred to as the hazard function in 
birth  or renewal process jargon.  Our results in- 
dicate  that  filters/predictors  really behave  well if 
the  hazard  function is chosen  appropriately.  This 
suggests  the  alternative:  derive  filter/predictors 
by appropriate  choice of the  hazard function  and 
make  them  adaptive by tuning the  hazard function 
to  the traffic flow pattern. 

We call the  second  model  switching rate mixed 
headway modeL This  model is based on &e  switch- 
ing of + between 0 and 1. As a  result the  point 
process will have two rates. The following head- 
way rate  is 

where g is the  lognormal  density  (2.1).  For  the 
nonfollowing headway process  the  rate  is given by 
(using  2.4) 

X if t-T- 5 T 

Some of these  computations a r e  used later in the 
disorder  problem  for point processes.  These 
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computations  complete  the  description of the  head- 
way process model. 

A  model  can now be developed for  urban  traffic 
flows based on the headway model adopted. Each 
link is  divided in sections in accordance with the  de- 
tectorieation of the link. For  each  section of the 
link  the input  and  output traffic flows  will  have 
headway distributions  as  described above. Notice 
that  the headway distribution  model  can  vary (and 
it should) from  lane to lane [20] [ 211. The re- 
quired  parameters of the  model  will  be  estimated 
at  appropriate  intervals  from  actual  data,  or  from 
historical  data  as  required.  The  effect of the  link 
will be to alter the parameter valuesas  traffic moves 
down stream. 

3. Platoon  Structure  Estimation 

The  filter/predictors developed in this  section 
a r e  based on some  fundamental  recent  results in 
point processes  as developed by Boel-Varaiya- 
Wong [ 13 [2],  Segall-Davis-Kailath [ 31 and  Davis 
[ 41. The approach we have  taken in section 2 i s  
motivated by the  work of Davis who demonstrated 
in [4]  that  a  complete  statistical  description of 
interarrival  times  is adequate  for  filtering/predic- 
tion problems  based on point-process  observations. 
This  has both a  theoretical  appeal  and  is significant 
for  practical  applications  where  interarrival  time 
statistics (i. e., headway statistics in the traffic 
context) are  rather  readily  available  from  experi- 
ment s . 

A setting  for continuous time  filtering  based on 
point process  observations  is  as follows.  The 
signal  process  is modeled by the stochastic  differ- 
ential equation 

dx =ftdt  tdvt; x(0) =xo t  (3.1) 
where  v  is  a  martingale with respect to the u - 
algebra et which is generated by the  past  sample 
paths (i. e., s St)  of the  signal and  point observation 
processes  (the  analog of 4-1 in our companion pa- 
per [ 141. Usually ft  is  a function of the  past of the 
signal  paint  observation  processes.  Furthermore 
the observation point process  is modeled by 

t 

dNt = Xtdt t dwt (3.2) 

where wt is  also  a  martingale with respect  to et 
and X is the  "rate" of the  process.  Usually X, is a 
function of the past of the  signal and  point observa- 
tion process.  Let 3t be  the  IS-algebra generated by 
the past of the  point observation  process (i. e., N,, 
s s t ) .  Then the minimum  error  variance  estimate 
of the  signal xt given the past of the point observa- 
tion process  is 

t 

(3.3) 

and is given by 

eo = E{x(O)] (3.4) 

where I '  "Ir denotes  conditional  expectation with re- 
spect  to 3, and 

dvt = dNt- &dt (3.5) 

is the so called innovation process of the  observa- 
tion process.  This  is  a  general result and for  a 
particular  problem the various  terms have to  be 
computed  and substituted in (3.4), which is not 
recursive in general. 

Although several  filtering/prediction  problems 
of relevance  to  urban  traffic  control  problems  can 
be  formulated in the  above  framework, we concen- 
trate on the  estimation of traffic  patterns (i. e., 
passage  time of platoon or  queue). From  section 2 
the  point process observed by a  traffic  detector is 
a  mixture of two point processes each  with a  differ- 
ent  rate  process; one  associated with following ve- 
hicles (i. e., in platoons or  queues)(2.7)) and  a  dif- 
ferent one associated with nodollowing  vehicles 
(2.8). The  rate of the overall  process  switches 
between these two rates (switching rate mixed 
headway model).  Estimates of the  switching times 
can  be  very  useful  for  the following reasons  (see 
section  1):  a)  they  determine  the  traffic flow pat- 
tern and if transmitted to downstream  detectors 
and traffic  light  controllers will lead to improve- 
ment in filtering/prediction and control of subse- 
quent links;  b)  a common problem with queue es- 
timators  is the errors  from  traffic  cycle  to  traffic 
cycle  due to vehicles  trapped by the  red  light  or 
vehicles  passing  during  the  amber to red  transition. 
By effectively  estimating  from  the  first  downstream 
detector (i. e. , the one immediately  after  the  traf- 
fic  light in figure  1) the  time when the last queueing 
vehicle  has  passed  that  detector  a  reinitialization 
of the upstream queue estimator  can  be  implement- 
ed to correct  cycle by cycle  propagation of cumu- 
lative  errors. 

In a  different,  traffic  oriented  problem, we 
a r e  often interested in estimating o r  detecting  the 
times when large changes in the rate  process occur. 
This  is often related to an incident in a  freeway 
(or  urban  traffic link).  This  is  the  incident  detec- 
tion  problem and will be  treated  elsewhere. 

the context of the so called point process  "dis- 
order" problem.  Namely, we observe a point 
cess Nt which is  governed by a  rate  process X,  (Fro- 
until  some  random  time T (call  d  the  "disorder" 
time), and by a  different  rate It after  this time. 
The  problem  is then  to estimate  the switching time 
T  from the  observations of Nt only. This  problem 
has been  studied by Siryaev [ 151 , Calchuk and 
Rozovsky [ 161, Davis [ 171 and in complete  gener- 
ality by Wan and Davis [ 181. We follow the  last 
two references in the  development  presented  here. 

We first  need  to establish  the  structure of the 
problem  as in (3.1) (3. 2). Let  us  define 

Al l  the  above  problems  can be formulated in 

e 

(3. 6 )  

where I is the characteristic function of the 

set  {t 2 T}. So xt indicates by  switching from 0 to 
1  the  "disorder"  time. Of the  several  cases con- 
sidered in the literature,  the  appropriate  one  for 
the  traffic  problems  discussed  earlier is the  fol- 
lowing: the  switching time  T  coincides with one of 

Ct2Tl 
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the  detector  activation times Ti (occurrence times). 
In general, and in particular  for  traffic  problems, 
the events { T = Ti)  may not  be  independent from  the 
underlying  point process Nt. Let 

pi=Pr{T=Ti], qi = - Pi 

k2 1 
Pk 

%=: %'{T i-1  St<Ti] 

By some  calculations which can be found in 
[ 181 o r  [ 193, one  can  then show that 

dx = ( l - x  )q X tdvt  0 
t  t k t  (3.9) 

dNt = ((1 -xt)XttxtXt)dt 0 1  tdwt  (3.10) 
and 

which a r e  of the same  form  as  (3.1) and  (3.2). 
The filter  (3.4) now becomes: 

Note that 

~$=E{X~I~~]=E{I  {taT] 13 t ]=  P r { T ~ t l 3 ~ )  (3.12) 

so that  (3.11)  computes  the  probability  that  the 
switch  has  occurred  prior to time  t given  the de- 
tector  data up to time t. When there  is depend- 
ence between the  events {T=Ti]  and {Nt]  some 
simple  arguments  [18], [ 191 lead to Eq. (3.11) 
with the exception  that 

Thus,  the  only  change  needed to accomodate  de- 
pendence  between {N,] and (T=Ti]  is  to  let qi be  a 
function of t and the  prior Ti' 

Given explicit  expressions  for  the two rates 
X , X then (3.11)  is  an  implementable  nonlinear 
fdter. Using  then expressions  (2.7)  (2.8) we pro- 
ceed  to derive  explicit  equations  for the filter. 
Between detector  activations (dNt=O) 

0 1  
f t  

-_ &'- - (knf-kf)st(l-Gt),  Ti-lCt<Ti. 
dt 

This equation  can  be  solved explicitly  [5]  [I91 to 
give 

(3. 14) 

for Ti-l<tcTi. (3. 15) 

where  u is the  unit step function. On the  other 
hand when t=Ti (i. e.,  at  detector  activation  times) 
the  estimate has a  jump  discontinuity with size 
equal  to  the  coefficients of dNt in (3. 11) 

Thus,  the  filter  is  actually  implemented  as follows: 
a )  between detector  activation  times (3.15) is  used, 
b)  at  detector activation times the  jump  discontinu- 
ity is computed from  (3.16),  c) the e r ror  function 
appearing in (3.15) is computed by a  five  term 
series expansion. 

Finally,  for  the  implementation of the filter we 
need to determine  the  deterministic function 
which in our  case  is given by (3.8) and therefore 
we need to specify  the  pi's in (3.7). It is  clear  from 
the  definiton of the  pi's  that  the  information  car- 
ried by them  is  identical  to  the  probability  density 
for  queue  length.  That i s  the  output of queue esti- 
mators that  computesthe probability  density  for 
queue  length (see  our companion paper [ 141 ) can be 
used to compute  the  values for  pi' For  simplicity 
and  to  obtain  a  "worst  case" type  evaluation of the 
filter  performance we used  a  uniform  probability 
density  over  the  maximum  possible queue  length. 
That is 

s t 9  

pi E, 1=1,.. , N 1 .  (3.17) 

where N was  the maximum  queue  length allowed 
(i. e.,  the  distance in car  lengths of the  upstream 
detector  from the  traffic  light).  Further  details 
can  be found in our  report [ 51 and [ 191. 

4. Platoon  Estimator  Evaluation 

The estimator depends on four  parameters. 
The first  parameter  is X, the  mean arrival  rate 
for  free-flowing  traffic. The  second parameter  is  
T the  displacement of the  negative  exponential  den- 
sity.  The  third and fourth  parameters p , IS define 
the  lognormal  distribution  associated with following 
headways. 

at  X=.lO,  T=O. 5  secs, p =1.0 and u=.  1681. The 
value of u was chosen  to  match  Branston's  value 
[ 111 which was obtained for  freeway  traffic. He 
showed that u did not vary  very much over  differ- 
ent traffic flow levels. The  value of p was  chosen 
so that  the  mean headway between successive  ve- 
hicles in a platoon, as  given by the  lognormal  dis- 
tribution, would be 2.9 secs. The  value of Xwas 
chosen so that  the  mean headway for  nonfollowing 
vehicles would be 10 secs. The estimator, which 
we will  denote by PE,  must  be given an  initial  es- 
timate of the  probability of each  feasible  number of 
vehicles in the platoon. In all  of our  tests  PE was 
initialized with a  uniform  probability  for any  num- 
ber of vehicles in the platoon up to twenty. The 
uniform  distribution was  chosen  because  it  provides 
essentially no a  priori information.  Thus,  the 
performance of PE in these  tests depends  only on 
the  data from the detector  and  is not biased by 
either  accurate  or  erroneous foreknowledge. In a 
real application the performance would almost 
certainly  be  better. 

the tests  can be found in our  report [ 51 and in [19]. 
For  our  purpose  here,  it  is sufficient  to  note 

In all of the tests, the parameters  were held 

A detailed  description of the  simulation  and of 
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that the  detector is 290 feet downstream  from  the 
traffic  light that causes the  platoon to  form. 

In order  to evaluate PE  conveniently,  the  con- 
ditional  distribution is reduced  to  a scalar  estimate 
in Table 1.  Two estimates  are obtained: 

have  passed  the  detector a t  the first  instant  that 
the  estimated  probability  that  the platoon has  pass- 
ed  the  detector  exceeds 0.7. This is called  the 
threshold  estimate. 

that  have  passed  the  detector  at  the  time of the 
largest  increase in the  estimated  probability  that 
the  platoon has  passed  the  detector.  This  is  called 
the  maximum  jump  estimate. 

a )  the estimate  is  the  number of vehicles  that 

b)  the  estimate  is the  number of vehicles 

The errors  in Table  1 a r e  due  to  a  platoon 
from  upstream joining  the end of the platoon form- 
ed by the  traffic  signal and then  the  combined pla- 
toon crossing  the  detector  (the  actual  error is only 
one vehicle). 

Table 2 summarizes  the  results of a  much 
more  favorable  traffic  situation.  The  upstream 
traffic  signal  is 800 ft. away so that there  is a rel- 
atively  large gap  between successive  platoons. 
Furthermore, the  detector  is  located  near  the 
downstream  stop  line so the flow over  the  detector 
is in clearly defined  platoons. 

curate  estimator of the  number of vehicles in a 
platoon. Furthermore  it  accurately  determines 
whether or  not the  queue  emptied on a  cycle by 
cycle  basis. 

These  results indicate  that PE  i s  a fairly  ac- 

5. Parameter  Sensitivity and Estimation 

To complete  the  analysis of the estimator  pre- 
sented we need to determine  methods which com- 
pute  adaptively  the filter  parameters and we need 
to know the  response  sensitivities to these  param- 
eters.  These  are  rather  hard  analytical  problems 
and some  partial  results have  been  obtained in [ 19l, 
where we refer  for  further  details. A more com- 
plete  analysis  will  appear in [ 221. The parameters 
h ,  7 are  determined by fitting  the tail of the  ob- 
served headway density. Such methods were  suc- 
cessful  in [ 201. Once an  appropriate  separation of 
short  headways. is available p ,  u can be easily  es- 
timated  since  the  natural  logarithm of the following 
headway is  gaussian. We tried  several techniques 
which automatically  tried to separate  the  data 
(employing outlier  tests).  The  results  were not 
very  satisfactory.  Convergence was not  a serious 
problem however.  The  development of completely 
adaptive  parameter  estimation  techniques  remains 
an open question.  However,  computation of the 
filter output (i. e.,  the  conditional  distribution of 
the  switching time) showed neglizible  variation with 
large  variations in the  filter  parameters X, u, Q 

(we tried  variations  as  large  as 500/0! ). Further- 
more,  since  the  quality of the estimator  is judged 
by the  conditional error  variance 
Vt=Ef(xt-IZt)215t)=Pt(1-ft) (5.1) 

we studied  variations in V under  similar  variations 
in the parameters. Again the  observed  variations t 

in Vt were minute. In particular the result of the 

maximum jump estimator was almost unaffected. 
Several bounds  and analytical expressions of the 
sensitivity of V with respect to X, p ,  ty can  be found 
in [ 191. The  fhter  appears  to be very  robust,  al- 
though we do not have as  yet  obtained  a complete 
mathematical proof. 

6. Conclusions 

The estimator  for platoon passage  time  devel- 
oped in this  paper  appears to be  effective  based on 
our  simulation  results.  This  estimator would also 
provide good delayed estimates of the  queue a t  up- 
stream  traffic  signals provided  the street  configu- 
ration is favorable.  Furthermore,  the  model  de- 
veloped for headway statistics  has  potential  value 
in other  traffic  situations,  such  as  incident  detec- 
tion. We have  since developed several  other  esti- 
mators of platoon passage  time:  maximum  likeli- 
hood, maximum  aposteriori and  a simple but ad hoc 
one  based on llmoving  average''  estimates of the 
rate. The first  and third  perform  superior to the 
estimator  presented  here.  Further  results on 
relative  evaluations and the  use of a  smoother a re  
available and will be  reported  elsewhere. 

Traffic  estimates of this  type are  most useful 
if they  can be used  to  improve  traffic  control.  Our 
current  research  centers on the use of the  models 
described in this and its companion paper.to deve1- 
op improved  closed loop traffic  controls  for  single 
intersections and to  coordinate  groups of inter- 
sections  and  large  networks  for  improved operation. 
In closing we mention  that  similar  problems  appear 
in other  types of queueing  networks (such  as  com- 
puter  or communication  networks)where similar 
techniques  can  be  fruitfully applied. 
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Figure 1. Typical  succession of traffic  lights 
and  detectors in urban  traffic. 

Cycle 

2 11 11 1 
Queue Estimate Estimate Number 
Actual h4aximum Jump  Threshold 

1 2  I 3 I 2 I 
3 3 1 3  I '0" I 11 

10 I :  I 3 

6 1 3 2 3 

Table 1. Performance of Platoon  Estimator 

Cycle 
Numb  e1 

1 
2 
3 
4 
5 
6 

Threshold 
Estimate 

6 
6 
7 
7 
9 
1 

~ 

Maximum  Jump 
Queue Estimate 
Actual 

7 
8 8 
6 

7 6 
9 9 
7 7 
7 7 

Table 2. Performance of Platoon  Estimator 
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