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Abstract

In this paper we present a new approach to the solu-
tion of the output feedback robust control problem.
We employ the recently developed concept of infor-
mation state for output feedback dynamic games, and
obtain necessary and sufficient conditions for the solu-
tion to the robust control problem expressed in terms
of the information state. The resulting controller is
an information state feedback controller, and is in-
trinsically infinite dimensional.

1. Introduction

In this paper we present a new approach to the so-
lution of the output feedback robust control problem.
We consider discrete-time nonlinear systems (plants)
T described by the state space equations of the gen-
eral form

The1 = O(Tky Uk, Wk),
zht1 = ok, ur, wi), (1.1)
Y1 =  R(Tks vr, we).

Here, z; € R™ denotes the state of the system, and is
not in general directly measurable; instead an ouput
quantity yx € RP is observed. The additional output
quantity zx € R is the regulated variable, depending
on the particular problem at hand. The control input
isur € U c R™, and w, € R” is a disturbance
input. For instance, w could be due to modelling
errors, sensor noise, etc. It is assumed that the origin
is an equilibrium for the system (1.1): 5(0,0,0) = 0,
1(0,0,0) = 0, and h(0,0,0) = 0.
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The (finite time) output feedback robust control prob-
lem is: given 4 > 0 and a finite time interval [0, M],
find a controller u = u(y(-)), responsive only to the
observed output ¥, such that the resulting closed loop
system L% achieves the following goal;

T¥ is finite gain, i.e., for each initial condi-
tion zo € R™ the input-output map Iy, re-
lating w to z is finite gain, which means that
there exists a finite quantity 8*(zo) such
that

S 2P € PG el + B (<o)

for all w € £,([0, M - 1],R").
(1.2)
Since zg = 0 is an equilibrium, we also re-
quire that g*(0) = 0.

Of course, 8 will also depend on v and M.

Note that we have specified the robust control prob-
lem in terms of the family of initialized input-output
maps {Z} }, <R~ Whereas the conventional problem

statement for linear systems [5] refers only to the sin-
gle map ¥§. This is often expressed in terms of the
“Ho, norm”(i.e. Ly gain) of Lf:

| 28 |5 of0,0)

A ”z”ta([l,M].RQ

= SUPuety((o,M-1},Rr), weto Tull, "7 g
For linear systems, the linear structure means that
the solvability of the finite time robust control prob-
lem is equivalent to the solvability of a pair of Riccati
difference equations (and a coupling condition), and
so implicitly all the maps L} are considered. For
nonlinear systems, our formulation seems natural and
appropriate, since otherwise if we were to follow the



linear systems formulation, one would need assump-
tions relating non-zero initial states z4 to the equilib-
rium state 0 (such as reachability in the infinite-time
case). Indeed, a solution u = u* to our problem yields

| 25 Hoto ) £ 715 (1.3)

as is the case for linear systems.

The solution to the output feedback robust control
problem for linear systems [5] has the structure of
an observer and a controller, and involves filter and
control type Riccati equations. The standard LQG
(or Hj) controller obtains as ¥ — oco. The nonlinear
problem has been considered recently by a number of
authors, for example Ball et al [1], [2], Isidori-Astolfi
[6]. However, a complete solution is not yet available.

Our approach to this problem was motivated by
ideas from stochastic control and large deviations the-
ory. In our earlier paper [7], we explored the con-
nection between a partially observed risk-sensitive
stochastic control problem and a partially observed
dynamic game, and we introduced the use of an “in-
formation state”for solving such games. The infor-
mation states for each of these two problems are so-
lutions of nonlinear infinite dimensional dynamical
systems, and contain observable information that is
relevant to the control objectives. They do not nec-
essarily attempt to estimate the state of the system
being controlled. In other words, estimating the value
of the state is not the exclusive objective of the infor-
mation state system; instead, the control objective is
taken into consideration and so the resulting state es-
timate is suboptimal, but nonetheless more suitable
to achieving the control objective than an observer
designed with the exclusive aim of state estimation.
Thus the information state is the optimal trade-off
between estimation and control, and is determined
naturally by the problem. The original cutput feed-
back problem is replaced by an equivalent one with
“complete”state information, namely the information
state. The concept of information state is well known
in stochastic contro! theory, and for the risk-neutral
(or Hj) problem, it is the conditional density, possi-
bly unnormalized, and is concerned only with state
estimation (Kumar-Varaiya [9]).

In this paper we apply the concept of information
state to the output feedback robust control problem,
and obtain both necessary and sufficient conditions
expressed in terms of dynamic programming equa-
tions involving the information state. Qur solution
is analogous to the filter and control type Riccati
equations arising in the case of linear systems. In
particular, our results imply that if the robust con-
trol problem is at all solvable by an output feedback
controller, then it is solvable by an information state
feedback controller. The information state feedback
controller we obtain has an observer/controller struc-
ture. The “observer”is the (infinite dimensional) dy-
namical system for the information state:

pr = F(pr_1,ur—1,yx)-

The control
ui = Ui (pk)
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is determined by a dynamic programming equation,
and the value function solving it is a function of the
information state. This dynamic programming equa-
tion is an infinite dimensional recursion defined for
an infinite dimensional control problem, namely that
of controlling the information state. Our solution is
therefore an infinite dimensional dynamic compen-
sator, Figure 1.

The infinite time output feedback robust control
problem will be considered in a separate paper. The
continuous-time problem is also solvable using our
framework, at least formally [8].

Plant

W ey Thg1 = bp,up,wi) e 2
Zrqr = Nzp, up, wi)
U o Yr41 = Rz, ug, wy) i
Controller
Pi+1 = Fpr, vk, ve41)
ug = 4y (pr) -
Figure 1

2. Dynamic Game

Our aim in this section is to express the output feed-
back robust control problem in terms of a dynamic
game.

Let Ok, denote the set of output feedback con-
trollers defined on the time interval [k, (], so u € Oy
means that for each j € [k,!] there exists a function
@; : RU-*P - U such that u; = @;(yers;). For
u € Og,p-1, Z¥ denotes the closed loop system (1.1).
We introduce the function space

& ={p:R"-R"},
and define for each £ € R™ a function 6, € £ by

0 if¢=gz,

1>

62(¢)
—oo if € # z.

Foru € Oy pm-1 and p € € define the functional JIp(u)



for the system (1.1) by
A
Jp(u) = SUP,ety(f0,M 1], Rr) SUPz e R~ {p(z0)+
SE il = Pl }
(2.4)
Remark 2.1 The quantity p € £ in (2.4) can be

chosen in a way which reflects knowledge of any a

priort information concerning the initial state zqo of
P O

The finite gain property of X* can be expressed in
terms of J as follows.

Lemma 2.2 X} is finite gain if and only if there
ezists a finite quantity B¥(zq) such that

Js., (v) < B%(z0), (2.5)

and *(0) = 0.
It is of interest to know when J,(u) is finite. For a
finite gain system L%, we write
domJp(u) = {p€& : (p, %), (p,0) finite },
where we use the pairing [7]

sup {p(z)+q(z)}. (2.6)

::ER"

(p,9) =

Lemma 2.3 If each map I3 is finite gain, then

(p,O) S Jp(u) S (p1 ﬂu))

and so Jp(u) is finite for p € domJp(u).

(2.7)

PROOF. Set w =0 to deduce (p,0) < Jp(u). Next,
select w € £2([0, M ~1],R") and =5 € R™. Then (1.2)

implies

A

(o) + itot lzem? = Vlwi? < p(zo) + B(z0)
(p, BY).

This implies (2.7). a

IA

The (finite time) output feedback dynamic game is
to find a control policy u € Op ar—1 which minimizes
each functional Js, . The idea then is that a solution
to this game problem will solve the output feedback
robust control problem.
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3. Information State Formulation

To solve the game problem, we borrow an idea from
stochastic control theory (see, e.g., [4], [9]) and re-
place the original problem with a new one expressed
in terms of a new state variable, viz., an information
state [7].

For fixed y1 1 € £2([1, k], RP) we define the informa-
tion state pr € € by

o)
pi(z) = SUPyety(f0,k~1),R) SUPL e R {po(z0)+
O P R

Doz =z, bz u,wi) = ¥i01,0 <1 < k- 13
(3.8)
If % is finite gain, then
—o0 < pr(z) < (po, BY) < +oo.
A finite lower bound depends on possible degeneracies
of the system (1.1).

In order to write the dynamical equation for pg, we
define F(p,u,y) € € by

F(p,u,y)(z:) = sup {p(§) + B({,z,u,9)}, (3.9)
¢eRn

where the extended real valued function B is defined
by

B(E,z>uay) = SupeRr {Il(&uvw)‘z - 72|w|2

1 b u,w) =z, h(§,u,w) = y}.
(3.10)
Here, we use the convention that the supremum over
an empty set equals --oo.

Lemma 3.4 The information state is the solution of
the following recursion:

e = F(pe—1,%k-1,%k),
(3.11)

Po € £.

ProOOF. The result is proven by induction. Assume
the assertion is true for 0, ..., k—1; we must show that
Pk defined by (3.8) equals F(pg_y,ux—1,yx) defined
by (3.9). Now

F(pr—1,u6-1,¥x)(z)

= sup{' {Pk—l(f) + B(£1 31uk~—1)yk)}

supe {pr-1(£)+
SUPyy, _, (!l(gauk—byk)lz - ’)’2}‘Ulk_1|2 :
b(&, w1, we—1) = =, h(€, up—1,wk-1) = yi)}

= pi(2)
using the definition (3.8) for px—1 and px. o



Remark 3.5 Note that we can write
A
pi(z) = SUPeee, (0,4, Rn) {po(&0)+
(3.12)
Z,k;ol B(&i, &ivr ui, vigr): & = l}

We now state the following representation result:

Theorem 3.6 For u € Opp_y, p € £, such that
Jp(u) is finite, we have the representation

Ip(u) = sup {(par,0)

yl,Melﬁ([llM]!RP)

: po=p}.
(3.13)

PROOF. We have

Supyx.MEh([l,M],Rv) {(Pk, 0) L Po= p}
= suPy Supf {p(fo) +Zﬁvi0_1B(&i’€i+1,ui,yi+1)}

M-1
= supy sup,, {p(z0) + D5 faisal? ~ 922}

= Jp(u).
0

Theorem 3.6 enables us to express the finite gain
property of £¥ in terms of the information state p, as
the following corollary shows:

Corollary 3.7 For any output feedback controller
u € Og a1, the closed loop system T% is finite gain
if and only if the information state p; satisfies
sup {(p,0) : po =6} < B%(20),
y1.x€43([1,5], Rr)
3

.14
for allk € [0, M], for some finite B4 (o) with ,8“((0) :)
0.

Remark 3.8 In view of the above, the name “infor-
mation state”for pis justified. Indeed, p; contains all
the information relevant to the key finite gain prop-
erty of I¥ that is available in the observations Y,k
0

Remark 3.9 We now regard the information state
dynamics (3.11) as a new (infinite dimensional) con-
trol system =, with control u and disturbance y. The
state pr and disturbance y; are available to the con-
troller, so the original output feedback dynamic game
is equivalent to a new one with full information. The
cost 1s now the RHS of (3.13). The analogue in
stochastic control theory is the dynamical equation
for the conditional density (or variant), and y be-
comes white noise under a reference probability mea-
sure [7], [9]. 8]
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We say that =% is finite gain if and only if (3.14)
holds for some finite §*(zo) with 8(0) = 0.

Now that we have introduced the new state vari-
able p, we need an appropriate class Iy 1 of controllers
which feedback this new state variable. A control u
belongs to Zy; if for each j € [k,{] there exists a

map 4; from a subset of £/=%+! into {7. such that
u; = Uj(px ;). Note that since py depends only on
the observable information Yk, Zom—1 C Ogpr-y.

4. Solution to the Robust Control
Problem

In this section we use dynamic programming to ob-
tain necessary and sufficient conditions for the solu-
tion of the output feedback robust control problem.
We make use of the dynamic programming approach
used In [7] to solve the output feedback dynamic
game problem.

For a function W : £ — R*, we write
domW = {pe& : W(p) finite } .
Theorem 4.10 (Necessity) Assume that a controller
u® € Qo p-.1 solves the output feedback robust control

problem. Then there erists a solution W to the dy-
namic programming equation

Wi(p) = infueusup g, {Win1(F(p, u,p))},

Wu(p) = (»,0),
(4.15)
such that domJp, (u®) C domWy, Wy (8) = 0, Wy (p) >
(»,0), k €0, M].

PrOOF. For p € domJ,(u®), define

Wie(p) = igfsup{(pM,O) D pe=pl. (4.16)
v

Note the alternative expression for Wy (p):

Wi(p) =

infy sup,, sup,, {P(fck) + ik lzepl? - 72|w1-{2} »

(4.17)

Define u € Ok pr_; by setting u(j) = u°(j—k). Using
this control the finite gain property implies

M1 M-1

Dzl < D w4 4 (),

i=k i=k

for all w € £5([k, M — 1], R7), and thus
Wi(p)
M—-1 2 2 2

< sup, sup,, {p(‘tk)+2i:k |zig1]? — 7w }
< (p 8.



Thus domJ,(u®) C domW;. Also, we have
Wi(p) 2 (p,0).

Since 8°(0) = 0, (8, 0) = 0, we have Wi (&) = 0.
Finally, the proof of Theorem 4.4, [7] shows that W}
is the unique solution of the dynamic programming
equation (4.15). ]

Theorem 4.11 (Sufficiency) Assume there exists a
solution W to the dynamic programming equation
(4.15) such that &, € domWy, for all z € R”,
Wi(bdo) =0, k € [0, M]. Let u* € Iy p—1 be a policy
such that uy = uy(px), where uy(p) achieves the min-
imum in (4.15). Then u” solves the output feedback
robust control problem.

ProoF. Following the proof of Theorem 4.6 of [7],
we see that

Wo(p) = Jp(u") < Jp(u)
for all v € Op pr—-1, p € domW,. Now

S\lp{(pju,O) : pO:éIovu:U*} < WO((sxo)y
Yy

which implies by Corollary 3.7 that £%" is finite gain

with 8% () 2 Wo(d;,), and hence u* solves the out-
put feedback robust control problem. a

Remark 4.12 Note that the controller obtained is
an information state feedback controller. 0O

Corollary 4.13 If the output feedback robust control
problem is solvable by an output feedback controller
u® € Og pm—1, then it is also solvable by an informa-
tion state feedback controller u™ € Ty pr—1.

Remark 4.14 The necessity result is important. A
common approach {1}, [2], [6] to solving the output
feedback robust control problem is to specify a priori
a finite dimensional observer structure, say,

1l

Ek41 A&k, vk, Ye41),

B(&x),

U =
for some A, B, chosen so that £ tracks z; and the
closed loop system is finite gain, to yield a controller
ul € Ogm—1. Our results imply that the sufficient
conditions required for the success of such approaches
are not in general also necessary. Consequently, the

nonlinear output feedback robust control problem is
intrinsically infinite dimensional. ]
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