

Satellite Networks: Architectures, Applications, and Technologies

Center for Satellite and Hybrid Communication Networks

Linking Satellite and Terrestrial Networks for Broadband Internet Services

John S. Baras

Center for Satellite and Hybrid Communication Networks University of Maryland College Park

Satellite Networks: Architectures, Applications and Technologies
NASA Lewis Research Center
June 2, 1998

New Business Paradigm

 The "New Data": Internet / Intranet / Extranet applications
 Digital, compressed voice, audio and video

- · Paradigm shifts:
 - Data applications require flexible connectivity
 - Applications require much larger capacities and "bandwidth-ondemand"
 - Subscribers require low-cost, high capacity access
 - Enterprise networks require in addition scalability, dependable performance, simple network management, controlled costs

The "Last Mile" is Key

- Local Access options:
 - Fiber to anywhere (FTTN, FTTC, FTTH, SDV)
 - Copper twisted pair wire (ADSL, VDSL, ... HDSL)
 - Cable Television (CATV), coaxial cable (HFC)
 - Multichannel Multipoint Distribution Service (MMDS)
 - Local Multipoint Distribution Service (LMDS)
 - Broadband Satellites
- · Not a technology issue
- Economic and marketing issue
- Time of deployment & market penetration

Broadband Wireless Infrastructures: Satellite Constellations

- DBS major success
- · New remarkable satellite constellations
 - FSS or Mobile, LEO or MEO
 - From 8kbps to 1 Gbps and higher; on demand
 - Competition to fiber ("faster than light")
 - On-board processing, spot beams, hoping beams, autonomy
 - Globalstar, Iridium, Teledesic, Spaceway, CyberStar, PanAmSat, Astrolink, ...
 - Newest EHF satellites: Celestri, OrbLink, Lockheed Martin, ...

Efficient Broadband Sevices not just a Bandwidth Issue

- <u>Challenge:</u> Exponential growth in demand workloads cannot be met by traditional data services with scalability groth linear in network bandwidth and server capacity
- Traditional unicast (poin-to-point) connection-oriented data services uneconomical and wasteful
- Utilize distributed caching, smart prefetching, dynamic bandwidth allocation, reliable multicast, adaptive hybrid data delivery
- · Need to broadacst the right set of data: highly in demand
 - · Balance data delivery modes to match user's request
 - · Broadcast the right amount of the hottest data and provide the rest on demand

"Push" Information Distribution

- Why important?
 - Audio/video streaming, software distribution, message distribution
 - · Give listeners up-to-date -ness guarantee
 - · Get network economies of scale and efficiency
 - · Event driven enterprises
 - Individualized content need not require per-user data streams: filtering at the desktop, integration at the desktop
- "Push" spending: 1996 \$8B, 2002 \$19B
- · "Push" needs multicast: Intranet and Internet multicast

Network Operations Center (NOC) for Hybrid Internet Service

- HGW: first NOC object that receives data (Router)
 - HGW prioritizes Hybrid Internet traffic
- SGW jobs: mixture of Internet and exogenous traffic
 - Exogenous traffic: package delivery and data feed traffic
 - SGW maintains four queues: two for package delivery and data feed two for the two priority levels of Internet
- Exogenous traffic high priority: fluctuations in bandwidth allocated to Hybrid Internet
- Self-similar traffic: Interactive users as ON-OFF processes

NOC: Bandwidth Allocation Strategies

Comparison of Bandwidth allocation strategies

Buffer per Connection	500 packets	
Total Bandwidth	15 packets/unit time	
Number of Connections	5 connections	
Constant Arrival Rate	10 packets/unit time	
Mean of the Uniform Arrival Rate	5 packets/unit time	
Delay Imposed to Queued Packets	0.1 unit time	

Conn1:	1.4469	1.4468	0.0
Conn2:	2.0720	2.0720	0.5298
Conn3:	1.6941	1.6689	0.204
Conn4;	2.0541	2.0524	0.0741
Conn5:	1.7182	1.7088	0.8847
	EB	FB	MDQSF

Common Input Data

Average Delays

- · All strategies: controller knows (per connection) queue status
- Three strategies investigated:
 - Equal Bandwidth allocation (EB)
 - · Fair Bandwidth allocation (FB)
 - Most Delayed Queue Served First Bandwidth allocation (MDQSF
- · MDQSF is best

DBS-based Internet Access: IP Multicast and Enhancements

- Two IETF WGs: TCP over Satellite and Unidirectional Internet routing
- Intelligent asymmetric data transmission
 - Two types of traffic (depending on threshold T bps):
 - Low data-rate (or "short length") via terrestrial
 - High data-rate (or "bulky") via satellite
- Terrestrial LAN extension of DBS-based Internet
 - Distribute DBS services from a single receiver out to multiple users, thus reducing cost
 - · Satellite hybrid hosts can redistribute data to mobile users
 - "Local loop" anything: Ethernet, ATM, cable TV, wireless

Hybrid Data Delivery

- Objective: deliver needed data with minimum delay to very large numbers of users
- · Pure data broadcast ("push"):
 - Passive users; Accessed concurrently by any number of users
 - Limitation: users wait for data of interest to appear
 - Access latency depends on volume of broadcast data
- Pure unicast ("pull"):
 - Active users; Cannot scale beyond capacity of server and network
 - Access latency depends on aggregate workload and network load
- Ammar and Wong (1985), Wong (1988); teletext, videotex
 Gifford (1985, 1990); community information services (Boston)
 Imielinski and Badrinath (1994), Franklin and Zdonik (1996); wireless communications and mobile computing

Hybrid Data Delivery Model

- DB contains N items of equal size S
- Demand for i^{th} item : Poisson; rate λ_i $\lambda_1 > \lambda_2 > ... > \lambda_N$
- Server M/M/1; mean service time = 1/μ
- Server can broadcast at rate B
- Broadcast n first items; On-demand N-n items;
- $\Lambda_k = \Sigma_1^k \lambda_i$
- Expected response time for requests: $T_{pull} = 1/(\mu (\Lambda_N \Lambda_n))$; $T_{push} = nS/2B$
- Expected response time for hybrid: weighted average of T_{pull} and T_{push}

Adaptive Repetitive Data Broadcast

- Size and content of broadcast continuously updated; Not fixed schedule
- Queue storing vapor data: V
- Item broadcast appended to tail of V and its temperature reduced by Cooling Factor
- Contents of V modified every cycle defined by a placeholder
- Notification on to-be broadcast items by broadcasting index: the signature of V

Two-Phase Algorithm to Update Broadcast Queue Contents

$$\begin{split} & \mathcal{\Lambda}_{\mathcal{V}} \\ \lambda_A \leq \lambda_B \leq \lambda_C \leq \lambda_D \leq \lambda_E \leq \lambda_F \leq \lambda_l \leq \lambda_G \leq \lambda_H \\ & Vapor: A, B, C, D, E, F, G \; ; \quad Liquid: \; \; H, \; I \end{split}$$

- Sort items by their temperature
- Demote to liquid all vapor data with temperature < hottest liquid item
- Marginal gains:
- (2a) Demote vapor items in increasing order of temperat. while $\theta > \theta_0$
- (2b) Promote liquid items in decreasing order of temperat. while $\theta < \theta_0$

Temperature Probing

- Without probing
- With probing
- Critical factor: probing interval [t₀, t₂]
- Probing time = <u>Probing Factor</u> $x (N_V / \Lambda_V)$

- Avoid premature demotion of a very hot item
- Temperature probing:
 - After demotion at to
 - Re-promote at time t2
 - Creates small window for re-evaluation: probe the temperature of the item

Performance Evaluation: Simulation Experiments

- · Parameters:
 - Broadcast and down link rates: 12 Mbps
 - Uplink rate: 28.8 kbps
 - DB has 10,000 items, each 50 kB in size
 - System's pull capacity μ : 30 items/sec
 - Vary workload from light ($RR < \mu$) to heavy ($RR = 100 \mu$)
- Response time depends only on hot-spot size (100 items) (not on workload intensity
- Scalability increased by two orders of magnitude

Acknowledgements

- The work on Hybrid IP Multicast is joint with my student I. Secka.
- The work on Flow Control and Bandwidth allocation for Hybrid Internet is joint with my student G. Olariu.
- The work on Adaptive Hybrid Data delivery is joint with my colleague Professor N. Roussopoulos and our student K. Stathatos.
- For additional related papers/reports see: http://www.isr.umd.edu/CSHCN