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ABSTRACT-We show the equivalence of two tech-
niques of time series modelling/prediction; (i) percep-

tron learning of probability distribution of the truth _

value of a proposition from first order stochastic den-
sity approximations, (ii) Maximum Partial Likelihood
(MPL) estimation of the parameters of a logistic re-
gressive model for binary time series. This result
provides large training set characteristics for the ap-
proximate Kullback-Leibler relative entropy learning
scheme. .

I. INTRODUCTION

The main_'_:\'m?tivation of this work is consider-
ing the sigmoid analog perceptron as a parametrised
model of a probability distribution and formulating the
learning problem as approximation to a desired con-
ditional probability distribution. In (1,5}, minimizing
the Kullback-Leibler (K-L) relative entropy cost func-

tiqn on a multi-layer feed-forward network of analog’

units has been proposed for the problem of learning
the correct probabilities of a set of propositions from
analog input. In this work, we propose a time se-
ries modelling/prediction application for this scheme
by using a first order approximation to the true prob-
ability density of the truth value of the proposition.
We show that the learning scheme obtained by such
an approach is equivalent to partial likelihood estima-
tion of the‘para.rneters of a general logistic regressive
model for a binary time series that takes into account
stochastic time dependent covariates. Theoretical jus-
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tification and large sample theory for this type of es-
timation have recently been developed by Slud and
Kedem [2,4,7]. Therefore, we put the probability dis-
tribution learning from first order stochastic approx-
Imations in a statistical framework by using their re-
sults. '

This result has relevance in signal processing with
neural networks domain, since a neural estimation
technique for dependent time series and its large sam-
ple properties are given, and in statistics, since an ana-
log implementation for partial likelihood estimation of
logistic models is pointed out.

The organization of the paper is as follows: In
Section II, we define tﬁé time series prediction problem
that we address. In Section III, we present a brief in-
troduction to partial likelihood first introduced by Cox
(3] and subsequently developed by Wong [6]. Section
IV reviews the partial likelihood estimation of logistic
regression model parameters framework of Slud and

.Kedem for the binary time series prediction problem.
 Relative entropy learning on an analog perceptron for

the same binary time series problem is introduced in
Section V. Equivalence of the two techniques and its

implications are discussed in Section VI. We demon-‘
strate the —In PL = ARE, surface and a stochastic

gradient algorithm’s behavior for an example process

in Section VII. Finally, we conclude with a discussiony
of the use of more complex networks in this learning

problem in Section VIII. {

II. Tasx

We are interested in the prediction of the future
truth values of a proposition -from past information

-



about the proposition and past and present informa-
tion about some auxiliary stochastic analog time se-
ries referred to as covariates [4,7]. The covariates may
consist of (functions of) other time series which are be-
lieved to affect how the proposition turns out and/or
past truth values of the proposition. For example, if
the proposition is that an autoregressive process ex-
ceeds a given threshold, the covariates are simply the
past values of the process. If the proposition is that
a certain component will fail, the covariates may con-
sist of (functions of) operating conditions or periodic
measurements on the component, etc. Define a binary
time series {X;} as

X, = 1, if proposition at t is true;
*= 10, if proposition at t is false,

and denote the covariate process with a column vector
of time series, {Z;}. The information available about
the covariates at time ¢, denoted by F; is the o-field
0(Xe, Xt—1y .00y Zt, Ze—1, ...). It is clear that F; C Fey1-
The prediction problem in this setting is the estimation
of the probability that the proposition is true given all
the past information which is given by

P(%i= 1IFer) = BIXilFimi).

This is essentially the same prdblem formulated in [4,7]
as a level crossing problem, since any binary event can
be regarded as a level crossing.

III. PARTIAL LIXELIHOOD

Maximum likelihood estimation theory has mainly
been developed for the i.i.d. observations where the
full likelihood is a product of individual likelihoods.
-With dependent data, full likelihood is often hard or
impossible to evaluate. Also in some cases where the
full likelihood is available but complicated with nui-
sance parameters, the ML estimate may not exist (e.g.
the/co.ntaminated Gaussian mixture).

Partial likelihood as introduced by Cox belongs
to a class of approaches that attempt to use an ap-

" propriate factorization of the full likelihood. If the

factorization has a factor depending only on useful pa-
rameters, then maximizing only this factor and giving
up the information in the other factors that contain
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both useful and nuisance parameters leads to simplic-
ity in analysis and robustness.

For the time series framework of Section II, the
full likelihood of the joint process {X;,Z:} relative to

some model parameters w and the data {X:,Z:} is
given by

T
Liw; X1,..,X7) = HP'W(ZtI-Ft—I)
t=1

T
x []pw(Xelo(Ze, Foop))(1)
t=1
The second product in (1) is called the partial likeli-
hood based on X [3].

The intuitive principles of partial likelihood are-
(i) Distribution of Z’s should all depend essentially on
nuisance parameters, i.e. Z’s should not contain im-
portant information about parameters of interest.

(ii) Nuisance parameters should not occur in the par-
tial likelihood.

Theoretical justification and ways of evaluating
partial likelihood factorizations in terms of their large
sample properties have been developed in [6]. For the
specific particular binary time series problem in this
work, Slud and Kedem have developed the large sam-

ple theory in this framework as described in the next
section.

IV. LoGistic PARTIAL LIKELIHOOD

Logistic regression is a widely used model in expressing
the relationship between the distribution of a random
variable and a set of covariates. It has found wide ap-
plication in statistics, health sciences and economet-
rics. The logistic regression model is remarkable in
two respects from our perspective: (i) It has a neural
network implementation, namely, the single-layer ana-
log perceptron with a sigmoid response (Fig. 1). (ii)
It allows a large sample theory to be developed for the
MPL estimation [4,7]. The logistic model, in our case,
is given by

]

p(W) = Pw(X: =1]0(Ze, Fiy))
: 1

1 -i'-_exp(_—wTZ,_l) : (2) )




With this model the partial likelihood is conveniently
written as

T
PL(w; X1, ..., X7) = [ ] pe(w) ¥ (1=pe (w)) 1=, (3)

The maximum partial likelihood estimate (MPLE), w
is defined as

W = arg{sup PL(w; X1,..., X7)}. (4)
w

We can use In-PL instead of PL, therefore the estima-
tion consists of maximizing the function
T

InPL(w) =Y [Xi1n (pi(w)) + (1 = X¢)In (1 — py(w))].
B (5)
V. RELATIVE ENTROPY LEARNING

The natural cost function in learning probability den-
sities is the Kullback-Leibler relative entropy, the in-
formation theoretic distance between the desired prob-
ability density and the network output:

) = Foem(23)

) u—ﬁ“m{%i§%)5@

‘*l

where :

P = P(X; = 1|Fi<y).
Since the true probabilities are not available for train- -
ing, exact relative entropy can not be used. We need
to train the network with some approximate estimate
of the pdf. For an on-line apphcatxon first order ap-
proximation gives: ¢

P = P(Xo=1[F)
E[X:|Froq]
=~ Xg. . (7)

This results in an approximate cost functlon Approx-
imate Relative Entropy (ARE) :

ARE(w) =- Zx,ln (pt(w»

+Z(1 Xi)1 (I”X‘)

1 —p(w)
REG). - ®)

Qo
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Intuitively, averaged over a large training set, this ba-
sic scheme should supply the true probabilities. In
fact, we can go one step further and observe that since
X: €{0,1},

T
ARE(w) = =) X;ln(pi(w))
t=1

T
-Y (1=X)n(l - pe(w))

We have thus shown that relative entropy learn-
ing with (9) is equivalent to MPL estimation with a Jo.
gistic model developed in the previous section. There-
fore, MPL estimators and network models have the
same large sample properties. The extension of this
result to multiple hypotheses is possible provided that
the hypotheses are statistically independent. This con-
dition is required to be able to write the partial likeli-
hood as

PL(w; {X{}I1 ""T)—HHP(W)X (1=pi(w))}~

i=lt=1
= (10)

to give the cost function

K T '
mmw==§§&m@w» ,
1-Xi '
o)

S

+(1=X})In (

VI. LARGE SAMPLE PROPERTIES

-
Theoretical justification and large sample properties
of general partial likelihood estimators have been de-
veloped in [6]. In [4,7), the large sample properties o
logistic MPLE’s have been studied. The main result
is, under some reg’ula;ity conditions on the asymptoti
behavior of time dependjent covariates, as T — 00,

VT(W = w) — N[0,A"}(w)] = (12)

in law, where A is the mformahon matrix per Ob“’
vation. - -



VII. ExaMPLE: AR(2) PrOCESS

In this section, we present a numerical example: zero-
crossing event of the the second order autoregressive
process

Y: = 0.5Y;_1 —0.3Y:_2 + €, (13)
where ¢; ~ N(0,7%/3) and
X: = I[(Y,)ZO]- (14)

Here, the covariate vector is simply a finite window of
past values of the process

Zooy = [Yioy Yioo], (15)

and the prediction problem is

P(Xt = 1lZg_1). (16)

In [4,7), it is shown that for € ~ f(z) = /(1 + €7)
which is very similar to M(0,72/3) (Fig. 2)

w = [0.5,-0.3)7. (17)

We show the process for T = 100 samples and the
—1In PL = ARE surface in Figs. 3 and 4 respectively.
Then, we depict the path of the stochastic gradient
descent lea.rnin?%}gorithm which is simply

W, =

Wn-1— QVWARE(W)

1l

T
Waool — GZ(Xt et pg(W))Zg_l. (18)
t=1
The incremental version of this algorithm is particu-
larly suitable for on-line adaptation since the data may
be processed as they arrive.

VIII. DiscussioN

In summary, we have extended maximum likelihood
estimation by minimizing the Kullback-Leibler cost
function on a single-layer analog perceptron to depen-
dent time series applications by using partial likelihood
and shown that a large sample theory already exists.
For the predictien to be successful, careful selection
of (functions of) covariates is very important, since
the auxiliary data must contain enough information
to make an inference. It is conceivable that a multi-

layer perceptron may help the selection by training
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with backpropagation to generate appropriate func-
tions of input data. This way, the preceding layers
may preprocess the raw input data to present a vector
of covariates to the final layer which will allow bet-
ter inference. The nice large sample characteristics
of logistic partial likelihood will however no longer be
applicable since the model is not even unique. One
remedy can be to stop fraining on the hidden layer
after a point and return to the logistic model with
the transformed covariates. Provided the transformed
covariates satisfy the asymptotic behavior conditions,
the large sample theory can be recovered.

Acknowledgement: The authors are grateful to
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forthcoming book and useful discussions.
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Figure 1: Perceptron as a model for a probability distribution

Figure 2: Logistic and normal cdf’s -
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Figure 3: AR(2) process, T=100

Figure 4: ARE = —In PL surface, the path of the stochastic gradient.
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