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Discrete-Time Nonlinear Systems
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Abstract

In this paper we describe an implementation of a cer-
tainty equivalence controller for a discrete time partially
observed dynamic game problem.
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1. Introduction

In [1] a controller is derived for the finite-horizon par-
tially observed dynamic game problem for discrete-time
nonlinear systems. The controller is inherently infinite di-
mensional. It is described by two dynamic programming
equations which are nonlinear infinite dimensional recur-
sions: the first, the information state, evolving forward
in time, is a function of the state variable, and the sec-
ond, the value function, evolving backward in time and
determining the optimal control policy, is a function of
the information state, a variable which takes values in an
infinite-dimensional space. The second equation is dou-
bly infinite dimensional which makes direct implementa-
tion impractical in terms of computational eflort required.
A suboptimal alternative is to make use of a Certainiy
Equivalence Principle (CEP) [1, 2, 3]. When the CEP is
valid, the value function and optimal control policy may
be computed using a simpler recursion which determines
the upper value of the corresponding completely observed
dynamic game. The state is estimated using the mini-
mum stress estimate of Whittle [3], i.e. the state which
maximizes the sum of the information state and the upper
value.

The conditions under which the CEP holds are often
difficult to check. Because of computational and practi-
cal considerations, focus is placed on implementation of
the certainty equivalence controller, even if the CEP fails
to hold. In general the certainty equivalence controller is
suboptimal. In spite of this we empirically demonstrate
that the implementation of the certainty equivalence con-
troller, although suboptimal, can be stabilizing and robust
to noise for many nonlinear systems.

In section 2 the dynamic game problem is stated and
the certainty equivalence controller given. In section 3
implementation issues are discussed and some examples
are given.

2. Controller
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Consider the discrete-time partially observed dynamic
game for the system

{ Tre1 =
Yk+1 =

on the finite time interval k =0,1,2,... M, with cost

b(zk,uk) + wk,
h(zk) + ve

M-1
TH(u,w,0) = supsepn { sy (il + ul?)
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The risk sensitivity parameter, g, is related to the Heo
norm bound %, by p = 1/72. For convergence of the
algorithm p must be chosen small enough.

In the context of a game there are two players: the
control system designer and nature. The designer‘s objec-
tive is to minimize the cost, while nature, acting in direct
opposition to that objective, strives to disturb the system
so as to maximize the cost. The game is played as follows:

(i) The initial condition z(0) = zo is unknown, and

(ii) Player 1 (designer) selects a U-valued control ux
which may be any non-anticipating function of the
observation path y. This selection is designed to
minimize the cost. Let Op ar—1 denote the class of
all such controllers.

(ii) Player 2 (nature) selects a disturbance (wk, vk),

which is a square summable open loop sequence.

Nature’s selection is assumed to be made to maxi-

mize the cost.

More precisely, if we let J#(u) denote the effect of nature’s
selection so that
JH(u) = T (u, w,v),

sup
(w,v)€lz[0,M-1]

then the partially observed dynamic game problem is to
find an admissible sequence u € Qg M1 such that

)= inf  J*(u).

u€00, 01
The certainty equivalence controller {1, 2, 3] is given
by the following two infinite dimensional dynamic pro-

gramming equations. The sequence of information states
{px} is given recursively by the dynamic programming

equation
P
Po

where A*(u,y)p(z) is

2 supgenn {P(6) = L [IR(O - 2h(8)y]
I + Jul? = £z = b(¢, u)*}
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The sequence of upper values {f}'} of the fully observed
dynamic game is given recursively by the dynamic pro-
gramming equation

fi(z) = infuev SUP, cRn {f,:“+21 (b(z,u) + w)
) +z® + [u]® = & |wl)
@) = o

If u;(z) achieves the minimum upper value for step k,
then uy = u;(zx) is an optimal feedback policy for the
completely observed game. The minimum stress estimate
Tk is given by

_ argmax . A ~
zee TEUY () + ) 2 3
where T} set valued. The certainty equivalence controller
is defined by _

ug = up(Zx)
and if the CEP holds then this controller is an optimal
policy for the partially observed game.

3. Implementation and Examples

The sequence of upper values {f}'}, and thus the op-
timal control policy for the fully observed game, is com-
putable off line. The information state, playing a role
similar to an observer, is dependent on the current out-
put and control of the system. The information state is
part of the controller dynamics which must be computed
on line.

In our examples we have found that convergence of
the value function and optimal control to steady state
is achieved after a relatively small number of iterations.
Thus, in order to reduce the computational effort as well
as the memory required for storage of the value function
and optimal control, our implementation uses the steady
state optimal control and value function for all simula-
tions.

The state space, the control space, and the distur-
bance space, are each truncated to compact sets centered
at the origin, e.g., the cube L™ where n is the dimension
of the original space and L is the length of a side. Excur-
sions from the respective truncated spaces are are handled
by projection onto the boundary of the truncated space.
These spaces are each discretized to N points in each di-
mension uniformly with sampling interval A x 0.01.

Plotted for each example are the state, the output,
and minimum stress estimate trajectories obtained using
the certainty equivalence output feedback controller. The
systems were subject to additive Gaussian noise in the
state update and observation equations with mean 0 and
variance 0.05. A risk sensitivity value of u = 0.1 was used
for both examples. Note that in Example 2 (figure 2) the
output function is discontinuous.

4. Conclusions and Work in Progress

For the two examples presented in this paper we have
demonstrated that the certainty equivalence controller is
stabilizing and robust to noise. Work in progress includes
further investigations for one dimensional as well as multi-
dimensional nonlinear systems, e.g. the inverted pendu-
lum. For multi-dimensional systems, however, the com-
putational complexity involved is a clear obstacle. Thus
a primary objective of our future work is to investigate
methods for the reduction of the computational complex-
ity. Two avenues we shall pursue for such a reduction
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are (i) approximations and (ii) algorithm redesign. Al-
ternatively, we shall investigate implementation on high
performance computational platforms to decrease compu-
tational time. We are currently looking at an implemen-
tation on the Connection Machine.

We hope that numerical experiments of the type that
we have presented here will provide insights into the na-
ture of nonlinear robust control, and ultimately lead to
practically useful controllers for a wide class of nonlinear
systems.
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