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DISTRIBUTED CONTROL OF A TIMOSHENKO BEAM

Yan Zhuang,' John S. Baras?

ABSTRACT

We consider a flexible beam clamped to a rigid base on one end with the other en

free. In order to stabilize the beam vibration. we introduce active damping into the
1

beam with feedback control using distributed actuators and sensors. We apply Tim-
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oshenko beam theory to model the substructure. Unlike the familiar Euler-Bernoulli
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dene fluoride (PVDF). The sensor and actuator are layers which are attached directly
to both sides of the beam. Based on the constitutive properties and layer geomertry.
the models for sensor and actuator are developed. We then embed the static actuator
i to form the model of ihe composite
Lyapunov direct methods based on th
energy functional of the system. It is proved that the derived controller can extract
energy {rom the system and increase svstem dampine. The resulting closed loop sys-
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Distributed Control of a Timoshenko Beam 217

engineering and structure control in civil engineering. One of the challenges comes
from the applications in control of flexible aerospace systems and robotics. Due to the
limited launching load, the space structures are usually large in size, light in mass and
hence weakly damped. In order to implement attitude control of increasing pointing
precision, active damping is required to enhance the system’s stability. Problems in
controller design for large flexible space structures include quickly damping out the
pointing errors resulting from step disturbances. or nonzero initial conditions (e.g..
resulting from slewing) and maintaining the desired attitude as close as possible in the
presence of disturbances. We mainly address the damping problem here.

Proper modeling is essential to control systemn design and to avoid spillover due to
the infinite dimensional nature of these systems. Modeling the structure’s damping,
appropriate interface conditions, different geometric configurations and various com-
posite materials is a challenging research topic. Even a reasonable mathematical model
may involve large number cf coupled variables, nonlinearities and complicated bound-

v o -
ary conditions. It is a formidable task to fully explore the solution and the stability of
the solution, if not impossible. It is natural that current research in dynamic control of

flexible structures mainlv focuses on the basic compeonents of the whole structure such
as string, beam and plate. Boundary conirol of fexible beams is addressed in many
articles such as [6], {9]. In [7] 2 detailed analvsis and references on this problem are
provided.

We are interested in distributed active damping using smart materials. The actua-
tor consicered here is a spatially distributed one, made of piezoelectric ceramic material
(PZT) which is glued to the beam.

Tass o Sy
reiation, is inil

stitutive property, i.e. its strain and stress
voltage appiied to it. Bonding or embedding seg-
mented elements of this material in a structure would allow the application of localized
strain developed in the actuator to be transferred to the stru

L
et
w
o
@)
13 1s

+ 1

enced by the externa
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can be controlled. Under proper bonding condizions. the coupling between the actua-
tor and the substructure ca i h
dynamical behavior of

f composite beam can be changed by implementing appropri-
ate control aigorithms.
.

g
. . . . . ] (3] . - : Ty
i, active vibration control is described using spatiallv

i

distributed actuators. The PVDF sensor is bonded to the beam in a similar way. The
5
i

output voltage is a functional of beam curvature. Unlike the conventional point sensor,
this is a distributed one. Lee and Moon [8], Cudney [3] and Tzou {10 provide some
detailed explanation of the nature of piezoelectric actuators and sensors.

We consider here the beam as a fexible structure and study its modeling and ac-
tive damping. The Timoshenko beam model is used in the analvsis. Since the model
accounts for the shear effect and the rotational inertia, it represents more precisely
the physical nature of the beam than the Euler-Bernculli heam model does. We frst
discuss thke modeling of the beam and « tuator. A static model of th
actuator coupled into the structure is developed. Next the sensor model is addressed.
We then discuss the controller design using Lvapunov methods. We finally investigate

S
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Figure 1: The composite beam

SYSTEM MODEL

L& system model consists of the beam substructure with actuator and sensor layers
giued on both sides of the beam. We consider the beam and the act uator model here.
One approach to build the desired actuator is to take advantage of the special
constitutive properties of certain materials. The actuation produced is due to the
property change of the material subject 1o certain stimulation other than the external
actuation force. Such materials are the so called smart materials. Once properly
embedded to the structure the induced actuation will produce benc‘ncT or stretching
or both to control the structure deformation. Since the actuztor can be built into the
siructure the overall structure design can be optimized. One of the advancages of using
Smart materiais as sensers and actuaters is that thas the after-fact structure change
and additional weight can be avoided.
Piezoelectric actuators were used as elements of intelligent structures by Crawley

and de Luis [4]. Bailey and Hubbard [1] have used PVDF ators o0 control the
"’bratzon of a cantilever beam. The conirol voitage applie d across the actuator is
the sign of the tip rotation velocity multiplied by a constant so as to introduce active
damping. Westudied the active damping problem with distributed actuator and sensor
with the rot li i incl 112]

ational inertiai included in the beam model
Figure 1 shows the structure of
layers glued together.

In this figure, h stands for the thickness of the different layers of the composite
beam. The subscripts s. b and a denote sensor, beam and actuator respectively. The
stress-strain rela'iod for the piezoelectric marterial is similar to that of the thermoelastic
materials, with the thermal strain term replaced by the piezoelectric strain A. The
constitutive equation of the actuator is given by

the beam with both the sensor and the actuator

P N 1 -~ rral A -7 ] - 1~ +1 + M
train due to the external p‘c ric & ;d. an.d ¢ i5 the strain
. —- -

. z

Alz,t) = C}l:lV(:L',t) (2)

a
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where dg; is the piezoelectric field and strain field constant. V(z,t) is the distributed
voltage. Suppose the bonding between the actuator layer and the beam is perfect,
le., there is no shear lag layer in between them, the induced strain has two effects on
the beam. One effect is that it introduces a longitudinal strain ¢ to insure a force
equilibrium along the axial direction. The steady state value of ¢ can be derived by
soiving a force equilibrium equation. The second effect is that the net force in each
layer acts through the moment arm with the length from the midplane of the layer
to the neutral plane of the beam. The resuh of the actuation produces the bending
moment which is introduced as the control mechanism. Taking a similar approach as
in (1], the actuation moment can be expressed as

My = KoA(x, 1) (3)

7

where K, is a constant depending on the geometry and the materials of the beam.
Ve ise the Timoshen

Tim enko beam model to de@’f;“\e the dynamical behavior of the
beam. L“’-'f' the Euler-Bernoulll beam model, the Timoshenko model contains the
is

rotational iner 131 and shear efact of th beam. The analysis of the latter i
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line which is described by w = 0. & denores deflection curve When the <hearm0
force is neglected. The tctal slone of defection is
—=%+J

where 3 is the angle of shear. p, 7 and E are mass density. moment of inertial of cross
section and Young's moculus respec:ive‘i}: L is a numerical factor depending on the
a of cross section and modulus of elasticity
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in shear.

The bending moment of the composite beam without actuation is

w2

oD
My = E[—, 6
V= EIS ©)
where
El =F,I, Ebib-i—E‘g[s. (T)

M = M, + M, (8)

Using this augmented moment to replace the moment term in the original formulation
of equations of motion, we obtain
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with boundary conditions

e B(L,t) =0, (11)
)

where

The distributed voltage V(. f) is the control apf)lied to the system. Equations (8} (10

and boundary condition del. The a.c”vaz'on ppears in
the system in the form ofa dis:‘iautec bending mcment in the rotational equation (10).

SENSOR MODEL

ally distributed senscr is modeled here to provide the sensing signal for the

d ion ibuted sensor is the one whose output is

a function fs ructural responses at diferent locations. It can be a group of point
M 1

sensors or a spatially continuous one or the combination of the both. These structural
lesponaes are obtained eizher discretely or coutinuously in space. Using the latter has
he advantage of simplifiing the complicated computations based on the point measure-

ments since the sensor gecmetry can be tallored to provide the necessary computation.
The spatial aliasing from an array of sensors can be avoided. TyplcaL noncausal sen-
sor d\'namics such as gain rolloif without phase shift is possible by using distributed
sensors (3].

Piezoelectric polymer polyvinylidene fluoride (PVDF) is strain sensitive and relies
on the applied strain to produce electrical charge. The amount of electrical charge is
proportional to the amount of strain induced by the structure. This process is the

reverse to p1e7oe.LcL ic actuation. It is also based on the constitutive property of the
sensor material. The induced charge per unit length from the strain is
g(z,t) = —Ldae,. (12)

where £, is Young's moduius of the sensor material.
The sensor strain is related to the beam curvature by
hy + h, 0P
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This is based on the assumption that the neutral layer of bending is close to the
geometric centroid of the composite beam. The electrical charge along the beam is

Q(z,t) = /qu(x,t)F(:v)d:r

Ay [= D |
= — E.dy | F{r)=—dz, (14)
where F(r) is the weight function or shape function of the sensor: it is the local width
of the electrodes covering both sides of the sensor. Since the PVDF is only a thin layer,
its shape can be easily changed according to different needs for interpreting the sensor
signals. The output of the sensor is

[
,& (o t) _ Q\l.u)
[Sadh) - C
. f7 0% .
= -—1\3/ F{r)z—dz (15)
40 [
where o .
Logdayiiiy =+ f ,

- sU31L I T dle ) PPN
I\s = e (10)

1s a constant with C being the capacitance between the elecirodes of the sensor layer.
Suppose the sensor covers the whole beam, then

. .. fE 5o -
‘vls(t):—xxs ,l F(x},\ dz. (1-’)
Jo Jr

Equation (17) is the sensor output equation. The output voliage is the weighted
integral of the beam curvature. Integrating by parts the right hand side of the above

expression once in the spatial variable, we have another form of the sensor output,

rL SE e
TRy — e SRS 13
Vi{t) = —K.8(L, ) (L) + K, | 2(z,t)—5—dr. (18)
JO oz

~

We shall observe later that the format of Equation (18) can be manipulated according
to our control needs.

CONTROL ALGORITHM

We design the contr
cation is required with this method.
amount of vibration of the system. WWe see! la ch
damping is introduced into the system and the closed loop svstem is asymptotically
stable, “

Given the system (9), (10) with boundary conditions (11) and an energy functional
E(t), we need to find a control V(z,t) such that

ol algorithm by Lyvapunov's direct method since no model trun-
1

. Vil . .
v functicnal is used to measure th

Jim E(t) =0. (19)
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It suffices to find a control V(z,¢), such that

%t(t) <0, fort>0. (20)

We define the energy function as follows:

1 7L Sw g%, cw 0%,
E(t) = -/ AP+ [P+ KLY e g2 40 (21)

where
K =LAG.

The first two terms in the integral are the kinetic energy terms from vertical displace-
ment and cross section rotation of the beam. The third term is the energy due to shear
deformation while the last term represents the stored energy from bending.

Taking the derivative of E(t) with respect to time. we have

dE(t) L Sw 9w 03 323
: /0 5 TP

it oo TP g

Ow Fuw 33 0% 923 )
+ Ki=— — 3y — — )+ E[- = {4y (22)
" Or Coxot gt Jdr 8zt |

Integrating by parts in the spatial variable and incorporating the svstem eq
{ —
\

and (10} into it, we obtain the simplified form
. A (L iL roax oo
aEQ) _ 0w dw 4T 99 _ 0%t rr saav 29
= N—/— _ o T c —dr (23)
A T Er Rl oAz (23)
dt ot " Jx h ot Ory, o t Oz

dE{t) L 9%av |
'_ / = . - GI ,\24)
at Jo Ot Jdrx

The irst two terms in (23) vanish.
Let the control V(r,t) be decomposed as the product of a spatial function and a
temporal function,

- / o~
Vir.t) = v(z)qlt) (25)
Here v{r) is the actuator shape function an t} is the coordinate function. Substi-

tuting V'(x,¢) into (23). we obrain

I

(oW
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dE(t) o fEaddrixy s
- = cqlt) | = —— . (20}
dt Joo ot dr
oy - ATy A 1 [P ] Jyxe 110 o Trrvaet 17 o (TR vl T e Ty o ot
runcion ¢if) can be determined Dy using sensor output V; from 1o)wWith £{z} compact
on [0, L},
() = _dVi(t)
dt
LOoddF(x
= -I ——(—zdx. (27)
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The corresponding control V(z,t) is given by

. Lo dF(x
V(z,t) = —K(z) ; a——%dm (28)

Then the rate of energy change {26) becomes

O
dE{t) o [E OO dviz
_ = —CQ’\?> / - - )dl'
dt Jo Ot dr
. [LO90F(x) L 9o dv(x) )
= —ck, ——dr | ———dz. - {29)
Jo 9t oz 0o Ot dr ’
It is sufficient to select functions F and v{z) such that

dF{z)de(r) .
- >0 (30)
dr dr Y

which gives
dE{T)
.‘ o
— <0 (31)
dt ’
i o back control {28) can be ex-

¥ L r - ai) — ! T ™ a3 5
VI(Z, 1) = — Nu{z) -0 (2)] + L) rxx)a.r (32
Ji !

The feedback control {25} is velocity feedback and actually provides damping of
Voigt type. The second term in {26} is ¢ Weighted 111tedra1 of the rate of change of the
beam curvature with respect to time. Since the curvature of the beam is proportional
to the strain of the beam in this formulation, the controlled beam has an altered
constitutive equation. The stress is no longer just proportional to the strain, but the
linear combination of beth f with respect 10

|
Iy

+impe

Liiaalo

We may propose another coniro

(33)

Virt = —Cy Kol | o—"14 SW,vlr) | ——dr. (34)

by —riAtimaTa - Wig pprevsi --.2.\ } o 1§ - nfth
We anticipate that this control algorithm would increase the natural frequency of the

o
vibration of the beam. The integration of the \xe1gmed curvature along the beam is
< 1

imilar to inrroducing position and Veiocny feedback
in the traditional PID control. The constant C1 1s to be determined for the required
performance.

introduced in the feadback. 1t is
ro e oa 1t

/)
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MODAL ANALYSIS

We discussed sensor shape and actuator shape and their impact to the control
of a cantllever beam in [2]. Different sensor outputs are available by choosing the
appropriate sensor shape function #(x). PVDF can be segmented along the beam to
collect u‘“ signals from local regions. The sensor can provide deflection and strain
information of the beam. A sensing network with simple computations shall produce
diferent signals in one sample Dezzod for the need of the control system.

We use a Galerkin procedure to implement modal expansion and to analvze the
impact of the control system on the flexible beam. We write the beam lateral displace-

ment w(z,t) and cross section rotation ®(z 1) as

n

wirt) = Z Pxd (1) (35)
k=1

@\l‘f = Z @A{:l‘l:g,\-\f/\' (36)
f=1

. Ir2tn 711
unctions belonging to H710, L]
:ormalized orthogonal basis and |

H 3
h H
t) and q(t) are their time coordinates

respectively.
We rewrite here the conirc

1 /
FYL iy wlsdavar v Ly L/ AL\/L&A \..;u,l
£y -
(o

o system's equations (9} and (10).
and second equation respectively.
al variable. we arrive at

p[/\llk\llmdr('jk(t} = K [PiVw, drdit) + Z(Ef/@k‘ii’f'qudx

..

- , : g ; /39
- K[ D) ) —.-C/z' )P, drglt). (39)

where d and 4 sta nds for the drst and seco
. -

nd time derivative of the funcrion 4it).
PWiry srands for the i spari P

e
S

pLiim(t) — I(Z/Pk(l)\lf,,lclxdk(t) - Z(EI/\I/k(Q)\Idez

—[{/‘Pk\llmdl‘)(]k(t) - c/“(”‘llmdrc g(t) =0 (41)
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The last term in the second equation is the contribution of the distributed control.
Equations (40) and (41) can be rearranged into a 2n x 2n matrix form

Mii(t) + Cult) + Ku = 0, (42)

where u(t) = [di{t) -~ da(t)qi(2) - gu{t)}* is the vector of coordinate functions. Af is
the mass matrix. It is diagonal in this case with the Arst n elements being pA4 with
the rest being pI. C is the damping matrix whose nonzero elements are given by

I8 Stiness matrix with elements

= —.r-:/ P Y P dzx

fineyy = K [@PPdz 0< Lk <n

[

™
~
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=
e
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. _ A T T (20T 7.
R \/‘yk@mdr—fl VRN

nd actuator coefficients A and ¢ which are determined

“A
+
bt
v
3

3
by the materials and their manufacturing. The cceffcient ¢ describes the amount of
damping introduced to the /th mode by the control svstem based on the measurement
of the Ath mode. The similarity holds for the actuator as well. Hence it is possible to
enhance damping to some undesired elastic imodes by modal analysis and by choosing
the sensor and actuator shape functions F(z) and v(r) accordingly. The actual con-
trol systems can be implemented by segmented actuators and sensors with a switching
Retwork 10 prO\".GP different configurations in each sample period.

It is an interesting question to choose the shape functions for the distributed sensors

and actuators. The ose is to introduce damping to different vibration modes effi-

ciently rather than excite some undesired modes The concentrated points or regions
of control moment should be placed away form the nodal points of the vibration modes
1o assert the maximum contreol effect. Qur case here can be formulated as optimization
of certain performance measurement functional by choosing the candidate functions

ce
F(z) and v(z) subject to some constraints on the control V(z,t). We anticipate that
the optimal layout of sensors and actuators provide good performances.
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CONCLUSIONS

We have embedded a static distributed PZT actuator model and a distributed
sensor model into the Timoshenko beam model to form a composite beam model.
We then design a closed loop ¢ ter to introduce damping to the svstem using
Lyapunov’s direct method. The closed locp system is proved to extract energy irom
the system. This composite model is more precise in describing the movement of the

Seam compared 10 the Euler-Bernoulli beam model. Ve then use modal analysis ¢
L
1 e

oy

+

xplain the induced damping by the controller and the a method to choose the
appropriate sensor and actuator shapes. It is possible to monitor and suppress the
undesired modes by using suitably distributed sensors and actuators.
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