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ABSTRACT

Two new model based ATR algorithms are presented. The algorithms employ economic target models, recent
mathematical developments in the extraction and reduction of target silhouettes from noisy images, and on-line
probing for clutter reduction and target classification. The target models used employ a small, carefully selected set
of characteristic viewpoints and local features. The design of the algorithms are described and their performance
evaluated using synthetic FLIR data. The two algorithms are: the Probing Algorithm and the 4-Way Distance
Algorithm. Both algorithms have an early phase which is primarily statistical, and a late phase which is primarily
geometric, although the two phases are tightly coupled, with frequent revisitation of the image data used to increase
decision confidence. In the Probing Algorithm novel on-line probing is performed using stored target geometric
models to efficiently implement a generalized maximum likelihood principle. The Probing Algorithm self-adapts to
find the most appropriate target location, range and viewpoint geometry and then performs decision-making based on
selected maximum likelihood estimates and on-line computed, optimal probing sets. The 4-Way Distance Algorithm
performs decision making based on a classification tree logic utilizing matching scores computed on four components
of the target silhouette.

1.0 INTRODUCTION

Most traditional ATR methods are based on pattern matching techniques utilizing “global features” such as: area,
perimeter, moments of inertia, Fourier coefficients of silhouettes, etc. These methods are global parameter matching
approaches to ATR. The generic idea is to compute a vector of global “features” from each candidate target model,
and from the sensory data, and compare them in order to find the best matching target model. Template matching
and correlation are such methods as well. The fundamental difficulties with ATR methods based on global features
are well known: non-robustness under varying background conditions, deterioration of performance with clutter and
occlusion or other kinds of “noise” and spurious data. Our approach utilizes model-based techniques employing local
features and their interrelationships. By concentrating on local features, we can establish appropriate correspondences
between the sensory data and the target model, even in the presence of occlusion, or in the presence of spurious data.

Our approach to model-based ATR algorithms differs significantly from traditional methods. Our methodology
employs systematic techniques for constructing economic model hierarchies from CAD, synthetic, or field imagery
databases (see [6] in this proceedings). Our algorithms are of the hypothesize-and-test type. Detection and classifi-
cation are addressed together and linked via feedback, which generates iterations to revisit image sensor data. We
emphasize local features including feature selection, ranking, matching and probing. We utilize both statistical and
geometric features. We consider in particular both the detectability of a local feature by a sensor (i.e., its saliency)
as well as the stability of features with respect to variations in range and viewing angle. We also employ learning

!Work partially supported by contract No. DAAB07-90-C-F425 from U.S. Army CECOM, through the C2NVEO. COTR: Ms. T.
Kipp C3NVEO.
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algorithms for combining evidence and for off-line design of ATR logic. The economical target models developed
provide the basis for a uniform data representation for many different sensors including FLIR, LADAR, VISION and
-mm-Wave RADAR. Similarly, the algorithms developed here apply equally well to sensors other than FLIR and hold
great promise for multi-sensor fusion in model-based ATR. :

All portions of both algorithms have been developed with maximum parallelism in mind. Considering the current
satisfactory execution time of both algorithms on standard sequential machines, such as SUN Sparcstations, their
implementation on multiprocessors will permit extremely efficient real-time operation. By-products of this develop-
ment effort include sophisticated software tools and utilities for learning clustering algorithm design, decision tree
design, target model reduction, probing design and ATR algorithm design, evaluation and parameter tuning.

In developing our ATR algorithms we benefited from careful review of results in perceptual research {12]. The
fundamental ATR problem considered in our work is that of recognizing a target from a collection of targets in a
single two-dimensional image. The sensor viewpoint is not known, range is provided but is only a rough estimate to
the center field-of-view, the contrast can be quite varied and target-like clutter exists in the scene. Furthermore we
are interested in algorithms that work well even when parts of the target are occluded. Since humans can perform
these functions efficiently and in real-time, it stands to reason that results from perceptual research (psychophysics)
can provide powerful hints and suggestions for the developments and organization of such algorithms. For example,
recent research has demonstrated [12] that visual recognition can commonly be achieved from a two-dimensional
image without any preliminary reconstruction of depth information or surface orientation from the visual input.
This is achieved by the process of perceptual organization, in which relations are found directly among the two-
dimensional features of an image. Perceptual organization refers to the basic capability of the human visual system
to derive relevant groupings and structures from an image without prior knowledge of its contents. For example,
people can immediately detect symmetry, clustering, collinearity, parallelism, connectivity and repetitive textures.

Another important hint from perceptual research is the use of hypothesize-and-test strategies, including the ac-
cumulation of evidence which ig consistent with several interpretations; each with different degrees of confidence. In
addition, line-drawings are important for recognition, even when coarse and approximate. Furthermore, perceptual
results emphasize the significance of examining curves at different resolutions. Apparently humans pay particular
attention to properties of curves which remain stable across different “resolutions.” The simple polygonal approxi-
mations of target silhouettes across different resolutions (scales) that we use in our algorithms and models are very
much in the spirit of these ideas [6).

Pursuing the latter point a little further, quite often we need to determine boundary or internal edges based
on points that we have found in the sensor data. Perceptual research again suggests that the notions of continuity
(smoothness) across several resolutions, as well as characteristic curvature points are important for recognition.
The weak continuity methods employed in our algorithms in various forms (fast and inexpensive, more detailed,
multi-resolution) are in complete agreement with these findings.

One of the most powerful and general sources of information constraining the sensor image data arises from
properties of the image projection process which maps a three-dimensional scene into a two-dimensional image.
Under the very reasonable assumption that the viewpoint of the sensor is independent of the objects in the scene,
then one can show [12] that only certain classes of image relations are likely to occur more often than by chance.
These classes of relations are those that remain stable over a range of viewpoints. By extrapolation to FLIR-based
ATR systems, these ideas permit us to exploit the high degree of redundancy in the sensor data, since only a few
matches are required to determine the viewpoint and we can then make accurate predictions for the locations in the
image of other local target features. We also exploit spatial correspondences between data and target features. In
particular, we emphasize testing correspondences to decide if they are consistent with the projection of the target
from a single viewpoint. Since the set of feature correspondences is typically greatly overdetermined, it is possible
to make reliable decisions even in the presence of many missing features or occlusion.

For example, parallelism and the presence of equal spacings between a series of colliriear features are properties
that are preserved over all viewpoints except where perspective effects are significant. Since many targets occupy
only small visual angles, such relations provide efficient probes (tests) for ATR, in the sense that they can be used to
identify reasonable areas of interest for further processing. Perceptual ideas lead to grouping of local data features
based on the so-called non-accidentalness of the grouping. For example the oriented contrast probe [4], developed
and used by us and briefly described in this report, is partly motivated by the perceptual consideration that it is
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highly unlikely that a pair of parallel edges of some strength are due to random noise or clutter; most likely they are
due to a man-made object or a target.

Hoffman [10] and others [1], [14], have emphasized the maxima, zeros, or minima of the curvature for the purposes
of partitioning the silhouette curve into salient parts. The most frequently cited source of evidence for the saliency of
these features has been the work of Attneave [2]. This has led to statements that maxima of curvature are the most
perceptually significant features of curves. However, as shown in [12], even if we chose the points that are as far as
possible removed from the points of discontinuity chosen by Attneave (i.e. choose half points between the original
set of points), the drawing still remains easily recognizable. As a matter of fact a more correct point of view is to
consider the stability (invariance) of these points of three dimensional curves under projection onto the image plane
from different viewpoints. Curvature maxima and minima do not have these invariance properties, but curvature
inflection points, discontinuities in tangent, zero curvature points and curve terminations do remiain stable [11].
These considerations suggest that curvature inflection points and ends of straight segments are the best choices for
segmenting a three-dimensional curve: the segments can be used as the corresponding local features. Therefore the
recommended local features are: convexities, concavities and straight lines. These are precisely the target silhouette
features we use in otur algorithms.

An important difficulty in ATR algorithm development is the great variability of viewpoint. The commonly held
belief is that since spatial information in the image is highly dependent upon viewpoint, any strong predictions about
the spatial appearance of a target are likely to apply to only a relatively small subrange of the possible viewpoints.
Therefore, the argument goes, a complete search must enumerate over the various discrete ranges of viewpoints that
need to be considered. The seemingly large size of this search space has been a major factor leading researchers to
avoid searching over the range of viewpoints and instead direct their efforts into the derivation of three-dimensional
structure from the image. We have shown [4] that the set of target silhouettes taken from every two degrees, over
the entire range of 0 to 180 degrees, naturally clusters into a small number of equivalent classes. The fact that the
sensor data are noisy further reinforces the argument. 'We have developed algorithms that automatically compute
these clusterings. This reduces dramatically the search space and it is used in an essential way both in our algorithms
for off-line model construction and in the ATR algorithms themselves.

In selecting local features we have considered the following characteristics: geometric characteristics of silhouettes,
local curvature maxima and minima, curvature inflection points, zero curvature points and segments, neighborhoods
around curvature extrema, proximity to other features, local contrast statistics, texture information, “sensor visibil-
ity,” target fingerprints,® portions of polygonal approximations to boundaries and related symbolic representations
and “information content” of a local feature. :

Good ranking of local features can reduce substantially the complexity of an on-line ATR algorithm, its time
performance, and increase its recognition performance. Such rankings can be used to provide feature indexing, which
has proved to be very helpful [9] with large object libraries. The terms significance or saliency of a feature are used to
provide a notion of ranking for features. Methods for ranking local features that we have experimented with include:
invariance with respect to resolution (scale), invariance with respect to viewpoint, location and range, detectabil-
ity in noisy data and target competitive clutter, discrimination power (among several targets) and computational
complexity. )

Such methods can be further extended to provide extremely efficient indexing methods of local featutes or groups
of features. These techniques hold great promise for extending our algorithms to large libraries of target models,
without commensurate increase of the computational complexity. -

2.0 ALGORITHMIC CONSTRUCTION OF ASPECT GRAPHS

As discussed in the introduction, we have successfully addressed the problem of reducing the target model repre-
sentations with respect to viewpoint variations. Our method first determines viewpoint equivalence ‘classes according
to a distortion measure and then determines the significant silhouette features that remain invariant in the viewpoint
ranges determined by the equivalence classes. In this iterative process, refinements can result, causing further sub-
division of a class. The algorithms can work across multiple resolutions because our target silhouettes are reduced
to polygons over various resolutions. Furthermore, we can compare characteristic silhouettes from each equivalence

3Target fingerprints, or scale-space diagrams [15), are diagrams of local features vs. scale, ¢.g., the curvature primal sketch in [1}; see
also [6). .
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class of each target to test if the resulting cluster has acceptable classification performance. Consistent with estab-
lished terminology in computer vision [5] we call the resulting viewpoint equivalence classes aspects. If we arrange
the aspects as nodes in a graph we can connect them with links to obtain what is called the aspect graph of the
target. The links denote the appearances of new features, or the disappearances of features relating the various
aspects. Thus we have constructed a semantic net (or relational graph) representation of the viewpoint variation of
“a target silhouette. This precompiled object is used to guide our ATR algorithm on-line. This is the first time that
a systematic, quantitative method has been developed to reduce viewpoint information so dramatically.

The notion of aspect allows us to group togeth¥r sets of target features which can be “viewed” (sensed) from a
single viewpoint. This in turn allows us to group together viewpoints which observe the same aspect. Further, we
want to emphasize that this representation can also be viewed as a quantization of the space of sensing operations.
Indeed this representation allows us to easily determine the target features which can be observed by a particular
sensor from a particular viewpoint relative to the target. This is done by determining which aspect will be viewed
by the viewpoint, and then looking up the target features which are associated with that aspect. This representation
is a key element in our approach.

In our system we characterize aspects in terms of observable features. As we change viewpoint, specific features
appear and disappear from the view of the sensor. We call such appearances and disappearances of features events.
The aspect graph is a graph representation of this quantization. Each node of the aspect graph represents a set of
features (the aspect) observable from the same viewpoint. To each node we associate the set of viewpoints from
which the aspect can be observed. Arcs in the aspect graph connect nodes with adjacent viewpoints. Each arc linking
two aspects is characterized by the event(s) that take the one group of observed features to the other. Finally with
each node in the graph we associate a principal viewpoint.

Aspect graphs of target silhouettes can be generated algorithmically or by exhaustive examination of the object.
Our method is algorithmic. The given data are target silhouettes over a set of aspect and elevation angles, obtained
either from CAD data or field data. Using the methods of [6] we construct the corresponding set of characteristic
polygons ’P,q:';., computed (automatically) at the same sensitivity and scale, and representing the silhouette of the
same target T;. Using sophisticated vector quantization techniques we cluster these representations into equivalence -
classes, corresponding to the nodes of the aspect graph. The algorithm simultaneously selects a representative
viewpoint for each node, by selecting the most representative of the corresponding polygonal approximations of the
turning functions (see [6]). We have experimented with various notions of “centroid” so as to select the best turning
function corresponding to that aspect.

When we perform matching against portions of sensor data we use the corresponding polygonalizations of the of
the representative viewpoints from each aspect. This speeds up the matching process considerably. We also have at
the same time a substantial reduction of the set considered for matching. This set consists of all the aspects for each
target. Our experience to date is that for each target we need a small set of aspects to cover the entire viewpoint
range for low elevation, which was the case of interest motivating this work.* An example of viewpoint equivalence
classes for an M60 tank, M35 truck and an M113 APC is shown in Figure 1. We expect a commensurate increase to
cover elevation variations as well.«We note that aspect graphs can be constructed for different values of the resolution
parameter to cover target model variation with respect to range. Let AGT, AGT} denote two aspect graphs of the
same target T;, at resolutions r, s/, where r/ represents the finer resolution. It is clear that the two graphs are tightly
coupled: the aspects of the finer resolution aspect graph are subsets of the coarser resolution aspect graph. On the
other hand the events of the coarser resolution graph are subevents of the finer resolution graph, since the finer
resolution uses more local features of the target. We have also developed algorithms to automatically implement this
quantization processing as well [6]. An aspect graph for an APC at coarse resolution is given in Figure 2.

Finally we can compare aspect graphs for different targets, on the basis of the local features grouped under each
aspect (i.e., node of the graph). A careful comparative analysis reveals possible rankings of the local features or
groups of local features which can be used to guide the ATR search.

- 3.0 EARLY PHASE
The task of the early phase is primarily that of identifying regions of interest (ROls). It accomplishes this by

4Three aspects were needed to cover the range [0°, 90°] for noiseless recognition of CAD models and high contrast targets in synthetic
FLIR; this was initially extended to five aspects for general targets in synthetic FLIR imagery and later extended to seven due to the fast
operation of the on-line probing algorithm and since more aspects don't hurt recognition performance, they only hurt time performance.
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first locating points of interest (POIs) in the image using the so-called vertical contrast probe (VCP) which searches
for locations in the image which are flanked to the left and right by vertically oriented lines of contrast separated by
a distance which is roughly consistent with the known widths between the left and right side edges of the targets at
the various aspects for a given set of range estimates. This probe clearly takes advantage of the iso-oriented target
assumption of the trim2 database (i.e., targets are not “tilted”) but through the “deadband” concept it can tolerate
tilts of about +20° [4]. The vertical contrast probe is a special case of the more general oriented contrast probe [4)
which forms the basis for a more restrictive 4-way contrast probe.

The idea of the VCP is to employ a primitive geometrical constraint to quickly locate candidate points of interest
(POIs) in the image. Around each of these POIs a target box is constructed using the minimum bi-variance edge
(MbVE) algorithm which employs the separation distance found by the VCP and a novel stochastic-geometric line
finder [3] [4]. The MbVE algorithm is a fast, O(n)-complexity, edge-finding algorithm which we developed for its
speed, statistical properties and relation to weak continuity functionals [7], [13].

Each target box so constructed tightly hugs the target if present and provides a reference to define an outer
concentric target box which is precisely the ROL. In Figure 3(a) we show the arrangement of target boxes at a POL.
Figure 3(b) illustrates rough silhouettes extracted from trim2 images which are used to construct ROIs. We note that
these silhouettes are indeed rough and emphasize that our probing algorithms employ no on-line edge extraction or
segmentation for the purposes of matching. The edges shown in Figure 3(b) are only used to automatically construct
an ROI which is well-suited for the classifier processing to follow. Figure 3(c) shows the on-line geometry of such an
automatically constructed ROI consisting of the inner target box and concentric boundary region which are used to
compute statistical features. .

The next step is to run a statistical classifier on the ROI to decide if it is non-target-like clutter or target-like.
Notice that we have used low-level geometry constraints as a first step in identifying POIs worth further consideration,
as opposed to wasting time computing classifier statistics over ROIs which lack such geometrical characteristics. In
addition, the MbVE computation defines a statistically optimal inner-outer split of the ROI adaptively, so that the
classifier can estimate means and variances, etc., with sufficient statistical significance over a minimal set of pixels.

Four statistical features are calculated with reference to the ROI, namely, the contrast-to-noise ratio between the
two, the fractal dimension of the inner box, the Kullback-Liebler distance between the two and the target variance.
These four statistical features together with the height and width of the inner target box and the mean edge strength
provided by the MbVE algorithm together form a seven-long feature vector which is classified using the Learning
Vector Quantization (LVQ) decision rule. LVQ is a nonparametric classifier which “learns” its decision partition rule
by examples from a database. The LVQ classifier was trained using the trim2 database to learn the difference between
actual (simulated FLIR) targets and clutter based on the seven-long feature vector and the trim2 ground truth. The
end result of training the algorithm is a pattition of this seven-dimensional space into labeled cells called Voronoi
cells; the cell labels are target or clutter. During on-line classification, the seven-long feature vector calculated for
each ROI falls into some Voronoi cell of the trained classifier and then the ROI is classified as either target or clutter
according to the label of that Voronoi cell. ROIs classified as clutter are dropped from any further processing. For
this reason, the optimization involved in the off-line LVQ training procedure is not designed to achieve a very low
false alarm rate but instead emphasizes high probability of detection as shown in Table 1.

Loosely speaking, the LVQ classifier is trained to reject obvious, non-target-like clutter. An ROI that is classified
as target is passed on to the late phase along with a confidence that it is a target. The confidence is derived for each
Voronoi cell during training and quantifies the fact that some cells have more discrimination power than others.

4.0 LATE PHASE OF THE PROBING ALGORITHM

The late phase of the Probing Algorithm (PA) emphasizes target recognition proper and the rejection of target-
like clutter. This phase relies heavily on probing methods to estimate the viewpoint and perform the classification
and rejection. First, the viewpoint is estimated, where the viewpoint is a triple consisting of the range to the target,
the position of the target (i.e., the location of the centroid of the silhouette) and the aspect angle of the target.
The viewpoint is estimated using a model-based maximum likelihood estimation procedure, taking a separation of
classification and estimation philosophy. This is the most computationally intensive part of the algorithm, with
complexity linear in the number of targets. Because of this, we conceptually isulated viewpoint probing from the rest
of the algorithm and performed the required optimization using a coarse-to-fine (suboptimal) maximization, the idea
being that future improvements in the mathematical organization of the estimation procedure can be implemented
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immediately, independent of the workings of the remainder of the algorithm. We have recently implemented two
such improvements that result in an order of magnitude speed-up over the code delivered earlier to C2ZNVEO.
Furthermore, it is important to emphasize that even the basic viewpoint estimation module can be given an entirely
parallel implementation using standard digital hardware resulting in efficient real-time operation. In addition, we
have obtained preliminary results which indicate that these probing algorithms may be implemented using an optical
processor, if necessary.

The PA is a model-based algorithm which uses stored silhouette models. Hence, an important question addressed
was how many different representative aspect angles for each target are needed to discriminate between the three
military targets in target-like clutter with high recognition performance. It is here that our results on aspect graphs
and related target model reduction resulted in substantial computational savings. We found that five aspects per
target were sufficient to cover the range [0°,90°] at 1.5km to center field-of-view, although later this was increased
to seven for better overall performance in target-like clutter (i.e., thirteen for [0°,180°]). Again, it is important to
emphasize that this small number of viewpoints can be easily handled in real-time by standard parallel hardware.

A significant proportion of the computations performed by the viewpoint estimation probe (VEP) is directly
related to the maximization over the target model scale, or equivalently, target range. Again, this complexity was
added in order to address CENVEO requirement that the algorithm tolerate about a £0.6km range uncertainty.
However, it is obvious that in an operational FLIR, range uncertainty will be more effectively addressed via multi-
sensor fusion in which range estimation is performed using LADAR or mm-wave sensor data.

For each ROI passed on from the early phase, the VEP algorithm starts off with an on-line estimate of the
mean scale and centroid for each possible target class. .The mean scale is provided by the rough range to center
field-of-view, while the mean centroid is taken to be the centroid of the ROIL. The probing for the true scale (range to
target) and true centroid is performed in a neighborhood of this mean scale and mean centroid. The algorithm also
probes for the true aspect. The end result is three (for the trim2 database) viewpoint estimate triples, say Gy, Ga,
Gy, one for each target class: tank, APC , truck (van). These viewpoint triples have the usual maximum likelihood
interpretation: If a tank is present within the current ROI, then the best guess according to the VEP is that its
aspect, range and location is given by Gy; If an APC is present within the current ROI, then the best guess according
to the VEP is that its aspect, range and location is given by G,; and analogously for the truck (van). Based on these
three estimates, one can derive an overall maximum likelihood decision for the target conditioned on the hypothesis
that the ROI contains a target, however, for improved recognition performance we developed another type of probe,
discussed next, in order to implement a generalized maximum likelihood decision rule.

In the next stage of processing, the three viewpoint triples estimated by the maximum likelihood viewpoint
estimation probe are passed on to the class decision probe (CDP) which exploits the relative juxtapositions, ranges
and aspects of the three hypothesized target silhouettes, as determined by Gy, G, and G, in order to discriminate
between the active target hypotheses. Because the optimization performed by the VEP takes place over a finite, eight-
dimensional set, the number of combinations s finite but large, over 300 million. Of course, through the approximate
coarse-to-fine optimization employed during the viewpoint probing only one-ten thousandth of these combinations
are examined in any given ROI. Nevertheless, since these combinations are not known a priori, the number of
combinations cannot be reduced off-line. Hence, an off-line optimization for the optimal probe sets involving the
entire trim2 database was considered out of the question, especially since even a single change in the parametrization
of the search neighborhoods would entail another enormous off-line optimization. Such an optimization was deemed
to be practically unacceptable in an actual military target recognition environment, especially given the lessons
learned in the Gulf War. Instead, we developed a fast method to compute the optimal probe sets on-line using
computational geometric ideas. These probe sets permit the algorithm to resolve a “best” decision as to the true
contents of the ROI, conditioned on the hypothesis that the ROI contains one of the three targets. The optimality
of this decision is of course constrained by the information provided by the silhouette modeling and we stress that
much better decisions will result from the proper use of full internal boundary models [6].

The basic probing performed by the VEP is to combine the contributions of each local statistic computed on-line
over the optimal probing sets. During this process each viewpoint triple is ranked according to this statistic and
the triple with the highest statistic value defines the maximum likelihood estimate for each target class. The most
complex probing in the PA takes place during the class decision probing. This process is guided by the stored
target silhouette models which determine the geometry and location of the probing sets. The probing sets are then
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superimposed on the image data in order to compute the local statistics. Here, the local statistics can be interpreted
as saliencies (or fidelities) of the hypotheses generated by the stored target silhouettes and the optimal probing sets.
Consider one of the hypothesis pairs passed to the CDP after the viewpoint estimation probing. This involves two
viewpoint triplets, say G; and G, which in general one can think of as representing two silhouettes of two different
sizes, in two different positions and at two different aspects in the vicinity of the ROI. This part of the algorithm can
also be interpreted in a maximum likelihood sense. An asymmetric test is performed, using optimal on-line probing,
designed to maximize the discrimination power of the statistic by optimizing the probing sets. .

After the CDP, the viewpoint triplet of the “winner” is passed on to the target-like clutter probe (TCP) for a final
“target versus clutter” test. The final test employs a combination of four parameters from matching measures based
on probing, which are combined using piecewise linear discriminant functions designed to maximize clutter rejection
without reducing target detection and recognition. This discriminant makes the final target/clutter decision for each
ROI. The final step of the algorithm is to resolve decisions which are spatially inconsistent, for example when two
target calls result in two different targets supposedly occupying the same physical space.

5.0 LATE PHASE OF THE 4-WAY DISTANCE ALGORITHM

The late phase of the 4-Way Distance Algorithm (DA), like the PA, also emphasizes target recognition proper
and the rejection of target-like clutter. The approach used in the DA relies on the use of a polygonal distance metric
for recognition purposes and decision logic designed off-line using classification trees. The DA was developed in order
to explore the utilization of classification trees in learning imagery environments when appropriate databases exist.
It was expected (and experiments and tests validated this) to have inferior performance compared to the PA when
faced with a totally unknown database or scenario.

Decision or classification trees (CT) partition the decision space by performing clustering. CTs are useful in
problems with high dimensionality possessing a mixture of data types and nonstandard data structures and involving
sequential decision making, hence their utility in ATR: Existing databases can be used to construct CTs. Following
[8] the construction of CTs involves three steps: the selection of the set of questions Q, a rule for selecting the best
split and a criterion for choosing the right sized tree.

Binary CTs are constructed by repeated splits of subsets of the measurement data X into two descendant subsets.
A learning sample £ is used simultaneously to construct the tree and provide estimates of performance. In designing
the “optimal” split s for a node t, we consider the decrease in the impurity of the node ¢. More precisely let

I(t) = - Zp(jlt)los p(jlt),

denote the measure of the impurity of node ¢ (the entropy of the node); where p(j|t) denote the proportions of each
class in node t. If t;,tr denote the two nodes splitting ¢ the goodness of the split s is given by

Al(s,t) = I(t) — pLI(tL) — prI(tR).

The optimal split s is selected so as to maximize the above decrease in impurity. The methods developed in [8] first
develop a tree and then prune it to a preferred size by considering estimates of misclassification rates as a function
of the tree depth. An easier to compute impurity index with many good properties is the Gini indez

1(t) = Y plilt)p(s1t).

i#§

As stated in [8], the actual design problem is the clever selection of the questions. In CTs used for ATR the actual
design problem is the selection of the features to use in order to split the nodes. One can examine off-line many
features and select the optimal. One can also design the optimal size CT off-line provided adequate data are available.
The attractive promise of course is that a well designed CT will reduce the on-line time requirements when it is used
for ATR against real data. However, the required Monte Carlo simulations and related computations can be quite
extensive for a large set of targets. Instead of constructing such trees based entirely on Monte Carlo simulations, we
advocate their construction through the use of geometric and physical properties of the target and of the scene, in
order to select appropriate features to split nodes. For instance, the ranking of local features, can provide appropriate
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input for this. The major disadvantage of CTs is that they are relatively inflexible in that changes in the target set
can cause major recomputations.

The 4-way distance method decomposes each target model into four parts called the south, east, north and west,
which represent the bottom, right side, top and left side of the target, respectively. Matching is done in terms of these
subtemplates in order to provide a simple 4-way immunity to target obscuration. This decomposition requires that
the matching process respect constraints such as target consistency, relation consistency and viewpoint consistency.
Target consistency means that each of the four model parts must come from the same target template; relational
consistency, for example, means that the east subtemplate is truly in the east, etc., as well as satisfying other
geometric relations between the local templates; and, viewpoint consistency means that all four parts are consistent
with a certain viewpoint of the target. Recognition is done using a decision tree which is designed off-line. The
consistency constraints just described are embedded in the design implementation of the DA via decision trees. The
matching is done using a polygonal distance metric on a second set of minimum bi-variance edges computed within

the ROI.

6.0 EXPERIMENTS, TESTS AND PERFORMANCE

We have described above two model-based ATR. algorithms utilizing novel techniques. The emphasis of the
work has been to concentrate on a bounded problem so as to initiate a systematic, methodological development of
model-based ATR algorithms while avoiding reliance upon heuristics. In particular, the effort was directed to ad-
dress economic target model development, model complexity, efficient algorithm development, algorithm complexity,
algorithm performance and the relationship of model complexity to algorithm complexity and performance. As a
consequence of these objectives, the algorithms were designed so as to use only target silhouette information at this
phase. The performance achieved in tests and experiments is remarkable given the fact that primarily only target
silhouette data are used and that range has great uncertainty. The use of internal boundaries, thermal characteristics,
etc., is planned for future stages and it is bound to increase dramatically the performance.

The problem definition provided to us by C2NVEO had the following key ingredients: Three-class/flat-earth
scenarios as in C2NVEO trim2 database; Target classes consisting of the M60 tank, the M113 APC and the M35
truck (or van); 2° camera depression angle. Only the rough range to center field-of-view was assumed as input with
the nominal ranges to center field-of-view being 1.5km, 2.5km, 3.5km and 4.5km as in the trim?2 database. Many
ATR algorithms require as input some a priori estimate of the clutter level within the input image; our approach,
however, does not require this information as it employs a probing-based, on-line estimator of the clutter level that
works with essentially 100% accuracy. Through a self-scaling feature the PA can handle input range bins from 1km
to 5.5km. This scaling feature was included at a significant computational cost in order to satisfy the constraint
that the algorithm tolerate rough range estimates to center field-of-view (+0.6km) on input. Both algorithms were
designed under the iso-oriented target assumption, i.e., that neither the targets nor the camera are “tilted” as is
true in the trim2 database; including “tilt” and other orientation uncertainty is a straightforward extension of the
methodology. The PA was designed with a modest immunity to target obscuration: certain types of obscuration
involving up to approximately 40% of the target silhouette boundary can be withstood by the PA.

The PA algorithm is divided into two phases called the early phase and the late phase. The objective of the
early phase is to reject non-target-like clutter and to locate candidate regions of interest (ROIs) for subsequent
classification within the late phase. The late phase classifies the ROIs passed to it as either target-like clutter or
as target. If a given ROI is classified as target, then the PA also provides the target class decision and calculates a
viewpoint estimate consisting of a position estimate for the centroid of the target, a range estimate for the target
and an aspect angle estimate. The PA currently emphasizes primarily silhouette boundary information, although
more fully incorporating internal boundary details is a relatively straightforward extension of the basic methodology
and should result in substantial improvement in recognition performance and false alarm suppression. In the current
version of the PA, internal boundary information is mainly used to identify so-called “signature targets,” e.g., a
tank with a cold turret and a hot chassis. The PA was initially designed to accept parameter sets categorized by
two clutter levels, high and low, and four ranges. This resulted in eight different sets of parameters to fine-tune,
although as it turned out, the final settings of the most important parameters were practically identical for all eight
combinations of range and clutter. For example, the clutter rejection probe employed by the PA uses the same
four filter parameters and four thresholding parameters across all ranges and clutter levels. This indicates that the
parameterizations chosen are in a certain statistical sense “minimal” and robust.
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The DA algorithm also is divided into an early and a late phase. The early phase is essentially identical to that of
the PA algorithm, while the late phase employs polygonal distance matching and decision tree logic. The DA employs
substantial learning and can be trained to learn a database. On the other hand, the PA algorithm is adaptive and
does not require learning of training for recognition. It is expected that the probing algorithm will perform better
on previously unseen databases. On the other hand, a well-trained DA can provide a calibration of the performance
of the PA.

Table 2 gives typical values for pixels on strong to medium contrast targets for database comparison purposes. In
Tables 3-5 we provide typical results for the two algorithms on the C2NVEO trim2 terrain board data. In Table 3,
we see that the 4-Way Distance algorithm can indeed achieve extremely good performance via over-training. The
tree trained for the results in Table 3 had over 200 nodes, so this represents a significant amount of learning. This
table therefore provides a benchmark, a close to optimal performance measure, against which one can assess the
relative performance of the PA or the absolute difficultly of the database. Table 4 shows that the performance of the
probing algorithm compares favorably against this benchmark. Note in particular the very good results indicated in
the confusion matrices. Table 5 gives the results of the 4-Way Distance algorithm without optimized learning and
we see the concommitant loss of performance.

Based on our partial inspection of tests performed by CENVEO on an unknown database it appears that the
performance of the PA reported in Table 4 has held up. In part we attempted to account for the fact that almost
one-third of the targets in these tests were tilted, a condition not addressed in the design of the PA.

A proprietary analysis utility for the PA which visually displays the algorithm in operation has been built. In
Figure 4 through Figure 9 we show some representative “screendumps” during part of an on-line session involving
part of the late phase and a thermally uniform head-on tank from the trim2 database (cota:0531). Figure 4 through
Figure 6 show the VEP in operation as it probes for the optimal viewpoint triple. The upper left window shows
the target and associated probing sets. The two central windows show the current (left) and current best target
for each class (right) and their associated “two-dimensional” probing statistics. The two bottom windows show the
one dimensional probing statistics. Figure 7 and Figure 8 show screendumps of the CDP in action at two phases of
the class decision probing; the windows have the analogous interpretation. Figure 9 gives a close-up of the optimal
probing sets computed on-line for this engagement. This analysis utility facilitates improvements in the Probing
Algorithm’s capabilities and performance.

7.0 CONCLUSIONS AND EXTENSIONS

In conclusion, we have described an approach to ATR, algorithm design which is model-based and relies extensively
on advanced probing methods. From the early phase to the late phase the resulting algorithms expend computational
time on an ROI proportional to the difficulty of the region, however the main parts of the algorithms are entirely
parallelizable and involve only simple local computations. Of the two algorithms, the probing algorithm is the most
promising and has produced the best results to date in experiments and tests. It is also robust and displays graceful
degradation when unknown or only partial data are encountered.

Future areas of investigation include expansion to a six to ten class problem, handling obscuration in an even more
robust way, including tilt estimation within the viewpoint estimation probe, and extension to multiple sensors as well
as improving the organization, speed, detection performance and recognition power of the algorithms. Regarding
extension to multisensor ATR, we would like to point out the similarity of target silhouette representation described
in [6] for FLIR imagery, with that of target silhouette representation in LADAR data, and in target range profiles in
mm-wave data. The former is obvious, the latter can be seen easily from the data in Figure 10. Figures 10(a), (b),
(c) display mm-wave radar range profiles for a tank, APC and truck, respectively, from the VISION I database. The
resulting piecewise constant waveforms are quite similar with the polygonal approximation to the target silhouette
when viewed in turning function space [6] as Figurel0(d) clearly illustrates. This commonality of data representation
implies that our scale-space polygonalization methods, clustering, learning and probing algorithms can be easily
modified so as to apply on data from other sensors as well as in producing efficient feature based fusion in multi-
sensor ATR algorithm development.
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Probability of Target Detection from Early Phase

Range | Clutterl | Clutter2 | CLutter 3
1500 1.00 1.00 0.98
2500 0.98 0.92 0.98
3500 0.97 0.99 0.97
4500 0.97 0.96 0.94
Table 1

Number of Pixels on Template

Range | M60-0 deg | M60-90 deg | M113-0 deg | M113-90 deg | M35-0 deg | M35-90 deg
1500 1302 2220 640 1045 864 1771
2500 396 714 192 363 289 616
3500 176 336 135 276 120 280
4500 108 184 81 171 72 147

Table 2
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4-Way Distance Algorithm (over-trained) (trim2 database)

Probabilities of Detection and False Alarms for all Ranges and Clutter Classes

Prob. Detection | False Alarm/sq.deg | Range | Clutter Class
0.92 0.01 1500 1
0.87 0.00 2500 1
0.76 0.02 3500 1
0.58 0.63 4500 1
0.81 0.24 1500 2
0.73 0.22 2500 2
0.69 2.62 3500 2
0.65 2.29 4500 2
0.74 0.42 1500 3
0.74 0.21 2500 3
0.74 2.27 3500 3
0.70 2.84 4500 3

Confusion Matrix for all Clutter Classes at 1500m

Tank | APC | Truck
Tank | 0.80 | 0.06 | 0.09
APC | 0.13 | 0.87 | 0.07
Truck | 0.07 | 0.07 0.84

Confusion Matrix for all Clutter Classes at 2500m

Tank | APC | Truck
Tank | 0.81 { 0.09 | 0.03
APC | 0.09 | 0.82 | 0.01
Truck | 0.10 | 0.09 | 0.96

Confusion Matrix for all Clutter Classes at 3500m

Tank | APC | Truck
Tank | 0.69 | 0.10 | 0.12
APC | 0.17 | 0.76 | 0.17
Truck | 0.14 | 0.14 { 0.72

Confusion Matrix for all Clutter Classes at 4500m

Tank | APC | Truck
Tank | 0.82 | 0.08 | 0.25
APC | 0.09 [ 079 | 0.14
Truck | 0.09 | 0.13 | 0.61

Table 3
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Probing Algorithm (trim2 database)

Probabilities of Detection and False Alarms for all Ranges and Clutter Classes

Prob. Detection | False Alarm/sq.deg [ Range [ Clutter Class
0.85 0.00 1500 1
0.87 0.01 2500 1
0.71 0.05 3500 1
0.54 0.27 4500 1
0.77 0.29 1500 2
0.70 0.26 2500 2
0.65 3.50 3500 2
0.53 1.48 4500 2
0.67 0.89 1500 3
0.82 0.42 2500 3
0.72 2.43 3500 3
0.57 2.25 4500 3

Confusion Matrix for all Clutter Classes at 1500m

Tank | APC | Truck
Tank | 0.74 | 0.03 | 0.11
APC | 0.22 | 0.89 | 0.13
Truck | 0.05 | 0.08 | 0.77

Confusion Matrix for all Clutter Classes at 2500m

Tank | APC | Truck
Tank | 0.83 | 0.07 | 0.12
APC | 0.07 | 0.82 | 0.01
Truck | 0.10 | 0.11 | 0.87

Confusion Matrix for all Clutter Classes at 3500m

Tank | APC | Truck
Tank | 0.73 | 0.05 | 0.15
APC | 0.19 | 0.80 | 0.10
Truck | 0.09 | 0.15 | 0.75

Confusion Matrix for all Clutter Classes at 4500m

Tank | APC | Truck
Tank | 0.82 | 0.14 | 0.14
APC | 0.06 | 0.64 | 0.07
Truck | 0.12 | 0.22 | 0.79

Table 4
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4-Way Distance Algorithm (trim2 database)
Probabilities of Detection and False Alarms for all Ranges and Clutter Classes

Prob. Detection | False Alarm/sq.deg | Range | Clutter Class
0.83 0.02 1500 1
0.87 0.00 2500 1
0.76 0.02 3500 1
0.58 0.69 4500 1
0.71 0.38 1500 2
0.69 0.41 2500 2
0.68 2.35 3500 2
0.62 2.17. 4500 2
0.64 0.46 1500 3
0.62 0.49 : 2500 3
0.69 2.00 3500 3
0.70 2.55 4500 3

Confusion Matrix for all Clutter Classes at 1500m

Tank | APC | Truck
Tank | 0.81 | 0.04 | 0.08
APC | 0.12 | 0.89 { 0.05
Truck | 0.07 | 0.07 | 0.87

Confusion Matrix for all Clutter Classes at 2500m

Tank | APC | Truck
Tank | 0.86 | 0.09 | 0.02
APC 0.10 | 0.87 0.01
Truck | 0.04 | 0.04 | 0.98

Confusion Matrix for all Clutter Classes at 3500m

Tank | APC | Truck
Tank { 0.38 | 0.08 | 0.09
APC | 0.22 | 0.61 | 0.20
Truck | 0.40 | 0.31 | 0.71

Confusion Matrix for all Clutter Classes at 4500m

Tank | APC | Truck
Tank | 0.83 | 0.08 | 0.25
APC | 0.08 | 0.79 | 0.14
Truck | 0.08 § 0.12 | 0.61

Table 5
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