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Abstract

We consider in this presentation the risk-sensitive con-
trol problem with partial observation. Risk-sensitive
Zakai and Kushner equations are established and stud-
ied. They are explicitly solved in all situations where
the classical Zakai and Kushner equations can be

/ solved. In these cases the solution of the control prob-

"lem can be charactized nicely. Also, the small noise
case is considered. The limit problem is a differential
game with output control. The full justification of all
the results is still a long range plan.

1 Introduction

The solution of the risk-sensitive control problem with
partial observation is well-known in the case called
”linear exponential quadratic gaussian model”, [5]. See
(2] for a more complete treatment. Concerning the gen-
eral case the first issue is to derive a modified Zakai
equation, whose solution represents an infinite dimen-
sional observable state, with respect to which the cost
functional can be expressed. This equation is given in
[6] and in [3]. We present here, which is not surpris-
ing, a corresponding modified Kushner equation. The
full rigorous treatment of these equations, in terms of
existence and uniqueness, with growth conditions ap-
plicable to the LEQG model, is yet to be done. This
concerns weak and strong formulations. One can then
write formally the dynamic programming equation. In
some cases, exact solutions involving finite dimensional
statistics, can be obtained. They correspond to the
cases for which the result is known, with respect to
the classical Zakai and Kushner equations. See [3], [4]
and the developments of this article.

It is very interesting to introduce a large deviation ap-
proach of risk-sensitive control problems with partial
observation. This is linked with deterministic game
problems related to H; or robust control, with out-
put feedback. The partial observation case is much
more involved than the full information case, since for-
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mally it amounts to passing to the limit with respect
to a small parameter in an infinite dimensional PDE.
The formal treatment is made in [6). The case when
a finite dimensional statistics exists is of course easier,
since the problem reduces to passing to the limit in an
ordinary PDE.

2 Modified Zakai and Kushner
equations

2.1 Setting of the problem

Let us consider functions g(z,t),o(z,t) such that

g,o measurable from R" x (0,T) — R®, L(R™; R")
respectively .
lg(z,t) - g(z% ) + llo(z,t) — o (@O D] < K|z - 2‘1(1)
Let now Q, .4, P, F'* be a probability space with a
filtration, and w,,2: be two F* independent Wiener
processes, with values in R", R™ and with covariance
matrices Q(t), R(t) respectively. We first define the
solution z, of the Ito equation

dr = g(x¢,t) dt + o(z¢, t)dw,

To=§ @
where
£is F "’ m‘easgrable, igdependent of wy, 2 3)
the distribution of £ is Il
Consider next a function A such that
h(z,t) is measurable from R" x (0,T) — R™ @)
|h(z,t)| < k(1 + |z])
We then define
Ay = exp{/ot b’ (z,,s)Ri 'dzs (5)

¢
_% / 1 (24, 8)R; h(zs, s) ds}
0



Let next a function ¢ such that

£(z,t) is measurable from R™ x 0,7) - R

@, )| < k(1 + |z )
We define
D. = exp(0 | " tfzyr5)ds) ™
0
For ¢(z) Borel we define
o(t)(¢) = E[A:D,¢(z.)| Z"] (8)

where Z* is the o-algebra generated by z,,5 < t.

Remark 2.1 We take § > 0. For 6 = 0, the opera-
tor o(t) reduces to the operator of nonlinear filtering,
solution of the Zakai equation.

2.2 The modified Zakai equation

We give here the formal equation that o(t) is solution
of, called the modified Zakai equation. Introduce the
2nd order differential operator

32

]
A(t) = —gi(z, t)gf - a; j(z, t)m

where as usual
a(z,t) = —;-a(z, Q) (z, 1).
Let ¢(z,t) € CH'(R™ x [0,T)), then writing

o(t)(z) = ¢(z,t)

and similar notation for other functions of z,t, we can
state the

Proposition 2.1 The operator o(t) satisfies

do(6)(6(0)) = o(e)( 32 - A1)

+06()(t)) + o (t)($(t)h’ ()R ‘dz,

o(0) =Tlo (9)

Writing, formally

o(t)(8) = / o(z,t)p(z) dz (10)

then g appears as the solution of the stochastic PDE

dg + (A’ (t)q ~ 6q¢) dt = gh R} 1dz,

9(2,0) = po(z) (1)

where

Mo(4) = / Po(2)(z) de.
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2.3 The modified Kushner equation
We introduce the normalized operator

G(¢) = 2@

12
@) 12
then we can state the

Proposition 2.2 The operator ¢(t) satisfies

d(e)60)) = N - Ao(t)) as
+HOCENBOU) - NGO di
+HEOO) ~ (OGO b)) R
(dze ~ ) (A(8) do
)= T, (13)

3 Exact solutions

We consider here several models where explicit solu-
tions are available. These cases are exactly those where
the classical Zakai and Kushner equations have solu-
tions.

3.1 LEQG case

We assume here

9(z.t) =Fx+ f, o(z,t)=1 (14)
h(z,t) = Hiz + h, (15)
Uz,t) = %x’Mtz +m{z + N, (16)

3@ = 20)' B (@ - 20))
(1)

(2) = ——— exp(~
SATENE
then we have the

Proposition 3.1 The operator o(t) has a density
q(z,t) given by the formulas

a@.1) F (=5 = )T Mz - )

1
= Uiy (2H)%Int'
(18)

where I, is the solution of

I, = R, + I.F/ +TI,(6M, — H] R{'H)I, + Q,
Ho = Po

(19)
T¢ s the solution of
dry = (Fyry + fe+ 011 (M,re + me)) dt
+ 0. H{ R Y(dz, ~ (H,r, + he) dt) (20)

To =Zg
and vy, p; are defined by the formulas

t t
v = exp{/ (H,rs + h,)/R; le, - %/ (21)
[} [}

(Hsrs + hs) Ry Y(H,ry + hy) ds}
t
1
Pt = exp{a/ [zr) Mrg+mir,+ N, +-;- tr II,M,] ds}
0
(22)



3.2 Arbitrary initial density

Here we assume (14), (15),(16) but not (17), i.e. po(zx)
is an arbitrary density. We need some notation. Define
the functions

[ €po(€) exp(—4 (¢’ S€ - 2¢"n)] d€

b(n, S
1.5) = @ emilE5e — 2t )
[ €€/ po(€) exp[—3(&/S¢ — 26/ n)] d€
B(n,S) = 2
,5) = = o expl-be/Se —2e/mdE )
and
(ﬂ,s)igk f&ﬁ;ékpo p[ f/sé 25/77)]‘15

I po(€) exp[—3( E’Sﬁ 26/n)] d§
(

Introduce next II;, ®;, S; defined by
= R, + L F/ + 0,(6M, - H{ R{ *H)Il, + Q.

25)

Mo =0
. (26)
3, = (F, + I1,(6M, — H/ R} 'H,))®, (27)
&g =1
Sy = ®/(H{ R} ‘H, — OM;)%®,
So =0 ) (28)

To simplify a little the notation we write

be(n) = b(n, St)

and similarly B,(n),Ci(n). We then define the pair
¢, by the equations

dr; = [F:Tt + fi + 'q tr & Ct(ﬂt)@ M@,
—0¢>¢Bt(m)®t Mg@tbt(’fh)

g
_‘ibt(nt) tr & M, D, B;(n:)

100 by (1)be(me) B My ®.by(ne) + OTLe(Myre + me)
+ 6%, (Be(me) ~ be(me)be ()’ )4 (Mere + ™)) di

+ [, + ®u(Be(ne) — be(me)be(m) ) &7 HY Ri Hdz

—(Hyry + he)dt)

To = To (29)
dn, = 94’{ (Mery +me — M, ®:bs(me)) dt
+® H! R} }Y(dz, — (Here + he)dt)
=0 (30)

We can then state the following

Proposition 3.2 The operator o(t) has a density
q(z,t) given by the formulas

1
(200) % |1, |

[ (@ expi-3t€/ 56 - 26/n)

q(xvt) = VPt

8,(€ — be(m)))’
- &, (6 - bt(')t))))df

1
exp(—z(z =1 -

I Yz —r¢ (31)
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and vy, py are defined by the formulas

w= exp{/

- [ e - e, + B

rs — Bybs(ns)) + hy) R dz

(Hs(rs — D,bs(ms)) + hs) ds} (32)
t
1
pt= exP{e/o [5(7'3 = ®4b5(ns)) Ms(rs
—®.bs(ns)) + m;(rs — ®bs(ms)) +
N+ % tr I, M,) ds} (33)
3.3 Nonlinear drift
We assume now
g(z,t) = Fex + fi + go(z,t), olz,t) =1 (34)

with an additional assumption on go to be made ex-
plicit later. We also assume (15) and

£(z,t) %x/th +miz + N; + ¢(z,t) (35)

The initial probability po is general. Consider the PDE

7]
& QD+ 3DCQDC + (Fia + £/ DG =
0(-2- /Aﬂ: + /\{.’E + Xt + ¢(I, t))
(36)
with an initial value {(z,0) such that
1
po(z) = exp(¢(z,0) — Ex/rpol‘ +zoz)  (37)
and we assume that
go(z,t) = Qe D((z,t) (38)
Construct then P; to be the solution of
P, =8(A — M)+ H/R}'H, - F/P,
-PF; - PQ:P
Py=PFo (39)
and r, to be the solution of
dry = =[(F{ + PeQ:)re + 8(Ae — M)
~P,f, + H{R] Lh)dt (40)
+ H/Rj 'dz
To = To
Define finally
¢ 1
B = —/ [f.,/ra - ErgQara +0(xs — Ns)-
+30/R 3k, + L tr QP + tr Filds (41)

t
+ / K, Ri'dz,
0

We then state the following



Proposition 3.3 We assume (15),(94),(95),(38),
then the operator o(t) has o density q(z,t) given by
the formula

o@,t) = exp(((z,0) ~ 5/ Pz + 3're +8) (42

4 The control problem
4.1 Setting of the problem

We introduce a control v;, which will be a process
adapted to Z* = g(z,,s < t), with values in V. a Borel
subset of R*. Skipping a few steps of justifications, we
replace in the above

g(xv t) = b(x7 t) +g(l‘, ‘Ut,t)
{z,t) = f(z,t) + &z, v, t)

and we define the cost function
J(v) = EA¢Dyexp 6 fo(zr) (44)
where A;, D; have been defined in (5),(7) . Clearly
J(v) = Eo(T)(expbfo)
and if o(t) has a density g(z,t)

(43)

Jw)=F / g(z,T) exp 8 fo(z) dz.

4.2 Expression of the cost in the case
of finite dimensional statistics

We limit ourselves to the first case, section 3.1. We
take

b=0; g(z,v,t) = Fix + f;(v)
f=0; z,v,t)= -;—J:’Mgz + my(v) z + Ny (v)

(45)
then introducing

O, = BRIl + ILF/ + IL,(6M, - H] R} *H)II, + Q;
Ilh=P,
(46)
r: is the solution of

dry = (Firy + fe(ve) + O (Myre + me(ve))) dt
+ I, H{ R Y(dz; — (Here + he)dt) (47)
To =X

and 4, p; are defined by the formulas

t
v, = exp{ / (Hars + ha)/ R; ldz,
0

t
—l/ (H,T, + ha)/R.; !
2/o
(Hsry + hy) ds} (48)

¢
1
Py = exp{e/ [ErjM,r, + mg(vs) Ty + N, (v,)
0

+% tr I, M,] ds} (49)

then the function ¢(z,t) is given by

= 1 _l — VI Y —
q(x,t)—wp:(m)%lntl% exp(—z(z~7e)'IL *(z—74))
(50)
Setting

exp07f(e) = [ exalofo(e)- 3z -6 T Mo -l de
(51)
we can express the cost function as

Jw)=E (wpr @ exp 9f—8(rr)) (52)

1
3|03
Writing
db(t) = R} ¥(dz, — (Hyre + he)dt)  (53)
and performing a change of probability

P _
ap T

(54)

then b(t) becomes a Wiener process, which is observ-
able. The problem is reduced to a risk-sensitive opti-
mal control problem with full observation. Therefore
we can assert that '

1 T1
inf J(v) = ———ex 9/ ~ tr I, M, dt
exp X (zo,0) (55)
where X(z,t) is the solution of
ox
s 1%f[DX.(ft(v) + 0TIemy(v)) + z.me(v) + Ni(v))
+ DX(F} + 0HtMt):z: + tr szngHgRti lHt/Hg
-+ %I/Mtl' + gDX/ILHgR" IH{HtDX =0
X(z,T) = f§(2)

(56)
5 Singular perturbations
We briefly sketch the problem. We assume here
Qi=Ri=Py=cl
Py (57)

€

The solution II{ of (46) can be written as
15 = €ell,
where II; is the solution of

O, = Rl + I F{ + O(uM, — H{H)TI, + [Ty = I
(58)
Moreover r§ the solution of (47) appears as the solution
of

drf = (Fyrf + fu(ve) + uIle(Meré +me(vs)) dt
+ L H dbe(2) (59)

’I‘a:zo
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where b%(t) is a Wiener process with covariance eI. The
cost function becomes

1

inf J#¢(v) = ————r
©) (2Te) # [TI7|

T
1
exp{u/o 3 tr Il M, dt} exp %X‘(xo,O) (60)

where X*(z,t) is the solution of

?%i + ix.}f[DX€~(ft(v) + pllyme(v)) + £.me(v) + Ne(v)]

+ DXS.(F, + pll,M;)z + € tr D*X°II, H,H] 11,
1
+ 5%/ Myz + £ DX*/ L HH{TLDX* = 0
X(z,T) = f§(x)
(61)
We can check that
f54(z) - f(z)

where
— 1 .
fo(z) = Sl;p[fo(z) - 5;(6 ~-z) Ty (€ ~z)]  (62)
then we have .
X<(z,t) = X(z,t)
where X(z,t) is the solution of

%«\:’ + ir&f[DX.(f,(v) + pllyme(v)) + z.mye (v)

+Ni(v)] + DX.(F; + pIleMy)z+
%x/M,I + _%DX/H,H,H{ILDX =0
X(z,T) = f5'(z)

(63)
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