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Abstract

A general signal description, called an inherently bounded
Adaptive Quasi Linear Representation (AQLR), motivated
by two important examples, namely, the wavelet maxima
representation, and the wavelet zero-crossings representa-
tion, is introduced. This paper presents a new reconstruc-
tion scheme based on the minimization of an appropriate
cost function. The convergence of two described algorithms
is guaranteed for all inherently bounded AQLR. As a conse-
quence, we describe possible modifications in the basic mul-
tiscale maxima representations.

INTRODUCTION

An interesting and promising approach to signal repre-
sentation is to make explicit important features in the
data. The first example, taught in elementary calculus,
is a “sketch” of a function based on extrema of a sig-
nal and possibly of its first few derivatives. The second
instance, widely used in computer vision, is an edge rep-
resentation of an image. If the size of expected features
is a priori unknown, the need for a multiscale analysis is
apparent. Therefore, it is not surprising that multiscale
sharp variation points (edges) are meaningful features
for many signals, and they have been applied, for ex-
ample, in edge detection [4, 9], signal compression [8],
pattern matching [7], detection of transient signals [5, 6]
and speech analysis [10].

S. Mallat in [7, 8] (the last joint with S. Zhong)
introduced zero-crossings and extrema of the wavelet
transform as a multiscale edge representation. Two im-
portant advantages of this method are low algorithmic
complexity and flexibility in choosing the basic filter.
Moreover, [7] and [8] propose reconstruction procedures
and show accurate numerical reconstruction results from
zero-crossings and maxima representations. In [7, 8], as
in many other works in this area, the basic algorithms
were developed using continuous variables. The contin-
uous approach gives an excellent background to moti-
vate and justify the use of either local extrema or zero-
crossings as important signal features. Unfortunately, in

the continuous framework, analytic tools to investigate
the information content of the representation are not yet
available. The knowledge about properties of the repre-
sentations is mainly based on empirical reconstruction
results. T

The main goal of our undergoing research is to under-
stand, analyze, and generalize the numerical reconstruc-
tion results from the wavelet maxima and zero-crossings
representations, as described in {8, 7]. This objective
leads to the discrete and finite data assumption. The
first observation is that the structure of the wavelet
transform is not essential for the analysis and can be
generalized to any linear filter bank. The precise defi-
nitions of the multiscale maxima (zero-crossings) have
been introduced in [2]. Since reconstruction sets (the
family of signals having the same representation) of
maxima and zero-crossings representations have a simi-
lar structure, a general form called Adaptive Quasi Lin-
ear Representation (AQLR) is introduced.

Using this framework, we have shown [3] that, in gen-
eral, neither the wavelet maxima representation nor the
wavelet zero-crossings representation is unique. In other
words, for any discrete dyadic wavelet maxima (zero-
crossings) representation there exists a sequence (an ap-
propriate sinusoid) which has a nonunique representa-
tion. Due to this result, we consider the reconstruction
from the wavelet maxima representation in a general
set-up of point-to-set maps.

The next investigated subject was stability of the
representation. This issue is of great importance be-
cause there ate many known examples of unstable zero-
crossings representations. In order to improve the sta-
bility properties Mallat has included additional sums in
the standard zero-crossings representation and together
with Zhong, they have introduced the wavelet maxima
representation. Indeed, they have reported very good
numerical resufts. It turns out that stability is closely
related to boundedness of the reconstruction set. By in-
troducing the idea of the inherently bounded AQLR, we
were able to prove stability results. For a general per-
turbation, global BIBO stability can be shown. For a
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special case, where perturbations are limited to the con-
tinuous part of the representation, a Lipschitz condition
is satisfied (for details see (3] or [2)).

One of the most important practical problems is the
need for an effective reconstruction scheme. Mallat
and Zhong [8] and Mallat [7] have used an algorithm
based on alternate projections. In this paper, a new
reconstruction scheme, defined for a general inherently
bounded AQLR, is proposed. It is based on the mini-
mization of the appropriate cost function which is zero
on the reconstruction set and it is positive otherwise.
Thus the reconstruction can be achieved by any min-
imization technique. In particular, the convergence of
two algorithms is shown: the first is based on the inte-
gration of the gradient of the cost function and can be
implemented by analog hardware; the second is a stan-
dard steepest descent algorithm which is used in digital
simulations.

Having developed the framework of the inherently
bounded AQLR, we consider the question how to gener-
alize the basic wavelet maxima representation in order
to trade off the quality of the representation with the
amount of information required to describe the repre-
sentation. The result is the parametric wavelet maxima
representation which has the ability to add or delete in-
formation from the basic representation. In turns out
that the related reconstruction algorithms are very sim-
ilar to those corresponding to the basic wavelet maxima
representation.

PREVIOUS RESULTS

This section describes, in the discrete context, the repre-
sentations proposed in [8] and extends it to a multiscale
case . ;

Loosely speaking, a multiscale maxima representation
isbased on a linear filter bank followed by one-level max-
ima representations. A filter bank will be denoted as a
set of J + 1 linear operators {W1,...,W;,5;}. In the
sequel, this filter bank is assumed to be complete in the
sense that {W,f,... . W,f,S, f } is a unique representa-
tion of a signal f.

In this work signals are interpreted as real, finite se-
quences. One-level maxima representation of a sequence
{f(E)}=} consists of local extrema points (indices at
which local extrema occur) of the sequence f and the

values of a sequence S at these points. Precise defini-

tions, proofs, and many additional details can be found
in [1].

A multiscale maxima representation consists of
one-level maxima Tepresentations of signals W;f
G = L,2,,.,J7). In addition, one entire sequence
S;f is allowed to be a part of this representation.
If {w,..., W;,55} describes a wavelet decomposition

(see [8] for details) then the corresponding multiscale
maxima representation is called the wavelet maxima
representation.

For a given multiscale maxima representation R f, the
corresponding reconstruction set T is defined as a set of
all signals having the same multiscale maxima represen-
tation, namely I' 2 {z : Rz = Rf}.

In general, any multiscale maxima representations
can be cast into the form Rf ={Vf,Tf}. Vf consists
of sets of points from {0,1,..., N~ 1} and T, for a fixed
Vf, is a linear operator.

It turns out that the maxima representation implies
constrains on I' (having a local extremum at a given
point ) which do not appear directly in Rf. These con-
straints may be described in a common structure.

Definition 1 Rf = {V£,TF} is called an Adaptive
Quasi Linear Representation (AQLR) if there ezists q
linear operator C and a sequence ¢ such that: z € T if
and only if Tz = Tf and Cz > ¢. C, c may depend on
Vf, but they must be independent of Tf.

Observe that, since every equality can be replaced by
two inequalities, the closure of the reconstruction set T
can be written as: T = {z : Bz 2 b} for a given px N
matrix B and a p-dimensional vector b.

The following definition and Proposition are essential
for stability and reconstruction results.

Definition 2 An AQRL is called inherently bounded
there ezists a real K > 0 such that
z €T ||z < K||TH].

Proposition 1
Any maultiscale mazima (zero-crossings)
in an inherently bounded AQLR.

if

representation

THEORY FOR RECON STRUCTION

In this section we assume that an arbitrary inher-
ently bounded Adaptive Quasi Linear Representation
(AQLR) is given. A reconstruction algorithm is defined
as a procedure to find an arbitrary element z belonging
to the closure of the reconstruction set, I'. As mentioned
earlier, we propose a reconstruction algorithm based on
an appropriate potentiad function v(z).
The function v(z) is derived from the representation
T={z:Bz 2 b} in the following way.
P
»(z) £ )" p(Bz - b); (1)
i=1
where (Bz —b); denotes the i-th component of the vec-
tor Bz — b. The function p(-) is defined by:

2 -
p(€)§{g <0

otherwise
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In words, v(z) is calculated by scanning all p con-
straints which define the closure of the reconstruction
set, and summing up penalties for every constraint. For
a particular constraint, the penalty is zero if the con-
straint is satisfied. If the constraint is violated then a
quadratic term is used as the penalty. It is easy to verify
that the nonnegative cost function v(z) is equal to zero
if and only if z € T.

Thus reconstruction can be implemented by any min-
imization of the cost function v(z). Observe that p(¢)
is continuously differentiable. Therefore v(z) is continu-
ous and continuously differentiable. Moreover, it can be
shown (see [1]) that v(z) has no local extrema outside
T, namely Vuv(z) = 0 if and only if z € T.

Since, usually, p is a large number, we are mostly in-
terested in iterative minimization procedures. To show
convergence of such schemes, the following boundedness
property is required.

Lemma 1 For all K, > 0 there exists K, > 0 such
that v(z) < K, implies ||z|| < K

Using Lemma 1 and La Salle’s Theorem, we are able
to prove the following result [1].

Theorem 1 For all z(0), the solution of
£(t) = -V (v(z())- (2)

will appro_ach T ast — oo, namely the distance between
z(t) and T converges to zero as t — oo.

Theorem 1 enables us to use a very fast analog-
hardware implementation to reconstruct signals. How-
ever, before acquiring a costly and not flexible hardware,
an ability to perform digital simulations is required. The
following theorem defines a steepest descent algorithm,
based on the cost function v(z), and states its conver-
gence.

Theorem 2 For any 7o, we define the sequence {z¢}.
®3)

where ap is @ nonnegative scalar minimizing
v(zp — ag - Vv(zr)). Then zi approaches I' as k — oo.

Tepr =Tk —or - Vo(zr) k=0,1,2,...

PRACTICAL IMPLEMENTATION

In order to implement the reconstruction algorithms de-
scribed in the previous section one needs to calculate the
cost: function v(z) and its gradient Vu(z). A direct cal-
culation, based on the system of inequalities Bz > b,
may-yield unnecessary high complexity, related to the
use -of the “large” matrix B. In this section, using the
structure of the multiscale maxima representation, an

efficient algorithm to calculate the cost function v(z),
and its gradient Vu(z) is described.

The cost function v(z) is calculated by taking into
account all conditions that z should satisfy in order to
belong to the closure of the reconstruction set, T'. For
the multiscale representation, these conditions can be
clustered according to the different scales. To be more
specific, let us consider the multiscale maxima represen-
tation Rf composed of R; f, one-level maxima represen-
tations of W;f ( = 1,2,...,J,J + 1) 1. Then the cost
function v(z) can be written as

J+1

v(z) = ) v(Wjz, R;f),

j=1

(4)

where v(W;z, R; f) is called the local cost function and
describes how well the sequence W;z matches the one-
level maxima representation R;f. It is calculated from
all constraints implied by the one-level maxima repre-
sentation of W; f.

It turns out, that the algorithmic complexity of calcu-
lating the cost function does not exceed the algorithmic
complexity of calculating the multiscale decomposition.
A similar statement is true for the calculation of the cost
function gradient, Vu(z).

Equation (4) yields

J+1
Vu(z) = Y W; - vy(Wjz, R;f).

j=1

(5)

where W is the transpose of the matrix corresponding
to the operator W;. The local gradient vy (W;z, R; f) is
a column vector consisting of derivatives of v(,) with
respect to components of the first argument.

The gradient calculation consists of four steps: calcu-
late the decomposition {W; z}f:; , calculate local gra-
dients vy (Wjz, R; f), calculate W’ - vy (W;z, R; f), sum
up results for j=1,2,...,J +1.

GENERALIZATIONS

As a side beneﬁl: of the above mathematical analysis,
structural attributes required to attain the described
stability and reconstruction characteristics have been
well understood. This knowledge enables us to intro-
duce many modifications while preserving the desired
properties within the framework of inherently bounded
AQLR’s.

Our main objective is to create a structure allowing
a trade-off between the amount of required information
and the reconstruction quality.

1R ;41 denotes here Sy f and W, is used instead of Sz



In the wavelet transform case, S;f is a signifi-
cantly blurred version of f and the whole sequence
{S1f(k)}4=" appears to contain redundant informa-
tion. A version of Syf, downsampled at rate A, is
defined as follows: §4 f £ {ij(k)}k=o,A’2A"" It turns
out, that the wavelet maxima representation with down-

sampled Sy f, for A=2 j=0,1,2,...,7, is an inher--

ently bounded AQLR.

When one considers the amount of information re-
quired to describe a given representation, perhaps the
most important issue is the arithmetic precision in which
the values W f(k), at extreme points, are described.
Observe that, even if raws of T are linearly independent,
due to additional constraints Cz 2 ¢, approximate val-
ues of T'z may lead to a representation with an empty
reconstruction set !

We propose to overcome this problem by including
quantization as a part of the representation and the re-
construction. The main idea is that we replace a precise
sample W; f(k) by an approximation interval, say with
a center (W; f(k)) ¢ 3nd length 2¢. Then instead of re-
quiring W;z(k) = (W,-f(k))q, we require

(W3 £(B)), = 4 < Wya(k) < (W; £(K)), +g.

Using this approach we preserve the structure of the
inherently bounded AQLR. Moreover, the algorithm
complexity of the reconstruction is preserved as well.

The following example has been obtained using the
cubic spline wavelet with N = 256, J = 5, and f(k) =
sin ($%).e~ i, The abscissa of Figure 1 gives the num-
ber of iteration of a descent reconstruction algorithm.
The ordinate describes the noise (reconstruction error)

to signal ratio. Continuous line presents the behavior of

the reconstruction from the basic maxima representa-

tion. Dashed line describes the reconstruction from the
representation R4 f, in which, first S; was reduced by
the factor 32 and then quantization was performed using
interval length 2¢ = 0.02 corresponding to 8-bit digital
representation.

Form the graph and from many additional examples
studied in (1] we may conclude that it is very easy, ro-
bust, and fast to get results corresponding to noise to
signal ratio of a2 10-2, Moreover, the reconstructed sig-
nals, even for a high noise to signal ratio, appear to be
very “ similar ” to the original one.

Conclusions The structure of the inherently
bounded AQLR is a framework to develop, analyze, and
test many representation and reconstruction algorithms.
Further study, more application oriented, is required
to develop methods to choose appropriate modifications
and their parameters.
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