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ABSTRACT

We present a highly powerful, modular, and interactive software tool for the analysis of time-
frequency coherent signals via wavelet transformations. A major design goal of the Wavelet Signal
Processing Workstation (WSPW) is to maximize ease of use while minimizing programming complex-
ity. As such, the WSPW makes ample use of graphical mouse driven user interfaces and. in turn. allows
powerful signal processing, classification, and identification techniques to be i..pidly implemented and
tested. Because it has been developed using MATLAB. the WSPW is easily extensible and inherently
portable between varying system architectures. Although the emphasis of this paper is on the wavelet
representation of signals, the WSPW has proven itself a valuable tool in applications including radar
source identification and signal classification.
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1 INTRODUCTION

1.1 Objective

Our main objective is to provide a high level interactive software tool which makes sophisticated signal
processing, classification, and identification capabilities accessible to a substantial base of users. Such
a tool will provide potential users with an immediate ability to analyze and classify particular data of
interest using sophisticated state of the art signal processing techniques such as the wavelet transform.
[n this paper we focus on the wavelet representation of signals.

A major design goal of the Wavelet Signal Processing Workstation (WSPW) is to maximize ease of
use while minimizing programming complexity. Assuch. the WSPW makes ample use of graphical mouse
driven user interfaces and. in turn. allows powerful signal processing, classification. and identification
techniques to be rapidly implemented and tested. Because it has been developed using MATLAB, the
WEPW is easily extensible and inherently portable between varying svstem architectures.
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1.2 Non-orthogonal wavelet processing

A primary feature of the WSPW is the ability to perform “continuous™ wavelet transformations with
user specifiable analyzing wavelets. The wavelet transform is discussed in detail in Section 3.4. Becaunse
the analyzing wavelets may be (almost) arbitrary the resulting (discretized) wavelet transforms. in
general, lead to redundant wavelet representations. i.e., non-orthogonal wavelet transforms. Except for
a modest increase in computationally complexity { O(N log N} instead of O(N) ) of the forward (and
backward) wavelet transform, the nonorthogonal quality of the transform represents no great drawbacks.
On the contrary, the ability to choose almost arbitrary wavelets affords the representation designer a
great amount of freedom. For example, one may choose an analyzing wavelet which is bandlimited in
frequency and has arbitrarily many vanishing moments in the time domain.

Using a WSPW graphical interface window the user can iteratively design analyzing wavelets in the
frequency domain. The user may subsequently perform a wavelet analysis of selected data and then
further refine the analyzing wavelet if desired. In this way the user is able to search for an “optimal”
wavelet interactively.

1.3 Content

The main intent of this document is to describe the design. functionality. and underlying concepts which
have led the development of the WSPW. It is not intended to serve as a users manu al for the package.

2 DESIGN CONCEPTS

2.1 Development language

We have selected MATLAB as the primary development language for the WSPW. MATLAB is a very
powerful matrix oriented numerical processing language which has been designed in an object oriented
and extensible fashion. Essentially. MATLAB is a mature, well supported. and ideally suited language
for the WSPW. Moreover, it supports a C-code interface should the need arise for greater control over
processing routines. In short, MATLAB's extensiblility, object oriented design. inherent portability
between varving system architectures, and its numerical processing abilities. have all led to the decision

ro develop the WSPW in MATLAB.

2.2 WSPW architecture

At the most basic level of the WSPW architecture is the processing module. Each WSPW modaule is a
MATLAB function with a very special structure. In particular, each module consists of four main parts:
input. numerical computation, dormant graphics and finally output. Figure 1 depicts the functional
form of each WSPW module. Of the four component parts of the processing module, the numerical
computation portion is where the bulk of the module’s work is performed. It is also that portion which
is most native to MATLAB.

The additional structure that WSPW adds is implemented in the form of several high level managers
which control the overall processing flow. These managers include (i) Workspace Manager. for control
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Figure 1: The WSPW module and its four main components

of window placement, and user interface controls; (it) Display Manager. for control of graphical ountput:
and (iii) Module Manager. for control of module input and output. Figure 2 displays a schematic view of
the overall WSPW architecture. Module input/output as well as dormant graphical output is controlled
by these high level processing managers. Dormant graphics code allows modules the option of presenting
graphical output to the user. Fach module may have a section of code dedicated to graphical output
whose display and format is controlled via, display management routines.
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Figure 2: Wavelet Signal Processing Workstation Architecture

The main vehicle for communication among modules is directed by the module manager through the
global memory. Modules may ask the module manager to place objects! in global memory or retrieve
objects placed there by other modules.

Routines for user interface (UI) building and manipulation are included in the graphical /0 (GIO)

interface. Ul modules are special modules which simply create a user interface. There are GIO routines
to help quickly build and edit interfaces. These routines allow the specification of placement of controls

An object is a matrix with a known intepretation, €.2., a function matrizis a matrix which has the interpretation that
each of its columns is a one dimensional signal.
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and display plots in a simulation. Other GIO rontines allow modules to query for information from
interfaces by name.

WPSW is designed in a completly open architecture. Accordingly. within this architecture users have
the freedom to operate at any one of the various levels. At the highest level the user will communicate via
the predefined graphical user interfaces and manipulate data via arrangements of predefined modules.
At the lowest level a user can write custom modules and user interfaces.

2.3 Synthesizing and loading data

Included with the WSPW are several modules for creating synthesized data for processing demonstra-
tions and algorithm verification. The most useful among these routines is make_sine which allows the
creation of sums of sinusoidal signals of varving frequency, amplitude and time support. A higher level
routine. signal, takes one of a predefined set of names as its input and returns associated signals. Of
course. users are free to create their own synthesis modules as well.

Typically. users will have a database of signals on which they would like to perform some processing.
File formats from database to database are likely to have a great variety. Despite this situation there
is a large amount of generalization which we may suppose about a signal database:

(i) file names usually carry some meaning, i.e.. they are constructed in a manner indicative in some
wav of the data which is contained in the file.

(ii) files usually contain a header portion which describes various attributes associated with the data.
e.g.. indexing information. time of day data was collected. processing history. etc.. and

(iii) file structures are usually well defined according to some prescribed though perhaps greatly
flexible arrangement of data in the file.

(liven these observations we have provided some siructure to the signal database via database
modules. Ultimately, however, it is difficult to avoid the need for users to provide some sort of low
level /O routines specific to their own databases. Perhaps. the cleanest and easiest solution to the file
format problem is to convert all database files to the standard MATLAB file binary format: however,
‘0 this case all data must be stored as double precision floating point numbers. Such a storage scheme
mayv require much more memory than is necessary for many types of data.

3 MULTI-RATE SIGNAL PROCESSING

Vulti-rate signal processing refers to the joint processing of discrete signals arising from the sampling
of analog signals at different sampling rates. Our inferest in multi-rate signal processing is spawned by
the implementation of the “continuous” wavelet transform where signals at different sampling rates are
naturally generated. Accordingly. techniques to handle multi-rate signals and systems are a prerequisite
to the development of the WSPW. In this regard. the main tool which we have developed is that of
the “sampled signal structure”. The sampled signal structure is a concept which easily facilitates the
implementation of multi-rate signal processing.
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3.1 Sample signal structure

Simply stated. a sampled signal structure is a pair of MATLAB variables. e.g.. Ly ydl. which describes
a vector (sample set) v and an associated discrete lattice yd. The underlying notion here is that the
vector y comes from an analog signal sampled on the lattice described by yd. We assurie a finite sample
vector y that is a 1 x V row vector and the sample lattice is described by a 1 x 2 vector yd. The first
element yd(1) of yd indicates the assumed uniform sample period A while the second clement yd(2)

is 7" where [T, T]is the symmetric interval on which the signal is defined. More precisely. the discrete

vector y arises from the sampling of a function y < L*~T,T] (the fnite energy signals on [T, 71) as
) N . .
y@ =y((n- 5 DA), n=1,2,... ¥,

where T = %ﬁ Figure 3 shows the sampling lattice I associated with a sample structure { N, T}, The

sampling lattice is uniformly distributed over the interval [=7.7] as

h N
D= I(ALT) {(n - ; - I)A}

n=1

where N = 2T /A (required to be an integer).
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Figure 3: Discrete lattice specified by a sample structure

We shall develop all of our processing in terms of sampled signals. The pair yi = {A. T} is called
the sampling structure associated with the function y. In MATLAB we shall adhere to the convention
that if a signal is named £ then its associated sampling structure is named £4. Iy other words. the suffix
“d” is appended t0 a signal’s name to vield the name of 1o signal’s sampling structure. We note that
not every sample rate. interval pair {A. T} in R x R is .« nissible. Namely, the condition

2T
A

must hold. This condition has the consequence of forcing 0 to be a member of the sampling lattice 7

ez

3.2 Algebraic manipulation

Given two sampled signals with possibly differing sampling structures a basic requirement is to perform
elementary algebraic operations like addition. subtraction and multiplication.  Our basic approach
to performing operations on signals with mismatched sample structures involves simply a resampling
process. For example, signals to be combined in some algebraic manner are each resampled on some
common sampling lattice. Now with identical sampling structures. the resulting resampled signal vectors
may be directly combined via the desired algebraic operation.
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Although the resampling strategy is sound in principle there are a host of caveats which must be
addressed in a successful implementation. In particular, the resampling process must satisfy certain
properties if the result of the algebraic operation is to be accurate and meaningful. The main problem
is to insure that the new sampling rate is consistent with the frequency content, i.e., it satisfes the
Nyquist rate, of the combined signal. For example, in the case of multiplication the proper sampling
rate for the product signal is the sum of individual sampling rates.

[n the remainder of this section we shall develop some mathematical tools which describe our ap-
proach to the problem. We limit the discussion to the case of one dimensional signals. As mentioned
earlier. a basic premise in this work is that all vectors are assumed to come from the sampling of an
underlying analog signal.

Let f and g be two analog bandlimited signals with bandlimits of Q; and respectively. The
required Nyquist sampling rates for each signal is respectively Al—l = 20 and AJ! = 20, Let Lq
denote a sampling operator (at a rate 2Q) as

f=1Lof 2 {f(t.)}Y (1)

where t, = (n — &% — LA,V = % and A7 = 2Q. As is well known via the classical sampling
theorem. meeting the Nyquist sampling rate insures that a bandlimited signal is recoverable from its
samples through sinc interpolation. Thus, in principle, the operator Ly has an inverse [,5]. Further,

A _ . .
let R = LQ/LQI be the resampling operator (resamples an )/ sampled signal at the rate governed
by Q). With = the algebraic operation (+-/*) of interest. the general form of the operation on the two
sampled mismatched signal vectors Lo, fand Lq, fis

LolfZg)=(Raq, (Lo, f)) 2 (Raqa,(La,f)).

Here the proper value of Q) is determined by the algebraic operation. We shall end this section here
since a full mathematical analysis. though necessary, is beyond the scope of this paper and we shall
relate such an analvsis elsewhere.

3.3 “Continuous” Fourier transform

L*{IR) is the space of complex-valued finite energy signals defined on the real line R. The norm of an
element f e L*(R) is

Gen A N
17 & [1rori <.
where integration is over R. and the inner product of foge LHR)is

(f.9) = [ Fwgioyae

Recall al-o that the convolution of f.g € L*(R} is defined by f*g(t) = | flu)g(t — u)du. The Fourier
fransform of a signal f < L*(IR) is

fiy) = /f(t)e_ﬂ”"’dt.

SPIE Vol. 24917597



HaSVAN . T )
forye R( = IR), where convergence of the integral to fis in the 12 sense.

Suppose fis an  bandlimited signal. Given a sampled version £ of J it is often cesirable to obtain
an approximation to the Fourier transform f from knowledge of £. Such an approximation may be
made using the fast Fourier transform (FET) with care given to the sampling structure of the signal
to be transformed. To be more precise let f = Lqf as in Equation (1) with the sample structure
fd = {?%T} The discrete Fourier transform £ of £ is

N
SN R {Zf/}
n=1

The sampled version L7 f of the continuous Fourier transform f of the signal f may be approximated
from the sampled version Lof as®

Lrf 2 {fA<2}:F>}

e

X
N N

since 2027 = N, Included in Table | are the relationships between the sample structures in the time
and frequency domains.

Bgnal ] sample vector | sample struczfurc’ﬁ}i

" Il =l = (S, s {7} ]

= 2, P Lo a V2 YRS f

! fo E=20L0f = 20f(; )}k__w fd_{zT,Q} 1‘
L n V/2-1 . 1. T

2 | o= tan = P e (o)

Table 1: Operational relations among sample structures

Figure 4 shows the computation of the continuous Fourier transform for the “texthook” example
function f(t) = te‘Ctl{Om]‘ where 1y is the characteristic function of the set X', The closed form solution
for the Fourier transform of this signal is easily computed to be f(*/) = m In the figure the value
of ¢ = 4. The figure shows the time domain signal f in the top plot ({7 = lio,~) is the step function).
the result of the computation using the FFT (the WSPW module sfft) as just described (real and
imaginary parts), and the closed form solution (real and imaginary parts) in the hottom plot.

Of course, in the actual implementation the DFT is computed using the fast Fourier transform {I'FT). Besides mul-
tiplication by the factor of 2. the use of the FFT requires an additional

UNWrapping step to arrive at a proper sample
vector/sample structure pair.
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Textbook signal f(t) = t"k e*{2 pi ¢ U, c=4.0, k=1
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Figure 4: Textbook signal and its Fourier Transform computed analvtically and via sfft

3.4 “Continuous” wavelet transform

In this section we introduce some basic notation and describe the continuous wavelet transform. There
are three important unitary operators which are associated with the wavelet transform. Theyv are the
dilation, translation, and involution operators which are defined below. Of these three operators it is
the dilation operator which is responsible for the multi-rate nature of the wavelet transform. This is
because a non-trivial dilation will alter the sample structure of a signal. viz.. Table L.

A

Dilation For s > 0, the L*-dilation operator D; is defined by D,g(t) .s%g(st) for g € L?*(R). As

such. (Dyg)(v) = s77g(s™ 1) = D,-1§(7).

!

Translation For u € R, the franslation operator 7, is defined bv T.g(t) 2 glt—u) for g € L*(R).

As such, (1,g)(7) = eI G(~),

Involution For g € L%(R). 7 is the involution of g defined as gl 2 G(—t), where 7 is the complex
conjugate of g.

For a fixed g € L*(IR), the continuous wavelet transform W,f of f € L*R) is the function.

W, f(ts) & (f,mDG) = (f« Dyg)it), (2)

defined on the time-scale plane t € R,s > 0. The inner product (/.7 Dsg) vields a quantitive value
which describes how much f is like 7,.D,3.

SPIE Vol. 2491/ 599



l (Dszg)"
] [ (Ds[g)" U

Figure 5: The Wavelet Transform as a filter bank

Because the wavelet transform may be written in terms of a convolution (2) it has a natural intepre-
tation as a bank of linear filters. Each fiter in the bank is determined by a particular value of the scale
variable s. Thus, the wavelet transform of a signal f at a given scale s = s; is the output of a linear
filter with impulse response Dy g. In general, we may discretize the scale axis to vield a countable set
of scale values {s,,} which in turn specifies the linear filter bank characterized by the set of impulse
responses {D; g}. Typically, we choose s = at for some constant to > 0. This situation is depicted
schematically in Figure 5. Note that as the filter index m increases there are two primary effects on
the filter frequency responses: (i) bandwidths increase. and (ii) the interval of frequency supports are

VY

translated towards higher frequencies. Thus. filters with larger indices m respond to higher frequencies.
4 PROCESSING EXAMPLE

Due to space limitations, it is difficult to demonstrate all of the functionality of the WSPW: however.
we have chosen an example which illustrates some of the key features of the WSPW.

The example signal is a synthetic signal designed as a time progression of three windowed. vet over-
lapping, complex exponentials. This signal is called “opacket” for overlapping packet. Fach successive
windowed exponential has a higher frequency than its predecessor. The overlapping packet sequence is
given by

N

Z At = ty) exp(J2m ),
k=1

where NV = 3, 4 is a window function. (t1.1y,5) = (=35, -15.-25) us and (2102, 05) = (6.11.20)
MHz.

Figure 6 displays a WSPW I/O interface with the signal “opacket™ (real and imaginary parts) and
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Figure 6: User I/O interface for WSPW showing the signal “opacket” and its Fourier transform

its magnitude Fourier transform. UI controls are distributed along the left hand side of the interface
window. The “opacket” signal was loaded into the window by typing its name into the Ul coutrol
labeled “File(s)” and then depressing the “Load” button. This action is coded in a correspouding
loading process module. Plots of the signal and its Fourier transform are displaved by the loading
module’s dormant graphical output. Note that the Fourler transform window clearly indicates the
presence of the frequencies 6. 11 and 20 MHz; however, there is no indication as to the times at which
each frequency occurs. In other words, this is an illustration of the well known fact that the Fourler
transform has good localization in frequency but none in time.

Figure 7 shows the “continuous” wavelet transform of the signal “opacket” as computed by the
WSPW after selecting “cwt™ in the *Xform™ menu of Figure 6 and then depressing the “Transform™
button. Note that the wavelet transform jointly resolves the signal “opacket” in time and frequency. This
time-frequency localization property of the wavelet transform is dependent on the analyzing wavelet. If
the analvzing wavelet is not well localized in time and frequency then the resulting wavelet transform will
also fail to be so. Thus. it is important to design the “best” analyzing wavelet for a given application.

Towards the goal of providing a tool for wavelet optimization, the parametric bandlimited wavelet
interface allows the user to vary analyzing wavelets so as to achieve desired affects. The parametric
bandlimited wavelet interface is displayed in Figure 8. This is a specially designed tool for the specifi-
cation of bandlimited analyzing wavelets and corresponding filter banks which are parameterized by a
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Figure 7: Wavelet transform of the signal “opacket”

few specific quantities. The form of the wavelet ¢ which is depicted in the interface is

0. 7l <
S (1= )], ] [y ),

go(v) = L 7] € [v2,7v3)
cos? ({7 = ). 7] € [75. %)
0, otherwise,

e
)

g0 =Y Goly)

where .V is the “order” parameter and the +’s specify the frequency breakpoints. Note that 2V has
a direct effect on the effective bandwidth of the filter g such that larger values of v vield smaller
bandwidths. Through the order parameter the user can create filters with better frequency localization
without sacrificing too much the time resolution. The +’s can be alternatively translated to equivalent
analyzing wavelet parameters of (1) bandwidth, (ii) order and (iii) center frequency, while filter bank
parameters are specified as (i) number of filters, and (ii) dilation constant ag.

5 CONCLUSION

We have presented the design and functionality of an interactive tool, the Wavelet Signal Process-
ing Workstation (WSPW). for signal processing with non-orthogonal wavelet transformations. We
have developed numerical computational methods to deal with the problems associated with multi-rate
signal processing and described the implementation of the “continuous” versions of the Fourier and
wavelet transforms using these numerical methods. Representing signals nsing a nou-orthogonal family

602/ SPIE Vol. 2491




anahftic

b :
order 0r b
_[15._ B
BW

0.4

; ]

) f

B i

: Z i &

#fiters  Spga L %

.

002
108 50 o 50 100

Frequency (MHz)

Figure 8: Parametric bandlimited wavelet interface showing the analyzing wavelet used for the signal
“opacket”

of wavelets allows the representation designer a great amount of freedom and emphasizes the need for
optimization tools. We illustrated one such tool for the parametric sper ification of bandlimited wavelet
filter banks with a numerical example.
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