W-15
ICASSP-93

~ Speech Processing
Volume II of V

1993
IEEE International
Conference
on
Acoustics,
Speech, and
Signal Processing

April 27-30, 1993
Minneapolis Convention Center
Minneapolis, Minnesota, USA

93CH3252-4



Robustuess Study of Free-Text Spealker Identification and Verification

Yu-Hung Kaor John S. Baras! P. K. Rajasckaran
Texas Instruments Incorporated
Dallas, TX 75265

Abstract

Usable free-text speaker identification and voice
verification systems must exhibit robustuess under
varying operational conditions. We study the de-
gree of robustness provided by various signal pro-
cessing techniques [1] [2] [3] by experimenting on a
widely used long distance telephone data base [
[5] [6]. This data base cousists of data recorded at
two different sites. with data from one site much
poorer in quality than the other: further. the record-
ing equipment had been inadvertently changed for
the later half of the sessions resulting in a signifi-
cantly changed environment. Our study identifies
the combination of techniques that provide consis-
tent and significant improvements; our results sur-
‘pass other published results [4] [5] [6] on the same
task. Specifically, in the task of identilying 16 speak-
ers. with training data from the recording prior to
eqquipment change and testing on data from a set af-
ter the change (the most challenging condition), we
oblain a correct identification rate of 87.5% with an
average rank of 1.12; [4] obtains the hitherto best
result of TH% correct identilication with an average
rank of 1.56: without any robustness processing, the
rale was only 12%. Detailed results on exhaustive
experimentation ate presented along with appropri-
ate discussions.

1 Introduction

This paper preseuts the results of experimental in-
vestigations of several envirommental robustness al-
gorithms on the free-text speaker identification and
verilication tasks. The following algorithms (with
slight modification to fit the speaker identification
context) were studied and extensive experhments
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were performed on the “King" database [4] [5] [6]:

1. 1ISDCN (Interpolated SNR Dependent Cepstral
Normalization) {1].

2. Bandpass liftering [2].

3. RASTA-PLP [3].

4. RASTA [3].

5. Bandpass liftering and RASTA.

ISDCN provided only marginal improvement. in
performance, and involved a high degree of compu-
tational complexity. RASTA-PLP. as described in
[3]. did not yield any gain in our experimentation.
However, by using a modified version of RASTA-
PLP. called RASTA (operating in the cepstral do-
main instead of the perceptual spectral domain as
in [3]). provided significant performance improve-
ments. Combining bandpass liftering with RASTA
resulted in the best overall performance. Experi-
mental results on ISDCN and RASTA-PLP are not
presented in this paper for the sake of brevity.

2 Algorithm

The front-end of our system consists of extract-
ing 20 cepstral coefficients from a 14-th order LI’C
analysis (20 s frame period, 30 s window) on
speech data sampled at 8KHz. Experiments were
performed on cepstral coefficients without (haseline)
and with robustness processing. results tabulated
and compared. A simple energy threshold was used
to discard non-speech. A 30-element codebook was
trained for each speaker as the speaker model.

e Speaker identification: Tesl utterances were
coinpared frame by frame with each speaker
model: best codeword match was selected for
each model. and then distortions were acculuu-
lated to make the final decision.
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* Open sct speaker verification: Use half of (he
speakers in the database as registered largets,
and the other half as impostors. Test utterances
were compared with all the registered targel
models, and the accumulated distortions were
tallied to compute the rank of the claimed iden-
tity. Il the rank is better than a certain thresh-
old - accept, otherwise - reject. The _Lhresl]olds
were adjusted over a range to generat® the ROC!
plot (detection vs. false alarm).

Because the higher order cepstral coeflicients have
less discriminating power and the lower order coeffi-
cients are more susceplible to environmental varia-
tion, we use a window function to de-emphasize hotl
higher and lower order coeficients, called bandpass
liftering [2].

wk)=1+ hsin(zk/L)

where h = L/2, k = 1,2..... L and w(k) = 0 for
other k, with L = 20.

Alternatively, we can filter the cepstral vector,
with the following filter:

177 b agzm3 gyt
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H(:) = Gy +a

with the coefficients chosen to approximate a hand-
pass frequency response. This bandpass operation
is supposed to filter out. slow] ¥ varying components
of the cepstral coellicients in order to normalize en-
vironmental variations, called RASTA filtering [3).

Further, bandpass liftered cepstral coefficients can
be processed by the RASTA filter as well.

3 Data Base

The data base utilized in this study is the narrow-
hand portion of “King™, collected in 10 sessions from
H1 male speakers. 26 from San Diego and 25 from
Nutley. The speakers were asked to talk about sev-
cral topics, so that the speech is natural and spon-
tancous. The data were collected over long distance
telephone line, and the data for 25 Nutley speak-
ers were miuch noisier than that of 26 San Diego
speakers. T'he speech material from each session is
approximately 45 seconds long; the data were digi-
tized at & kilz and 12-bit resolution. Sessions 1 to
5 and sessions 6 to 10 were collected under different
environments. This division of data, “the great di-
vide™, results in serious degradation of performance
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as observed in [4] when training on one set and test-
ing on the other. Also the Nutley data are much
noisier than San Diego data. \We performed our ex-
periments in three conlexts: San Diego alone (26
speakers), Nutley alone (25 speakers), and all 5]
speakers combined. Further, the experiments were
carried out across “the great divide™ for the most
challenging test condition.

4 Experiments and Results

4.1 Speaker Identification

Table 1 shows the results “within the great divide™,
table 2 shows the results “across the great divide™,
As the robustness processing techniqyues were added,
the performance improved significantly.

¢ Within the great-divide: train on sessions |, 2,
3. test on sessions 4, 5: train ou sessions 6, 7, &,
test ou sessions 9, 10.

® Across the great-divide: train on sessions |, 2,
3, test on sessious 9, 10; train on sessions 6, 7,
8, test on sessions 4. 5.

Table 3 shows the comparison of our resulls with
[4], for 16 San Diego speakers, trained on sessions 1.
2, and 3, tested on sessions 9 and 10.

4.2 Open Set Speaker Verification

Fig 1, 2, and 3 show the ROC plots for San Diego,
Nutley and all 51 speakers experiments respectively.
There are four curves in each figure:

e b: baseline, within the great divide.

¢ 1n: normalized (bandpass liftering & RASTA).
within the great divide.

* bx: baseline. across the great divide.

* ux: normalized (bandpass liftering & RASTA).
across the great divide. }

5 Discussions ' and
Conclusions -

Tables 1 and 2 clearly show the independent cou-
tributions of bandpass liftering and RASTA (o per-
formance improvement. Bandpass liftering deem-
phasizes the highly variant and noisy cepstral coef-
ficients and is a static correction. RASTA smoothes




all of the cepstiral coeflicients by a haundpass filtering
operation thereby attemipting to remove the effects
ol the channel and the transducer. In this sense, the
spoken material is “self-normalized,” providing ro-
bustness. Thus, by combining the static (bandpass
Hftering) and dynamic (RASTA) techniques, we oh-
tain the benefits of both techniques. Note that im-
provements are dramatic when the testing is across
the greal-divide. An interesting observation is that
we gel these improvenients without using any spe-
cifie noise-removal technique, such as spectral sub-
traction used in [6]. We have verified the consis-
tency of the results of this paper on an indepen-
dent data hase, called the continuous speech recogni-
tion (C'SR) data base. CSR counsists ol simultaneous
recording of speech material from subjects using two
different types of microphones. Hence CSR. provides
an excellent. means of not only establishing cousis-
teucy of our results, but also to develop insight into
why these techniques work. This is accomplished by
examining scattergrams of the various cepstral co-
eflicients for recording with the two different micro-
phones with and without robustness processing. As
shown in Fig. 4, the cepstral coellicients ol mic-1 vs.
mic-2 are more aligned with = y after RASTA fil-
tering. All of the above discussions hold for speaker
verification as well.

Baseline
San Diego | Nutley All
ID-rate 81.73% 35% | 58.82%

2.01923 558 | 3.87745

Bandpass Liftering
- San Diego | Nutley All

ID-rate 85.58% 47% | 66.67%

Average-rank

Average-rank 1.68269 4.11 | 2.88725
RASTA
, San Diego | Nutley All
ID-rate 91.35% 50% | 71.08%

Average-rank 110577 351 | 2.29902
Baundpass Liftering & RASTA
Saun Diego | Nutley All
ID-rate 94.23% 61% | 77.94%
Average-rank | 1.07692 2.72 | 1.89706

Table 1: Within the great divide

We have identified, by systematic investigation, a
combination of techniques that provide a very robust
performance. llowever, additional work is needed
to improve the performance across the great divide
to be al the level of performance within the great

divide. Also, additional investigations planned with
experimentation on a highly challenging corpus, the
Switchboard [7], will shed further light.

Baseline
San Diego | Nulley All
1D-rate 7.69% 36% | 19.61%

10.0385 6.49

Bandpass Liltering
San Diego | Nutley All

Average-rank 11.4608

ID-rate 36.54% 46% | 36.76%
Average-rank | 4.86538 4.86 | 6.37745H
RASTA

San Diego | Nutley All
ID-rate 42.31% 3% | 43.63%

4.56731 3.35
Bandpass Liftering & RASTA
San Diego | Nutley All
ID-rate 77.88% 65% | 58.82%
Average-rank 1.86538 2.24 | 3.48529

Average-rank 6.23039

Table 2: Across the great divide

[4] | BPL & RASTA
1D-rate H% R7.5%
Average-rank | 1.56 1.12

Table 3: Comparison between [4] and BPL & RASTA
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Fig 1: San Diego (26 speakers)
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Fig 2: Nutley (25 speakers)
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Fig 3: All (51 speakers)
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Fig 4A: Scattergram of mic-1 vs. mic-2
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Fig 4B: Scattergram of mic-1 vs. mic-2
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