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ABSTRACT

It has been recently shown that morphological openings and closings can be viewed as consistent MAP es-
timators of morphologically smooth signals in i.i.d. noise. We revisit this viewpoint under a different set of
assumptions, which allows the explicit incorporation of geometric and morphological constraints into the noise
model, i.e., the noise may now exhibit geometric structure; surprisingly, it turns out that this affects neither the
optimality nor the consistency of these filters.
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1 INTRODUCTION

In two recent papers?*?® Sidiropoulos et al. have obtained statistical proofs of MAP optimality and strong
consistency of morphological openings and closings. These results were made possible by casting the filtering

problem within a general framework of Uniformly Bounded Discrete Random Set (or, Discrete Random Set
(DRS), for short) theory.23:2

A DRS X is simply defined as a measurable mapping from some probability space to a measurable space
(E(B),Z(Z(B))), where Z(B) is a complete lattice with a finite least upper bound (usually, the power set of some
finite B C 'Zz), and T(Z(B)) is a o-field over T(B) (usually, the power set of the power set of B). A DRS X
induces an associated probability structure Px () on Z(Z(B)).

The optimality results of?#?5 critically depend on the assumption that B is finite; they further assume that

the noise process is i.i.d., both within a given observation (pixel-wise), and across a sequence of observations
(sequence-wide). As it turns out, the pixel-wise i.i.d. assumption, as well as the sequence-wide assumption of
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identical distribution can both be removed, as long as the sequence-wide independence assumption is maintained,
and a uniformity condition (to be specified) is imposed. The net result is that we end up with a new set of
optimality conditions, which neither implies, nor is implied by the previous set. The most interesting feature of
this new set of conditions is that it allows the explicit incorporation of geometric and morphological constraints
into the noise model, thus enabling one to model colored noise, and establishing optimality in a more flexible and
interesting environment.

1.1 Preliminaries

The theory of Mathematical Morphology has been developed mainly by Matheron,'*!3 Serra,?-® and their
collaborators during the 70’s and early 80’s. Morphological filtering is one of the most popular and successful
branches of this theory (cf.2° for a recent survey of the status of morphological filtering). One good reason
for the widespread use of morphological filters is their excellent shape-preservation (syntactic) properties. Im-
portant characterizations (e.g., root signal structure, relations to other filter classes) are well developed and
understood.?6:10:11.14  Angther aspect of filter behavior is revealed through statistical analysis. We are mostly
interested in optimizing filter behavior with respect to some statistical measure of goodness.?*25:2321 Dougherty
et al.,1'8:5:2:4.3 Schonfeld et al.,'®!%17 and Goutsias” have worked on several related problems, using different
measures of optimality and/or families of filters. We concentrate on MAP optimality and strong consistency.

We do not reproduce the definitions of basic morphological operators @, 8,0, (Minkowski addition and
subtraction, and morphological opening and closing, respectively) here; we follow the conventions of.!® In mor-
phological image analysis, structural and geometric image constraints are often expressed in terms of domains
of invariance under certain morphological lattice operators. A digital image I € £(B) is said to be smooth with
respect to a given operator (filter) f iff it is invariant under that operator, i.e., f(I) = I. For example, an image
I is smooth with respect to morphological opening by a structural element W iff oW = I. It has been shown!®
that this latter condition is satisfied iff I is a union of replicas of the structural element W, i.e., iff I is spanned
by translates of W. We shall use Ow (B) to denote the domain of invariance of opening by W, i.e., the collection
of all images (subsets of B) which are spanned by translates of W. Note that § € Ow(B), ¥ W. Similarly, we
shall use Cw(B) to denote the domain of invariance of closing by W. We can also fit more complicated image
structure by allowing composite constraints, e.g., consider the class of all images which are invariant under a
union of openings with respect to a family of structural elements.

2 RESULTS

We have the following results. Proofs can be found in.?

THEOREM 2.1. (MAP Optimality) Assume we observe YM) = [Yi,---,Yu], where ¥; = X UN;
{N,-}?il is an independent but not necessarily identically distributed sequence of noise DRS’s, which s
independent of X, and each N; is uniformly distributed over some arbitrary collection, ¥;(B) C %(B), of
subsets of the observation lattice B. Let us further assume that X is uniformly distributed over a collection,
&(B) C ©(B), of all subsets K of B which are spanned by unions of translates of a famaly of structural elements,
Wi, l=1,---,L, i.e., those K C B which can be written as K = U{;IKZ, K, € Ow,(B), l =1,---,L. Then
Xpap(YM)) = UzL=1 ((NM,Y;) o W) is a MAP estimator of X on the basis of Y (M),

THEOREM 2.2. (Strong Consistency) In addition, if 0 € ¥;(B), V i > 1, then, under the foregoing assump-
tions, Xpap(YM)) — X, a.s. as M — 0, i.e., this MAP estimator is strongly consistent.

~ What does a uniform distribution model? We may think of it as modeling an “unbiased” or “fair” adversary.
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If the noise is “biased”, then, depending on the particular type of probabilistic noise structure, and assuming we

can uncover this structure, we might well be able to construct better estimators, or, we might not even be able
to guarantee consistency.

We now present two more theorems. They can both be established by appealing to duality (note that closing
is the dual of opening with respect to lattice complementation). Observe that here we deal with intersection
noise, which can be interpreted as a formal mechanism to consider random sampling of DRS’s.

THEOREM 2.3. (MAP Optimality for the dual problem) Assume we observe Y(M) — M, Yu
Y, = Xnn;, {Ni}iﬂil is an independent but not necessarily identically distributed sequence of noise DRS’s,
which is independent of X, and each N; is uniformly distributed over some arbitrary collection ¥;(B) € Z(B),
of subsets of the observation lattice B. Let us further assume that X is uniformly distributed over a collection,
®(B) C Z(B), of all subsets K of B which can be written as K = N K, K€ Cwi(B), 1 =1,---,L, where
Cw, (B) denotes the set of all W;-closed subsets of B. Then XMAP(Y(M)) =N, ((UM,Y:) e W) is 2 MAP
estimator of X on the basis of Y(M),

THEOREM 2.4. (Strong Consistency for the dual problem) In addition, if B € Yi(B), Vi > 1, then, under
the foregoing assumptions Xmap(YM)) — X, a.s.as M - 0, i.e., this MAP estimator is strongly consistent.

3 DISCUSSION

A little reflection on the above results is in order. The discussion will focus on Theorems 2.1,2.2, but the
remarks are equally applicable to the case of Theorems 2.3,2.4.

The first remark is that both theorems crucially depend on B being finite (obviously, the size of B can be made
as large as one wishes, as long as it is finite). We view this as further evidence of the utility of this restriction.
The second observation is that the results are fairly general: apart from the mild condition § € ¥,(B), Vi > 1,

which is needed for consistency, we have imposed absolutely no other restrictions on the sequence of range spaces
{¥;(B)} of the noise DRS’s {N;};

In general, we cannot derive analytical formulas for some standard measures of estimator performance, such
as bias and variance, without specifying the sequence of range spaces {¥;(B)} of the noise DRS’s {N;}; this is
obvious, since these measures strongly depend on the structure of this sequence. Based on our experience in,2%
our feeling is that these derivations are going to be nasty, except in some limited cases. However, it should be
noted that the MAP principle leads to optimal estimators in a particular Bayesian sense: it minimizes the total
probability of error, P,.15 In other words, even though the MAP estimator may not be unbiased and/or minimize
the error variance (as a MMSE estimator typically does) it is optimal in the sense that for each and every M, it
minimizes the total probability of error. This is just an alternative concept of optimality.

Let us now consider two special cases.

* ¥;(B) = Z(B), Vj > 1: The noise DRS’s are identically distributed, each noise DRS is uniformly
distributed over the power set of B. This is in fact the only nontrivial noise distribution compatible both with
our earlier results in,?5 and with our results herein. This corresponds to the case of an i.i.d. sequence of i.i.d.
i DRS’s, each being a Bernoulli lattice process of constant intensity \ = %. In addition to MAP optimality and

strong consistency, compatibility with?> buys unigueness of the functional form of the MAP estimator, and a
handle on the bias.

R AT

* ¥;(B) = ¥(B), V> 1, where ¥(B) C Z(B), is a collection of all subsets X of B which are spanned by
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unions of translates of a family of structural elements, V;, Il =1, -, A i.e., those K C B which can be written as
K =UM K, K, € Oy(B), I =1,---A The noise is now a system of overlapping particles of several different
types, i.e., constrained to be smooth with respect to a union of openings by an appropriately chosen family of
structural elements. Noise particles overlap with signal particles. Regardless of the degree of overlap and the
particular types of signal and noise particles, we can claim optimality and strong consistency. However, small
sample behavior will be governed by the interplay between the two families of structural elements which span the
signal and noise DRS’s ({W,},{Vi}, respectively). For example, if |V}| < [Wn|, ¥m = 1,---, L then application
of the M = 1 MAP filter will eliminate all isolated instances of V| noise patterns. This may well be the case in
applications, where the signal is usually associated with the more prominent image structures.

4 CONCLUSIONS

We have revisited the problem of estimating realizations of random sets immersed in random clutter, or
suffering from random dropouts, under a new, and, in a sense, more appealing set of assumptions, which allows
the explicit incorporation of geometric and morphological constraints into the noise model, i.e., the noise may now
exhibit geometric structure; Surprisingly, it turns out that this affects neither the optimality nor the consistency
of these filters.
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