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Abstract

This paper discusses various aspects of recent de-
velopments concerning the robust H, problem for
continuous-time nonlinear systems. In the state feed-
back case, the problem can be solved in the frame-
work of dissipative systems, and the associated stor-
age functions solve the PDI in the viscosity sense.
The main problem is then one of controller synthesis.
In the output feedback case, the information state
concept provides the appropriate framework. The so-
lution is expressed in terms of a PDE for the informa-
tion state (filter), and an infinite dimensional PDE or
dissipation-type PDI for the value function (control).
The attendant mathematical issues are discussed.

1. Introduction

The robust Hy, control problem for nonlinear sys-
tems has attracted considerable interest in the last
few years. This interest follows the complete solu-
tion to the linear H,, problem obtained over the last
decade or so, involving a filter-type Riccati equation,
a control-type Riccati equation, and a coupling condi-
tion. In addition, the Ho, problem has sparked new
interest in risk-sensitive stochastic control, differen-
tial games, and dissipative systems.

Most approaches to the nonlinear Ho, problem have
sought to generalize in some way the linear solu-
tion, e.g., by replacing the Riccati equations with
Hamilton-Jacobi-Bellman (HJB) or Hamilton-Jacobi-
Isaacs (HJI) equations, or inequalities [1], 3], [9],
[16], [17]. This approach was successful in the state
feedback case, although the problem of controller syn-
thesis remains an issue. In the output feedback case,
this approach did not work as expected. Indeed, a
new framework was required [11], [12], [13]. The
key to the output feedback case was the use of an ap-
propriate information state, a quantity providing the
correct notion of “state”. In [13], both necessary and
sufficient conditions were given in terms of (discrete-
time analogs of) a PDE for the information state (fil-
ter), and an infinite dimensional partial differential
inequality (PDI) for a value function (control). For a
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special class of systems, the information state turns
out to be finite-dimensional, see [15].

In this paper, we discuss in heuristic terms the solu-
tion of the nonlinear H,, problem in continuous-time
(complete details for ihe discrete-time case are pro-
vided in [13], and the continuous-time case is anal-
ysed in detail in [14]). Our objective in this paper
is to present the basic equations and to explain some
of the attendant mathematical issues which arise, in
both the state and output feedback cases. We begin
in §2 by stating, in quite general terms, the prob-
lem to be solved. Then in §3 the solution to state
feedback case is reviewed, and a number of technical
issues relating to the general lack of smoothness of
value functions are discussed. The output feedback
case is discussed in §4, where a new infinite dimen-
sional PDI is introduced.

2. Problem Formulation

We consider continuous-time nonlinear systems U
described by the state space equations of the general

form
2(t) = b(z(t),u(t), w(t)),
2t) = U=(@u(w®), (21
y(t) = h(z(t),u(t), w(t)).

Here, z(t) € R™ denotes the state of the system,
and is not in general directly measurable; instead an
ouput quantity y(t) € R? is observed. The addi-
tional output quantity 2(t) € RY is a performance
measure, depending on the particular problem at
hand. The control input is u(t) € U C R™, and
w(t} € R" is a disturbance input. For instance, w
could be due to modelling errors, sensor noise, etc,
The system behavior is determined by the functions
b:R"xR"‘xR'—»R",I:R"xR"‘xR"—;Rq,
h:R"XR™xR" — RP, assumed sufficiently smooth.
It is assumed that the origin is an equilibrium for
the system (2.1): 5(0,0,0) = 0, 1(0,0,0) = 0, and
k(0,0,0) = 0.

The output feedback robust H., control problem is:
given v > 0, find a controller u = u(y(+)), responsive
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only to the observed output y, such that the result-
ing closed loop system T achieves the following two
goals;

(i) T*is asymptotically stable when no disturbances
are present, and

(i) * is finite gain, i.e., for each initial condition
zg € R" the input-output map EBO relating w
to z is finite gain, which means that there exists
a finite quantity 8¥(zo) such that

SR dt < o [ ()P dt + B (zo)

for all w € Ly([0,T],R") and all T > 0.
(2.2)
Since zg = 0 is an equilibrium, we also require
that g%(0) = 0.

3. The State Feedback Case

The state feedback problem is much simpler than the
output feedback problem posed in the preceding sec-
tion. Nevertheless, in continuous-time there are still
some important technical issues not fully addressed
in the literature.

A state feedback controller can use causal informa-
tion concerning the state, and actually it is enough
to consider controllers u depending only on the state
at time t: u(t) = u(z(t)). As is well known, the
Hy, problem can be posed and solved using differ-
ential game methods, see [4]. In the nonlinear case,
all the usual difficulties encountered in optimal con-
trol and game theory relating to lack of smoothness
of value functions and possibly discontinuous optimal
feedback control policies, if they indeed exist, are ap-
parent, as we shall see.

The state feedback solution can be concisely dis-
cussed in terms of dissipative systems [2], {8], {10],
[18]. Let u be a given state feedback controller, wit
closed loop system LY. From the theory of dissipa-
tive systems, LY is finite gain (in the sense of §2) if
and only if ZU is finite gain dissipative, i.e. there ex-
ists a function V{;; (called a storage function) such

that V(0) =0, V(z) > 0, and

V(2) 2 supr o {V((T)) = fy (Plu(s)P ~ |2(s)]*)ds

¢ 2(0) = z}.

(3.1)
The relation (3.1) is known as the dissipation in-
equality, and is equivalent to the PDI

sup, {VaV - b(z, u(z), w) - v*luf? + |{(z, u(z), w)|?}

< 0in R™.

(3.2)
The storage function V(z) need not be smooth (e.g.
C'), and so (3.2) must be interpreted in a generalized

sense [2], [10]. In [10], V(z) is assumed merely lo-
cally bounded, and the PDI (3.2) completely charac-
terizes such storage functions using viscosity solution
methods. Consequently, £ is finite gain if and only
if there exists a function V(z) satisfying V(0) = 0,
V(z) > 0, and the PDI (3.2) in the viscosity sense.

The above considerations apply to a fixed state feed-
back controller u. (We have tacitly assumed that u
enjoys sufficient regularity to ensure that solutions to
the ODE in (2.1) exist and are unique, etc.) If the
H,, problem is solvable by u, then the PDI holds
for some storage function V, and consequently, after
minimizing with respect to u, the PDI

infy sup, {V.V - b(z,u,w) — ¥*|w|® + |{(z, u, w)[*}

< 0in R"

(3.3)
is satisfied by V. Inequality (3.3) is the fundamental
PDI for the state feedback problem, and is closely
related to the HJI equation of arising in game theory.
The necessity of (3.3) is evident,.

Sufficiency results can also be obtained, depending
on the level of verification theorem available, [5], {7].
Indeed, if there exists a C? solution V(z) to (3.3) and
ifu* :c} attains the minimum in (3.3) at each z (and
satisfles some regularity conditions), then u* solves
the state feedback Ho, problem, assuming suitable
controllability and observability conditions are met

to ensure stability). Because solutions of the PDI

3.3) are generally not smooth, then more general
verification theorems need to be employed. This is
the problem of controller synthesis.

The difficulties regarding lack of smooth solutions to
the PDI (3.3) can be circumvented in part by work-
ing locally near the equilibrium. With additional as-
sumptions, it is possible to show that smooth solu-
tions exists in neighborhood A of 0, and to solve the
Hy, problem locally in N. This essentially makes
use of the classical method of characteristics for first-
order equations, and is expressed in geometrical lan-
guage in [16], [17]. Indeed, if the Ho, problem for
the linearized system is solvable, then the nonlinear
problem is solvable locally.

4. The Output Feedback Case

To solve the output feedback problem, one would
like to use the game theoretic/dissipative systems
methods used in the state feedback case. However,
this is difficult without the definition of a suitable
notion of “state”. The information state [11], [12],
[13] provides such a notion.

Consider the following finite horizon minimax dif-
ferential game. The problem is to minimize, over all
(admissible) output feedback controllers u € O, the
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cost function
- T
Ip,r(0) = supy, ., {5(2(0)) + fy (I2(s)|* — v*|w|?) ds

+&(=(T)}, w

where 5 € £, a suitable (infinite dimensional) space
of extended real-valued functions, and & is smooth.
Define the function 6, € £ by

0 if ¢ ==z,
—oo if € #z.

The finiteness of each Js.,.r(u), o € R™, is equiva-

lent to the finite gain property $2.2) (when & = 0).
The key to solving this output feedback game is to
replace it with an equivalent state feedback game in-
volving a suitable information state.

To this end, fix an output path y € L,([0,T],RP)
and define the information state p, € £ by

P(z) = supy ., {B(2(0)) + f3 (|2(s)]? — 72|w]?

+8y(ay (R(z(5), u(s), w(s))) ds : z(t) = z).

4.2

In words, this quantity describes the worst-ca;se(per2
formance up to time ¢ using the controller u which
is consistent with the observed output and the con-
straint z(t) = z. It summarizes the observed informa-
tion in a way which is suitable for fulfilling the control
objective. The information state evolves according to
the dynamics

Pe = F(pi,u(t),y(t)), po=5, (4.3)

where F(p,u,y) is the nonlinear operator
F(P, u, y) = Supw[_vtp ' b("u! w) + |l('1u’w)]2

=7l + 6y (h(- u, w))].
(4.4)
Equation (4.3) is a first-order nonlinear PDE in R”.
The cost function has the following representation
purely in terms of the information state:

Jpr(u)= sup

{(PT;‘I’) I Do =17}, (4~5)
VEL:([O,T],R')

where (p,®) = sup,.p.(p(z) + &(z)) is the “sup-
pairing ”, [11].

The problem can now be solved using dynamic pro-
ramming methods, with cost given by the RHS of
%4.5) and dynamics (4.3). The value function is

{(pr, ®) : Pt=P};
(4.6)

W(p,t) = inf sup
ueo VGLI([OITLR',)

and the corresponding dynamic programming equa-
tion is (assuming min and max can be interchanged)

&t +infueu sup eR, VoW - F(p,u,y) = 0,

Wp,T) = (p9).

(4.7)
The optimal minmax controller u* (p,t) is obtained by
finding the control value which attains the minimum
in (4.7), assuming validity of a verification theorem.
Note that this controller is an information state feed-
back controller, and since p, is a causal function of v,
it is also an output feedback controller.

The mathematical issues here involve the correct
definition of solutions to infinite dimensional non-
linear PDEs of the type (4.7), and related matters.
Equations of the type (4.7) are new [12], and much
work remains to be done. Complete details are avail-
able in the discrete-time case [11], [13], and for a
class of continuous-time systems in 14]. An interest-
ing feature of the function W is that it has a nontrivial
domain, even when specialized to the linear case (see
the example in [15]).

The infinite horizon problem is treated by letting
the above time horizon tend to infinity. The resulting
PDE will be a stationary one, and motivated by the
inequalities arising in dissipative systems, it is enough
to consider the PDI

i v, W - < 0in €. :
;g{,yselg’ pW - F(p,u,y) < Oin & (4.8)

This is the fundamental PDI for the output feed-
back problem. Note that it is infinite dimensional,
Additionally, W(p) must satisfy W(p) > (p,0) and
W(-B) =0, for some 8 > 0 (as in (2.3)).

Necessary and sufficient conditions for the solvabil-
ity of the output feedback H., problem can be ex-
pressed in terms of the PDE (4.3) for the infor-
mation state (filter), and the infinite dimensional
PDI (4.8) (control).” The coupling condition is that
pt € domW, t > 0. Of course, suitable controllabil-
ity /observability conditions are needed, [13]. Assum-
ing the validity of a verification theorem, the solution -
to the Ho, problem is the information state feedback
controller u*(p) defined by finding the control which
attains the minimum in (4.8) for each p. As in the
state feedback case, the problem of controller synthe-
sis is a crucial, and difficult, one.

In summary, we have presented the fundamental
equations for the solution of the robust H,, problem
for continuous-time nonlinear systems. The equations
are natural analogs of the corresponding discrete-time
equations [13], but involve considerably more techni-
cal difficulties, see [14].
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