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Abstract

We consider neural network learning problems in which the objective is to learn the relation-
ship between the inputs and the probability distribution of a proposition. We regard successive
truth values of the proposition as a dependent binary time series whose instantaneous probabil-
ity of truth is a function of the past behavior of the joint process between the analog inputs and
binary output truth values. In this context, we identify the gradient descent learning algorithm
using the Kullback-Leibler relative entropy cost function on a perceptron with a Maximum Par-
tial Likelihood (MPL) estimator of the perceptron model for the probability of a binary event
in terms of its covariates. The implications of this result are: (i) The neural network models ob-
tained by relative entropy learning are shown to have the nice large sample (i.e. training set size)
characteristics of MPL estimates: consistency and asymptotic normality. (ii) An important and
widely used statistical inference technique, logistic regression, can efficiently be implemented on
analog perceptrons for time series modelling and prediction.

I. INTRODUCTION

Minimizing the Kullback-Leibler (K-L) relative entropy cost function on a multi-layer feed-forward
network of analog units has been proposed for the problem of learning the correct probabilities
of a set of hypotheses from analog input [1,5]. In this work, we propose a time series mod-
elling/prediction application for this scheme by using it to implement an estimation technique
whose numerical and large sample properties have recently been studied [2,4]. The results reported
below have relevance (i) in signal processing with neural networks domain, since a neural estima-
tion technique for dependent time series and its large sample properties are given, (ii) in supervised
learning, since probability distribution learning with the K-L relative entropy cost function is put in
a statistical perspective, and (iii) in statistics, since an analog implementation for partial likelihood
estimation of logistic models is pointed out.

II. TaSK

We are interested in the prediction of the future truth values of a proposition from past information
about the proposition and past and present information about some auxiliary stochastic analog
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time series referred to as covariates [4]. The covariates may consist of (functions of) other time
series which are believed to affect how the proposition turns out and/or past truth values of the
proposition. For example, if the proposition is that an autoregressive process exceeds a given
threshold, the covariates are simply the past values of the process. If the proposition is that a
certain component will fail, the covariates may consist of (functions of) operating conditions or
periodic measurements on the component, etc. Define a binary time series {X:} as

X, = 1, if proposition at t is true;
=0, if proposition at t is false.

and denote the covariate process with a column vector of time series, {Z;}. The information
available about the covariates at time ¢, denoted by F; is the o-field o( X, Xe—1y o0y Ly, L1, ...). It
is clear that F; C Fi41. The prediction problem in this setting is the estimation of the probability
that the proposition is true given all the past information which is given by

P(Xt = 1!.7:1_1) = E[thj:t—ll-
ITI. MAXIMUM PARTIAL LIKELIHOOD ESTIMATION

The full likelihood of the joint process {X¢, Z;} relative to some model parameters w and the data
{X:,Z,} is given by

T T
L(W;Xl)-"aXT) = pr(ztlft—l) pr(XtIU(Zt,]:t—l)) (1)
t=1 t=1

The second product in (1) is called the partial likelihood based on X [3]. In cases where the full
likelihood is unknown or hard to evaluate, such as when dealing with dependent data, partial
likelihood may still be used to obtain ample statistical inference. Also in cases where a maximum
likelihood estimate does not exist due to nuisance parameters, partial likelihood may be used to

obtain estimates that preserve most of the information. It is a generalization of both marginal
likelihood and conditional likelihood.

Logistic regression is a widely used model in expressing the relationship between the distri-
bution of a random variable and a set of covariates. It has found wide application in statistics,
health sciences and econometrics. The logistic regression model is remarkable in two respects from
our perspective: (i) It has a neural network implementation, namely, the single-layer analog per-
ceptron with a sigmoid response. (ii) It allows a large sample theory to be developed for the MPL
estimation. The logistic model, in our case, is given by

1
= = 1)) = . 2
pi(W) = Py (Xt = 1|0(Z4, Fi-1)) T+ oxp(—wTZe3) (2)
With this model the partial likelihood is conveniently written as
T
PL(w; X1, ..., Xp) = [[ pe(w)**(1 = pu(w)) ! =%, (3)
t=1



The maximum partial likelihood estimate (MPLE), W is defined as

W = arg{sup PL(w; X1,..., X1)} 4)
w

We can use In-PL instead of PL, therefore the estimation consists of maximizing the gain fuction

T
G(wW) =" [X:In (py(W)) + (1 — X;) In (1 - py(w))]. (5)

t=1
IV. RELATIVE ENTROPY LEARNING

The main result of this development is that the maximization of G (W) is equivalent to minimization
of the K-L relative entropy cost function

5w = 3 [xn (255) + - xom (2250 ©

when X; € {0,1}, i.e. when we use the following approximation in learning
P(Xg = llft_1) = E[thft_l] ~ Xt.

This basic scheme should implicitly supply the probabilities when averaged over a large training
set, as pointed out in [1]. It is well-known that for a gradient descent algorithm we obtain

N
VwB(wW) =Y (X — pi(W))Ze-1. (M)
t=1

We have shown that relative entropy learning with (6) is equivalent to MPL estimation with a
logistic model developed in the previous section. Therefore, the large sample properties for MPL
estimators also hold for network models. The extension of this result to multiple hypotheses is
possible provided that the hypotheses are statistically independent. This condition is required to
be able to write the partial likelihood as
PL(w; {X{}Zir) = [ TTpiw) ™ (1 - pi(w))' =X, (8)

t=1

K
i=1
to give the cost function

E(w) =Zi [X{m(Li) +(1~-X)HIn (-1"—)-(‘—)] (9)

i=1t=1 p;(W) 1 —pi(w)



V. LARGE SAMPLE PROPERTIES
The large sample properties of MPLE’s have been studied in [4]. The main result is, under some
regularity conditions, as T' — oo,
VT (% — w) — N[0, A~} (w))]
in law, where A is the information matrix per observation defined by

exp(wlz)
(1+ exp(wT3z))2

A(w) = 227 v(dz).

VI. DISCUSSION

In summary, we have extended the maximum likelihood estimation by minimizing the Kullback-
Leibler cost function on a single-layer analog perceptron to dependent time series applications by
using partial likelihood and shown that a large sample theory already exists. For the prediction
to be successful, careful selection of (functions of) covariates is very important, since the auxiliary
data must contain enough information to make an inference. It is conceivable that a multi-layer
perceptron may help the selection by training with backpropagation to generate appropriate func-
tions of input data. This way, the preceding layers may preprocess the raw input data to present
a vector of covariates to the final layer which will allow better inference.
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