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Abstract

We consider the problem of optimal binary image restoration under a union or intersection noise
model. Union noise is well suited to model random clutter (obscuration), whereas intersection noise
is a good model for random sampling. Our approach is random set-theoretic, 1.e. digital images are
viewed as realizations of a uniformly bounded discrete random set. First we provide statistical proofs
of some “folk theorems” of Morphological filtering. In particular, we prove that, under some reasonable
worst-case statistical scenarios, Morphological openings, closings, unions of openings, and intersections
of closings, can be viewed as MAP estimators of the signal based on the noisy observation. Then we
propose a “generic” procedure for the design of optimal Morphological filters for independent union or
intersection noise.

1 Introduction

An important problem in digital image processing and analysis is the development of optimal filtering
procedures which attempt to restore a binary image (“signal”) from its degraded version [17. 3]. Here.
the degradation mechanism usually models the combined effect of two distinct types of distortion, namely.
image object obscurations because of clutter, and sensor/channel noise. It is typically assumed that the
degraded image can be accurately modeled as the union of the uncorrupted binary image with an independent
realization of the noise process, which is a binary image itself [9]. This degradation model is known as the
union noise model. Other models exist, such as the intersection noise model, and the combined union-
intersection noise model, which are defined in the obvious fashion. The assumption of independence is
crucial for the theoretical analysis of optimal filters, and it is plausible in many practical situations. These
models are rather general, in that they can be tailored to describe most popular types of signal-independent
noise, e.g. salt-and-pepper noise (also known as Binary Symmetric Channel, (BSC) transmission noise),
burst channel errors, noise with a geometric structure {9}, occlusion, etc.

This research has been largely motivated by the works of Haralick, Dougherty, and Katz [9], and Schon-
feld and Goutsias [17]. Their approach is model-based, in that they assume specific probabilistic/geometrical
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models that govern the behavior of both signal and noise “patterns”, i.e. the elementary geometrical prim-
itives from which the signal and noise images are constructed. Haralick, Dougherty, and Katz assume that
the signal and noise patterns are “non-interfering” with one another, meaning that each signal or noise pat-
tern is disconnected from all remaining signal and noise patterns. Schonfeld and Goutsias make a stronger
assumption concerning the separability of noise patterns. These assumptions are reasonable if the image
is sparse, i.e. the signal and noise patterns are most likely to remain uncluttered. Haralick, Dougherty,
and Katz adopt the area of the symmetric set difference between the ideal image and its reconstruction as
their choice of distance metric, and work with a union noise model to derive the optimal (in the sense of
minimizing the expected distance between the signal and its reconstruction) value of a “size” parameter
which determines the optimal filter within a restricted family of Morphological Opening Filters [14, 18, 4].
In their work, the signal and noise patterns are all assumed to be of the same basic shape, and only their size
varies. Schonfeld and Goutsias consider Morphological Alternating Sequential Filters (ASF’s) [14, 18, 4],
and work with the union/intersection noise model. They adopt an implicit least mean difference “uniform”
optimality criterion (i.e. the best filter, within a family of filters, is defined to be the one which minimizes an
average (over the family) distance metric between the outputs of all the filters in the family, for a given class
of inputs). They derive the “optimal” ASF by means of minimizing an upper bound on their cost function.
Related work can also be found in a series of papers by Dougherty, et al. [5, 7, 6].

Our work differs from the reviewed literature in many ways. The most important is that it is based on
statistical, rather than topological, assumptions on the signal and the noise. We start with some background
on discrete random sets.

s

2 Discrete random set fundamentals

Definition 1 Let B be a bounded subset of Z?. Assume that B contains the origin. Let T(Q) denote the
c-algebra on Q. Let £(B) denote the power set (i.e. the set of all subsets) of B, and let £(I(B)) denote the
power set of £(B). A Uniformly Bounded Discrete Random Sel, or, for brevity, Discrete Random Set
(DRS), X, on B, is a measurable mapping of a probability space (2, £(Q), P) into the measurable space
(X(B),Z(X(B))). A DRS X, on B, induces a unique probability measure, Px, on S(S(B)).

Definition 2 The functional
Tx(K)=Px(XNK #£0), K € £(B)

1s called the capacity functional of the DRS X.
Definition 3 The functional

Qx(K)=Px(XNK =0)=1-Tx(K), K € £(B)
s called the generating functional of the DRS X.

In the context of DRS’s, the generating functional plays a role analogous to the one played by the
cumulative distribution function (cdf) in the context of scalar discrete random variables. We have the
following fundamental theorem. See {19}, or {20, 21] for the proof.
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Theorem 1 Given Qx(K), VK € £(B), Px(4), VA € £(Z(B)) 1s uniquely determined, and, in fact, can
be recovered via the measure reconstruction formulas

Px(A) =Y Px(X =K)
KeA

with , )
Px(X=K)= Y (-DEIQx (K UK)
K'CK

The uniqueness part of this theorem is originally due to Choquet (1], and it has been independently introduced
in the context of continuous-domain random set theory by Kendall [10] and Matheron [13, 14]. Related results
can also be found in Ripley [16]. However, the measure reconstruction formulas are essentially only applicable
within a uniformly bounded discrete random set setting.

3 Mathematical Morphology

The theory of Mathematical Morphology has been developed mainly by Serra 18, 8], Matheron [14], and
their collaborators, during the 70’s and early 80’s. It is founded on two elementary set operators, namely set
dilation/erosion, which are defined in terms of a structuring element, l.e. a “small”, primitive set of points.
Let

w2 {ze2®| —z€ W}

The dilation of a set Y C Z? by a structuring element W is defined as'
Yyew' 2 {:ez?|W.NY #0}
whereas the erosion of a set Y C Z° by a structuring element W is defined as
yew 2{:e2’|W.CY]}
The opening, Y o W, of a set Y C Z? by a structuring element W, is defined as

vyowlewnew= |J W
€22 | W.CY

Similarly, the closing, Y ¢ W, of a set Y C Z? by a structuring element W, is defined as
YeWE2(YoW)oW

A set Y is said to be (Morphologically) open (closed) with respect to the structuring element W iff YoW =1
(YoeW =Y). We shall say that a set Y is smooth with respect to W iff Y can be expressed as a union of
shifted replicas of W. Y is open with respect to W, iff ¥ is smooth with respect to W. Y is closed with
respect to W iff Y¢ is smooth with respect to W.

1Here we follow the original definitions of Serra [18]. In his work the symbol & stands for Minkowski set addition, and the
symbol © stands for Minkowski set subtraction.
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4 Some results on constrained optimality, or, why Morphology
is popular

Morphological filters are very flexible, mainly because of the freedom to choose the structuring element(s),
to meet specified criteria. Among other things, Morphological filters have been widely used to filter out
certain kinds of impulsive noise, such as the so-called salt-and-pepper noise, in both binary and gray scale
images [17, 4, 7, 6, 2, 3, 22]. For example, it is widely believed that opening is suitable under a union
noise model, while closing is suitable under an intersection noise model. ASF’s are deemed appropriate
under a combined union/intersection noise model. Indeed, these filters are used extensively, and they deliver
adequate filtering in a variety of noisy environments. The natural question, then, is whether we can provide
some sort of theoretical justification for their use. As it turns out, these filters are indeed optimal under
reasonable worst-case scenarios. In particular, if we assume that the signal is sufficiently smooth, and the
noise is i.i.d., then these filters provide the Maximum A Posteriori (MAP) estimate of the signal, X, on the
basis of the observation Y. We have the following results.

Theorem 2 Let Ow (B) denote the collection of all W-open subsets of B. Assume that the signal DRS, X,
on B, induces the following probability mass function on X(B):

m , if [\"EOw(B)
Px(X=K)=

0 , otherwise

s

where | | stands for set cardinality. Furthermore, assume that the observable DRS isY = X UN, where N
is a homogeneous Bernoulli lattice process of intensity r € [0,1) (i.e. each point z € B is included in N with
probability v, independently of all other points), which is independent of X. Then Y oW 1s the unigue MAP
estimate of X on the basis of Y, regardless of the specific value of r.

Proof:
Let )’(\'MAP(Y) denote the MAP estimate of X on the basis of Y. Then, by definition,
X’MAP(Y) =arg mazgex(gy {Pr(X =K |Y)}

Using Bayes’ rule, R
/YMAP(Y) = arg MarKes(B) {PT‘(Y | X = [\)P,\(/Y = [\)}

- . 1 v
= arg MaTgcow(B) {Pr(Y | X = [&)m} =arg matgeo, () {Pr(Y | X = N)}

. K 1y
= arg mazkeow(B), key {Pr(Y | X = K)} = arg mazkeo, (), kY {TIY' (L= yBImH I}
= arg MaTgeow (B), KCY {r‘iK‘} =arg maTgeow(B8), Ky {IN1}
So )?AIAP(Y') is the largest W-open subset of Y, which is by definition the opening of ¥ by 117 1.e.

Xyap(Y)=YoW
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and the proof is complete. O

A little reflection on the above result is in order. First, observe that the proof crucially depends on |B|
being finite. Indeed, theorem 2, as well as the three theorems that follow, do not make sense when the
lattice extends to infinity. Thus, a uniformly bounded discrete random set approach offers a fresh statistical
perspective of Morphological filtering, one which is not apparent within other formulations. The suppositions
of the theorem indeed correspond to a worst-case statistical scenario: if all that is known about the signal
is that it is almost surely (a.s.) smooth (open) with respect to W, then it is reasonable to model this
knowledge using a uniform distribution over the set of all W-open subsets of B, to reflect the fact that the
signal exhibits no other (known) probabilistic structure. Also, i.i.d. noise is the worst kind of noise, in the
sense of maximizing the Shannon entropy of the noise DRS N. Both these suppositions are plausible in
practice, and this explains why the opening filter is successful under a union noise model. It is worth noting
that the MAP estimate does not depend on the noise level, 7. By duality, we have a similar theorem for
MAP optimality of closing under i.i.d. intersection noise [19]. We state the following generalizations without
proof.

Theorem 3 Let Ow,...w,,(B) denote the collection of all subsets K of B which can be written as

K= U Ki, Ki€Ow/(B), i=1, - M
i=1,-- M

Assume that the signal DRS, X, on B, induces the following probability mass function on T(B):

w0 K€ O0w - wi(B)
Px(X =K)=

0 , otherwise

Furthermore, assume that the observable DRS 1s Y = X UN, where N 15 a homogeneous Bernoulli lattice
process of intensity r € [0,1), which is independent of X. Then

Xaap(Y) = U Y o W;
i=1 M

Theorem 4 Let Cw, .w,, (B) denote the collection of all subsets K of B which can be written as

K= ()| Ki Ki€Cw(B) i=1 M
i=t, M

Assume that the signal DRS, X, on B, induces the following probability mass function on T(B):

Ith..._le(BTl , if K €Cw,, . .wy(B)
0 , otherwise

Furthermore, assume that the observable DRS s Y = X N N, where N is a homogeneous Bernoulli latiice
process of intensity v € [0,1), which is independent of X. Then

SuapY)= [ Y oW
i=1, M
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In practice, it may not be realistic to assume that the noise is i.i.d., and/or that the signal is uniformly
distributed over a collection of Morphologically smooth sets. Our programme is to develop a “generic”
optimal design procedure to address this problem. For this, we need to move away from our curre t notion
of optimality. Optimality is usually defined by means of minimizing a cost function. Up to this ,.oint, we
have focused on MAP optimality, which corresponds to minimizing the total probability of error. In what
follows, we reformulate the optimal filtering problem in a more general setting, and consider an alternative
cost function.

5 Formulation of the optimal filtering problem

Let X, N,Y be DRS’s on B. X models the “signal”, whereas N models the noise. Let g : £(B) x £(B) —
Y(B) be a mapping that models the degradation (measurability is automatically satisfied here, since the
domain of g is finite). The observed DRS is Y = g(X,N). Let d : £(B) x £(B) — Z, be a distance metric
between subsets of B. In this context, the optimal filtering problem is to find a mapping f : £(B) — I(B)
such that the expected cost (expected error)

E(e) 2 Ed(X,X), X =f(Y)=fg(X,N))

is minimized, over all possible choices of the mapping (“filter”) f. This problem is in general intractable. The
main difficulty is the lack of structure on the search space. The family of all mappings f : ¥(B) — Z(B) is just
too big. It is common practice to impose structure on the search space, i.e. constrain f to lie in F, a suitably
chosen subcollection of admissible mappings (family of filters), and optimize within this subcollection. The
resulting filter is the best among its peers, but it is not guaranteed to be globally optimal.

We adopt the following distance metric (area of the symmetric set difference)

d(X, X) = [(X\X) U (X\X)] = [(X\X)] + [(X\X)| = (X UXINX NX) = [(XUX)[ - [(XN.X)

where | | stands for set cardinality, \ stands for set difference, i.e. X\Y = X NY* and ¢ stands for
complementation with respect to the base frame, B. This distance metric is essentially the Hammang
distance [15] when X, X are viewed as vectors in {0, l}lBl. Since the component variables are binary, it can

also be interpreted as the square of the L, distance of vectors in {0, 1}|B|.
In terms of the degradation, we assume that N is independent of X, and that the mapping g is given by

g(X,N)=XUN (union noise model)

or,
g(X,N)= X NN (intersection noise model)

6 Optimal increasing, shift-invariant filters with a basis
constraint
A surprising result, originally due to Matheron [14], and subsequently improved upon, and used by

Maragos [12], and Dougherty et al., and Giardina [4, 5, 7, 6], is that a very large class of (linear and non-
linear) shift-invariant operators can be decomposed into a union of erosions by suitable structuring elements.
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Let E = Z2, and let £(E) denote the power set of E. Let ¥ : Z(E) — T(E). Recall that ¥ is increasing
iff X, C X, = ¥(X1) C ¥(X2), VX1 € Z(E), X2 € E(E). We now reproduce some key theorems, taken
from [14, 12].

Theorem 5 [14] For any shift-invariant and increasing mapping ¥ : L(E) — Z(E), and for all X € L(E),

yx)= |J xew
WeKer(¥)

where the kernel of ¥, Ker(¥), is defined as

Ker(¥) £ {W e £(E) | 0 € ¥(W)}
Theorem 6 [12] For any shift-invariant and increasing mapping ¥ : L(E) — T(E), and for all X € T(E),

¥x)= |J xew
WeBas(¥)

where the erosion basis of ¥, Bas(¥), is defined as
Bas(¥) 2 {W € Ker(¥) | W' € Ker(¥) and wewsw =w)

As a result of the latter theorem, the number of structuring elements that are needed for the decompo-
sition is greatly reduced. Dougherty et al. [5, 7, 6], have made extensive use of this result to reduce the
complexity associated with the design and implementation of optimal mean-square Morphological filters.
By duality, there exists an equivalent decomposition of any shift-invariant and increasing mapping as an
intersection of dilations [2] over a dilation basis. Using these decompositions, the problem of finding the
optimal shift-invariant and increasing filter reduces to a problem of optimal basis design, which admits a
natural hierarchical parameterization in terms of a basis size constraint. The upper bound on the size of
the basis is usually determined by design and implementatior complexity considerations. However, under a
basis size constraint, we are faced with an additional problem: should we choose the expansion in terms of
an erosion basis, or in terms of a dilation basis? We will argue for the following point: under an intersection
noise model, contrary to our intuition, we should think of the optimal filter as a union of erosions, whereas 3
under a union noise model we should think of the optimal filter as an intersection of dilations. In both cases,
we can work out theoretical formulas for the cost function.

7 Optimizing a single structuring element

In the case of union noise, the simplest non-trivial expansion in terms of a dilation basis involves two
structuring elements, one of which is constrained to be the origin. This is because we want the overall
operation to be anti-extensive, i.e. the output must be contained in the input. Dilation by the origin simply
yields the input itself. Therefore, the simplest non-trivial class of constrained dilation basis filters for union
noise can be written as follows:

X= f)=fw@¥)=(YoWwWH)nYy =[(XUN)®e W' IN(XUN), for some structuring element, W
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Similarly, in the case of intersection noise, the simplest non-trivial expansion in terms of an erosion basis
involves two structuring elements, one of which is constrained to be the origin (because we want the overall
operation to be extensive, i.e. the output must contain the input). Again, since erosion by the origin yields
the input itself, the simplest non-trivial class of constrained erosion basis filters for intersection noise can be
written as follows:

X= ) =YY)=(Yew)uY =[(Xn N)e W JU(X NN), for some structuring element, W

Let us first consider intersection noise. Let W denote the collection of structuring elements over which
we intend to optimize. We need to make a small modification to our fidelity criterion, in order to account
for incomplete data close to the border of B. Towards this end, define

B\@B:Bn( N BeW’)

Wew

B\OB is exactly the set of points z € B with the property that W, C B, YW € W. Then we only consider
the total expected error restricted to B\GB. We also assume that estimates of .X are only valid within
B\&B. For brevity, we use the same symbol to denote a DRS and its restriction to B\@B. The meaning is
clear from context. We have the following proposition.

Proposition 1 Under the assumption of mutual independence of the signal and nowse DRS’s, X, N, the
value of the ezpected error, E(e) = Ed(X, X), incurred when X is estimated by X = (X N\ N) = Weu(xn
N), is given by

Ele)= Y {Qx<({zH(1-Qu-({z})

:€B\9B
+Qne(W:) (@x=(We) — Qxe({z} UW.)) + Quxe({z} UW.) (Que({z} UW.) = Que(W:))}
Proof: See [19] O

The structuring element, W, should be chosen to minimize this expression. Observe that the total expected
error is equal to the sum of the probabilities of individual pixel errors. If we make the natural? assumption
that both X, and N, are obtained by sampling stationary random sets [14], then all the functionals in the
above sum are independent of the location, {z}, and we obtain the following result.

Corollary 1 Under the condition of mutual independence of the signal and noise DRS’s, X. N, assuming
that X, N, are obtained by sampling stationary random sets, and that X is estimated by X = (XnN)s WU
(XNN), the optimal choice of the structuring element W is the one which minimizes the probability of pixel
error

Ppizel crror(W) = QX"({O}) (1 - QN‘({O}))
FQn(W) (@x(W) = Qx({0} UW)) = Qx<({0} U W) (Que(W) — Qne({0} U W)
Some notes on the applicability of this result are in order. If the generating functionals @ x<(-), Qne()

(or, equivalently, the capacity functionals Tx<(-), Tn<(-)), are given, then optimization of W over a relatively
small collection of allowable W's is straightforward. In general, for large collections of candidate structuring

2Since we are using a shift-invariant filtering operation.
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elements, some sort of suboptimal search must be pursued, to avoid a potentially difficult exhaustive search.
See [11] for an “expert” structuring element library design approach. We shall return to this point later on.
At any rate, even if the generating functionals are not available (which is the case in most applications), all
the quantities which are relevant to our optimization problem can be efficiently and accurately estimated from
running (sample) averages, by virtue of stationarity and the law of large numbers. For example, Qx<(W)
can be estimated by “sliding”the structuring element W across a realization of X¢ and counting the number
of times that the two have an empty intersection, and similarly for the others.
Let us now turn to union noise. By appealing to duality, we obtain the following result.

Proposition 2 Under the assumption of mutual independence of the signal and nowse DRS’s, X, N, the
value of the ezxpected error, E(e) = Ed(X, X), incurred when X is estimated by X =[(XUN)2 W ]N(XU
N), is given by

E(e)= Y {Qx{zh) (1 -@n{{z})

:€B\dB
+QN(W:) (Qx (W) — Qx({z} UW.)) + Qx ({z} U W, ) (@n({z} U W.) — Qn(1V:))}

Again, if we make the assumption that both X, and N, are obtained by sampling stationary random
sets, then we obtain the following result.

Corollary 2 Under the condition of mulual independence of the signal and noise DRS’s, X'\ N, assuming
that X, N, are obtained by sampling stationary random sets, and that X is estimated by Y= (NUN)sWIN
(XUN), the optimal choice of the structuring element W is the one which minimuzes the probability of pixel
error

Ppiz‘el error(W) = QX({O}) (1 - QN({O}))
+FQNW) (@x(W) = Qx ({0} U W) = @x ({0} U W) (Qn (W) = Qx ({0} U W)
As in the case of intersection noise, similar remarks hold here regarding the interpretation of the individual
terms of the sum. Again, if the generating functionals Qx(-), @~(-), are given, then optimization over a
small collection of candidate structuring elements is straightforward. If these functionals are not available.
their values can be estimated from running averages, as before.
Let us now show how one can reduce the complexity of the search for the optimal structuring element.

by assuming that the signal DRS, X, is smooth (i.e. Morphologically open) with respect to some structuring
element. We will need the following.

Definition 4 A DRS X is H-open iff°
Px(X = K) = Pxou(X o H = K), YK € T(B)

Lemma 1 X is H-open iff Qx(K) = Qxon:(K & H*), VK € E(B).

3Observe that this definition asserts that X is H-open iff X o H = X in the sense of distributions. However, this implies
that

Px(XoH#X)= Y  Px(X=K)= Z Pxog(XoH=K)=0
NoH#N KoH#KN
ie. Px(X oH = X) =1, which implies X o H = X, Px — a.s. Thus we do not make any distinction.
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Proof: See [19] O

So now let us assume that the signal DRS, X, is H-open, where H is convex and contains the origin.
Then we can prove the following [19].

Corollary 3 Under the condition of mutual independence of the signal and noise DRS’s, X, N, assuming
that X, N, are obtained by sampling stationary random sets, X is H-open, where H is convez, containing the
origin, and such that H* C W@ H*, YW € W, and that X is estimated by X =[(XUN)® W IN(XUN),
the optimal structuring element is

W" =arg minwew Ppizel error (W) = arg maz,, .~ G(W)

where ~ , . ,
W:{WEWIW EWand W CW =W :W}
and

G(W) 2 Qx({0} UW) (Qn(W) - Qn ({0} U W)

This elimination can translate to a significant reduction in search complexity. By duality, a similar reduction
can be achieved under an intersection noise model, if we assume that X°¢ is H-open, i.e. that X is H-closed.

8 Multiple structuring elements

In certain situations, particularly when the noise level is high, a single erosion followed by a union, even
if optimal, may not suffice to properly reconstruct the signal. In this case, it is beneficial to consider larger
bases, 1.e. filters with multiple structuring elements. The structuring elements must be Jointly optimized,
to eliminate a wider class of error patterns. This joint optimization does not pose additional analytical
problems. For example, we have the following proposition (see [19] for a proof)

Proposition 3 Under the assumption of mutual independence of the signal and noise DRS’s, X. N. the
value of the ezpected error, E(e) = Ed(X,X), incurred when X is estimated by

X=[(XnNeWYu[XnN)e W] uxny)

15 given by

E(e)= Y {Qx<({z})(1 - Qn<({z}))

2€B\dB
+Qx=(W)Qne(W)) + Qxc(W2)Qn-(W?)
+Qx-({z} UW)Qn-({z} UW!) + Qx<({z} UW?)Qun<({z} U W)
—2Qx<({z}UW)Qne(W}) = 2Qx<({z} U W2)Qn<(W?)
—Qx«(W, UW2)Qne(WIUW?) = Qxe({z} UW!U W2Qn=({z} U Wluw?)
+2Qx-({z} UW UW)Qn-(W} UW?)}
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Again, by assuming that X, N are obtained by sampling stationary random sets, we can obtain a
characterization of the optimal pair of structuring elements in terms of the probability of pixel error. Under
appropriate smoothness conditions, we can reduce the complexity of the search for the optimal pair in
a manner similar to the one of the previous section. The details are straightforward, but cumbersome.
Obviously, by duality, similar results can be obtained for the case of union noise, as well as for more than
two structuring elements.

9 Conclusions

We have pursued a DRS-theoretic approach to the problem of digital image restoration under a union
or intersection noise model. A generic procedure for the statistical optimization of Morphological filters
subject to a basis size constraint has been proposed and investigated. New statistical insight into some “folk
theorems” of Morphological filtering has been gained as a direct consequence of our approach.
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