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ABSTRACT

We study the problem of choosing an image based optimal wavelet basis with compact support
for image data compression and provide a general algorithm for computing the optimal wavelet basis.
We parameterize the mother wavelet and the scaling function of wavelet systems through a set of real
coefficients of the relevant quadrature mirror filter (QMF) banks. We further introduce the concept
of decomposition entropy as an information measure to describe the distance between a given digital
image and its projection into the subspace spanned by the wavelet basis. The optimal basis for the given
image is obtained through minimizing this information measure. The resulting subspace is used for image
analysis and synthesis. A gradient based optimization algorithm is developed for computing the image
based optimal wavelet basis. Experiments show improved compression ratios due to the application
of the optimal wavelet basis and demonstrate the potential applications of our methodology in image
compression. This method is also useful for constructing efficient wavelet based image coding systems.

Keywords: Image processing, image compression. signal processing, wavelets. pattern recognition. data
compression, video. medical imaging. multimedia.

1 INTRODUCTION

The last few years have witnessed extensive research interest and activities in wavelet theory and its
applications in signal processing. image processing and many other fields 1 2 . The most attractive
features of wavelet theory are the multiresolution property and time and frequency localization ability.
The wavelet transform decomposes a signal into its components at different resolutions. Its application
actually simplifies the description of signals and provides analysis at different levels of detail. There are
many applications of these properties in the fields of signal processing. speech processing and especially
in image processing 3.4.0.6

It is well known that a wavelet system is usually determined by one mother wavelet function whose
dilations and shifts span the signal space. Unlike sin and cos functions, individual wavelet functions are
quite localized in frequency and time and they are not unique. Obviously. different wavelets 1 (t) shall
yield different wavelet bases. An appropriate selection of the wavelet for signal representation can result
in maximal benefits of this new technique. For example, compact wavelets are better for lower accuracy
approximation or for approximation of discontinuous functions such as image compression while smooth
wavelets are better for solution of integral functions to achieve accurate high numerical accuracy. It is
reasonable to think that if a wavelet contains enough information about an image to be represented, the
wavelet system is going to be simplified in terms of the levels of required resolution. which reduces the
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computational complexity and saves CPU time. We are interested in finding an image based wavelet
basis and applying the resulting wavelet system to improve the compression ratio of the image.

The key to choosing-an image based optimal wavelet basis lies in the appropriate parameterization
and adequate performance measure in addition to the accurate interpretation of physical phenomena.
A method was proposed for choosing a wavelet for signal representation based on minimizing an upper
bound of the L? norm of error "+ 8 in approximating the signal up to the desired scale. Coifman et al.
derived an entropy based algorithm for selecting the best basis from a library of wavelet packets 9. We
also proposed an information measure based approach for constructing an optimal discrete wavelet basis
with compact support in our earlier work on adaptive wavelet neural networks 10 and wavelet basis
selection 11 . We shall illustrate the application of our methodology to image compression.

This paper is intended to demonstrate that choosing an image based optimal or suboptimal wavelet
basis can improve the compression ratio of images rather than to design a complete coding system. In
the rest of the paper, we first provide the definition of optimal wavelet basis for a given digital image
and parameterize the basis through the corresponding quadrature mirror filter (QMF) banks. We then
introduce an algorithm for constructing an optimal wavelet basis. Next, we compare the effects of
different mother wavelets on image representation and provide numerical results. Finally, we summarize
our conclusions.

2 OPTIMAL WAVELET BASIS

We first introduce a distance measure for optimization purpose. Inspired by the work in 9 | we define
an additive information measure of entropy type and the optimal basis as the following. We use ¥(t) to
denote the wavelet basis spanned by dilating and shifting the mother wavelet denoted by (#).

Definition 2.1 A4 non negative map M from a sequence {f;} to R is called an additive information

measure if M(0) =0 and M(Y, fi) = >, M(fi).

Definition 2.2 Let z € RV be a fized vector and B denote the collection of all orthonormal bases of
dimension N, a basis B € B is said to be optimal if M(Bz) is minimal for all bases in B with respect to
the vector z.

In the definition above, vector = contains digital image data to be compressed.
The wavelet system is parameterized through using QMF banks. From the multiresolution property
of wavelets due to Mallat 12 | the scaling function ¢(¢) and the mother wavelet ¥ (t) are expressed as 2

o(t) =vV2 5 crd(2t — k) (1)

k=—00

and -
P(t) =v2 Y dpp(2t — k) (2)

k=—00

where the coefficient {c;} and {di} determine a low pass filter ho(k) = cx and high pass filter h; (k) = di.
The Fourier transforms of filter hy and h; are denoted by Hy and H,, respectively. We need to consider
the case when Hy(z) is a causal FIR filter, i.e., there are only finitely many nonzero ¢ for the filter.
Without loss of generality, we assume that ¢; # 0 when & € [0, K] where K is a positive odd integer. The
condition for wavelet basis U(t) generated from QMF banks to be compactly supported and orthonormal
is provided by the following theorem due to Vaidyanathan 13
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Theorem 2.1 13 et Ho(z) and Hi(z) be causal FIR filters, then the scaling function ¢(t) and the
wavelet function 1(t) generated by the QMF bank are causal with finite duration Kby. Further, if Hy(z)
and Hi(z) satisfy the paraunitary condition, |Ho(1)| = v/2 and Ho(e?™) # 0 while |w| < 7/2, the wavelet
functions 1, ;(t) are orthonormal.

This theorem imposes constraints on parameter {ck} to generate a compactly supported orthonor-
mal wavelet basis. In particular, the cross-filter orthonormality implied by the paraunitary property, is
satisfied by the choice of

Hi(2) = —z % Hy(-2"1), K odd (3)

or in the time domain,

hi(k) = (=1)Fho(K — k). (4)

As we can see from the above, both the scaling function and the wavelet function depend on the selection
of {cg} for k € [0, K]. As a consequence, the dilations and shifts of the mother wavelet depend on the
selection of this set of parameters subject to the paraunitary condition imposed on the filters of the QMF
bank.

Definition 2.3 Let H be a Hilbert space which is an orthogonal direct sum

H=9 ZH“ (5)
a map & 1is called decomposition entropy if
ol flill®
E(w, V) = - 5 log —— (6)
2 ol Jlo)l?
forve H, |jv]| #0, such that
v:@Zw,mEHz, (7)

and we set plogp =0, when p = 0.

The implication of using entropy as a performance measure takes advantage of the nonuniform energy
distribution of the signal or image in consideration over its energy spectrum. For a source of a finite
number of independent signals, such as a digital image considered as a source of independent pixels, its
entropy is maximum for uniform distribution 14 . If the entropy value is less than the maximum, then,
this implies that a higher concentration of the signal energy over certain bands exists.

We introduce a cost functional to facilitate the optimization process.

M, v) == i log Jlvs |, (8)
i

which relates to the decomposition entropy through
E(v. ) = |lvo]l T A(Y, v) + log [|v]|* (2M + 1). (9)

The task for constructing an image based optimal wavelet basis becomes one of finding the appropriate
filter coefficient {c} such that the cost functional A is minimized for the given image. The following
theorem provides the analytical gradient of the cost functional (8).
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Theorem 2.2 11 Let A(-,-) be the additive information measure and (0, K] be the compact support for
{ck} and W be the corresponding wavelet basis from dilations and shifts of the wavelet (t). Let f(t) be
a fized signal in L%(R). Then the gradient of the information measure with respect to the parameter set
{ck} for the given signal is described by

B_M\g»f_@n = V2T Y Y log 2|51
Cj, j 1

S [FDFE(f(), 027 - 2 - ) (10)

1

(=) er—n (£(£), 6272 — 41 - 20— )]

This information gradient can be used in computing the filter coefficients for the optimal wavelet basis.

3 IMAGE COMPRESSION

In extending 1-D wavelet to 2-D image applications, we follow Mallat 12 in his hierarchical wavelet
decomposition. The low pass and high pass filters are applied to both horizontal and vertical directions,
respectively. We then threshold the resulting wavelet coefficient; we retain those coefficients whose
absolute values exceed a predetermined, adjustable threshold. The retained wavelet coefficients are used
to reconstruct the image. In this process, we assume that these coefficients can be transmitted and used
precisely, since our purpose is to show the improvement from using the image based wavelet basis over
using an basis before optimization. We define the compression ratio to be that of the number of retained
coefficients and the number of wavelet coefficients.

The intuition of our using optimal wavelet coefficients comes from linear predictive coding (LPC) of
speech signals. Instead of sending the coefficients of the AR model of speech signals, we optimize and send
the filter parameters and wavelet coefficients for image analysis and synthesis. The gain in compression
outweighs the overhead due to implementing the optimal wavelet basis.

We are interested in starting the optimization scheme based on a low order wavelet system. The
smaller the support of the wavelet, the better it can capture the feature corresponding to edges. In general,
the wavelet decomposition requires less hardware implementation than does the Fourier method. With
a lower order system, the cost of implementation shall be further reduced. We first tested compressing
the 512 by 512 Lena image by using Daubechies 20, 12 and 4 wavelets. At the same compression ratio,
0.032, the image represented by the Daub4 basis shows comparable quality when compared against those
represented by the two higher order wavelet bases. As a consequence, we select fourth order filters in
optimization process.

We have identified the problem of finding an optimal wavelet basis ¥ with that of finding the cor-
responding parameter set {cx} such that the additive information measure A is minimized; once the set
{ck} is determined, both the scaling function ¢ and mother wavelet function 1 can be derived afterwards.
The information gradient is available from the theorem above and different optimization schemes can
be applieﬁ to solve this problem. Next, comes a basis selection algorithm based on the steepest descent
method ** .

Algorithm 3.1 Computation of the optimal wavelet basis

Step 1: Seti:=1,
)\0 = 0,
Initialize vector Cy;
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Figure 1: Original 512 by 512 mammographic image.

Input f(t).
Step 2: Cy = Cioy +pio1 38—
Step 3: Compute ¢ and 1.
Step 4: Compute \.
Step J: ]f |/\z — >\i—l| > €,
1:=1+1, go to Step 3.
Step 6: Output the optimal basis ¥ and stop.

In the algorithm above, f(t) represents the image data or signals and C denotes the parameter set
coc1 - Cix—; - One needs an initial parameter set as a starting point.
gp

4 RESULTS

The optimization is applied to a digital mammographic image shown in Figure 1. This image is obtained
through the Department of Radiology, Veterans Administration Medical Center in Baltimore. We choose
Daubechies’ fourth order wavelet coefficients as an initial parameter set to start the optimization proce-
dure with the algorithm above. We denote Daubechies’ fourth order wavelet and the optimized wavelet
bases by Daub4 and Opt4, respectively. The coefficients of the two corresponding low pass filters are given
in Table 1. The amplitude of the wavelet coeflicients obtained with wavelet basis Opt4 is illustrated in
Figure 2. The coefficients with larger amplitude concentrate on the low resolution region. The histogram
in Figure 2 shows the distribution of the wavelet coefficients of the image with basis Opt4.

It is obvious that significant compression can be obtained by truncating the large number of small
coefficients or by coding them with a few bits. One of the problems is to decide which nonzero wavelet
coefficient corresponds to noise and which contains useful visual information to maximize the benefits
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Figure 2: The amplitude of wavelet coefficients of the mammographic image using basis Opt4, listed from
low resolution to high resolution components
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Figure 3: Histogram of the amplitude of wavelet coefficients of the mammographic image.
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Daub4 Opt4

c0 | 4.8296291e-01 | 5.2844307e-01
c2 | 8.3651630e-01 | 8.0297232e-01
c3 | 2.2414387e-01 | 1.8632579e-01
c4 | -1.2940952e-01 | -1.0352762e-01

Table 1: Daubechies 4 and Opt4 wavelet filter coefficients.

A PSNR | Compression Ratio
Daub4 | 0.6995 | 46.3363 5.38063E-02
Opt4 | 0.6739 | 30.7888 4.87251E-02

Table 2: Entropy values, PSNR and compression ratios from employing Daub4 and Opt4 wavelet bases.

of implementing the optimal wavelet basis. As we mentioned previously, our purpose is to illustrate
the effect of different wavelet bases on image compression, we truncate those wavelet coefficients whose
magnitude are below an adjustable threshold and use the remaining coefficients to reconstruct the image.
The threshold is selected by experiments. Different threshold values have been tested to choose one
necessary to represent the image without perceptible loss in image quality. The quantitative results in
terms of entropy values, peak signal noise ratios and compression ratios are listed in Table 2.

As we can see that a lower entropy value corresponds to a lower compression ratio with a certain
loss in PSNR. The reconstructed images using wavelet Daub and Opt4 are illustrated in Figure 4 and
Figure 5, respectively. The reconstructed image using basis Opt4 preserves the texture and edges in a
level comparable to the one from using basis Daub4, but at a lower compression ratio. The improvement
in the ratio is close to ten percent in this case. Although the PSNR is in favor of the Daub4 basis, the
actual visual difference is not perceptible from the two images.

The reconstructed images above illustrate that finding an optimal wavelet basis can preserve the
feature and improve compression. The resulting image based wavelet basis can be used to facilitate
image data base search since it contains information regarding the image.

Like any gradient based optimization procedure, this method has its limitations. It often stops at a
local minimum and results in a suboptimal solution. However, the suboptimal solution may still provide
an acceptable parameter set. The wavelet coefficient truncation is used to reconstruct the images to
compare the effect of using wavelet Daub4 and Opt4. The actual wavelet coding system design would
include, in addition to finding the optimal basis, using different techniques such as the noise shaping bit
allocation procedure 6 or hierarchical coding with the estimated local noise sensitivity of the human
vision system(HVS) 19 among others.

5 CONCLUSIONS

This paper has provided a direct approach to construct an image based optimal orthonormal wavelet basis
with compact support for image compression. The cost functional, an additive information measure, is
introduced based on the decomposition entropy of the given image with respect to an initial wavelet
basis. Using the resulting optimal wavelet basis improves the image compression ratio. The gain in
compression outweighs the overhead due to implementing the optimal basis. The parameterization of
the cost functionals described in this paper is helpful; other forms of measures or cost functions may be
introduced depending on the contexts of actual problems.
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Figure 4: Reconstructed image using Daub4 wavelet, compression ratio 5.38063E-02.

Figure 5: Reconstructed image using Opt4 wavelet, compression ratio 4.87251E-02.
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This methodology of the optimal basis selection in a general setting is useful not only for image
compression, signal approximation and reconstruction, but also for feature analysis, motion estimation
in video and system identification. In the context of pattern recognition, it is also a way to construct the
feature space and for partitioning the signal space according to its representatives.

Future work includes using the optimal wavelet basis for image feature extraction and analysis, and
for designing the corresponding bit allocation scheme to maximize the benefits of implementing the signal
based wavelet basis.
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