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Abstract

We model digital binary image data as realizations of
a uniformly bounded discrete random set (or discrete
random set, for short), a mathematical object which
can be directly defined on a finite lattice. We con-
sider the problem of estimating realizations of discrete
random sets distorted by a degradation process which
can be described by a union/intersection noise model.
We start by providing some theoretical justification of
the popularity of certain Morphological filters, namely
Morphological openings, closings, unions of openings,
and intersections of closings. In particular, we prove
that if the signal is “smooth”, then these filters are
optimal (in the sense of providing the MAP estimate
of the signal) under reasonable worst-case statistical
scenarios. Then we consider a class of filters which
arises quite naturally from the set-theoretic analysis
of optimal filters. We call this the class of mask filters.
We consider both fixed and adaptive mask filters, and
derive explicit formulas for the optimal mask filter un-
der quite general assumptions on the signal and the
degradation process.

1 Introduction

An important problem in digital image processing and
analysis is the development of optimal filtering proce-
dures which attempt to restore a binary image (“sig-
nal”) from its degraded version [17, 5]. Here, the
degradation mechanism usually models the combined
effect of two distinct types of distortion, namely, im-
age object obscurations because of clutter, and sen-
sor/channel noise. It is typically assumed that the de-
graded image can be accurately modeled as the union
of the uncorrupted binary image with an independent
reahization of the noise process, which is a binary im-
age itself [10]). This degradation model is known as the
union noise model. Other models exist, such as the
intersection noise model, and the union/intersection
noise model, which are defined in the obvious fashion.
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The assumption of independence is crucial for the the-
oretical analysis of optimal filters, and it is plausible
in many practical situations. These models are rather
general, in that they can be tailored to describe most
popular types of signal-independent noise, e.g. salt-
and-pepper noise (also known as Binary Symmetric
Channel, (BSC) transmission noise), burst channe! er-
rors, noise with a geometric structure [10], occlusion,
etc.

This research has been largely motivated by the
works of Haralick, Dougherty, and Katz [10], and
Schonfeld and Goutsias [17).  Their approach is
model-based, in that they assume specific probabilis-
tic/geometrical models that govern the behavior of
both signal and noise “patterns”. i.e. the elementary
geometrical primitives from which the signal and noise
images are constructed. This work focuses on a differ-
ent viewpoint. As it turns out, by restricting our atten-
tion to suitable classes of filtering operations, and uni-
formly bounded discrete random sets (defined below),
we can obtain optimal filtering results, under consid-
erably milder assumptions on the sz:gnal and noise pat-
terns, i.e. results that are applicable for all signal and
noise models, under the assumption of mutual inde-
pendence of the signal and the noise. Specifically, one
need not assume that signal and noise patterns are
“non-interfering”. Furthermore, it is possible to ob-
tain simple, closed characterizations of the optimal fil-
ter. The resulting formulas are intuitively appealing,
and directly amenable to design and implementation.

2 Discrete Random Set Funda-
mentals

Definition 1 Let B be a bounded subset of Z?. As-
sume that B contains the origin. Let L(Q) denote
the o-algebra on Q. Let £(B) denote the power set
(i.e. the set of all subsets) of B, and let £(E(B)) de-
note the power set of L(B). A Uniformly Bounded
Discrete Random Set, or, for brevity, Discrete Ran-
dom Set (DRS), X, on B, is a measurable mapping
of a probability space (1, L(Q), P) into the measurable
space (5(B),Z(X(B))). A DRS X, on B, induces a
unique probability measure, Px, on L(5(B)).

Definition 2 The functional



Tx(K)=Px(XNK #0), K € £(B)
is called the capacity functional of the DRS X.
Definition 3 The functional
Qx(K)=Px(XNK=0)=1-Tx(K), K€ X(B)
is called the generating functional of the DRS X.

In the context of DRS’s, the generating functional
plays a role analogous to the one played by the cu-
mulative distribution function (cdf) in the context of
scalar discrete random variables. This is the subject
of the following theorem.

Theorem 1 Given Qx(K) VK € L(B), Px(A) VA€
L(E(B)) is uniquely determined, and, in fact, can be
recovered via the measure reconstruction formulas

Py(A) = ¥ Px(X = K)

KeA

with
S (=D)WIQ (K UK

K'CK

Remark: For a proof of this, and all remaining
results, see [19] or {21, 20, 22].

The uniqueness part of this theorem is originally due to
Choquet [1}, and it has been independently introduced
in the context of continuous-domain random set theory
by Kendall [11] and Matheron [13, 14]. Related results
can also be found in Ripley [16]. However, the mea-
sure reconstruction formulas are essentially only ap-
plicable within a uniformly bounded discrete random
set setting. In the case of (uncountably or countably)
infinite observation sites, the uniqueness result relies
heavily on Kolmogorov’s extension theorem, which is
non-constructive.

3 Some results on constrained
optimality, or, why Mor-
phology is popular

The theory of Mathematical Morphology has been de-
veloped mainly by Serra {18, 8], Matheron [14], and
their collaborators, during the 70’s and early 80’s.
Since then, Mathematical Morphology and its appli-
cations have become very popular. The theory is con-
cerned with the quantitative analysis of shape with
an emphasis on geometric structure. It is founded on
certain elementary set-to-set mappings, namely set di-
lation/erosion, which are inherently non-linear. These
mappings are defined in terms of a structuring element,
a “small” primitive shape (set of points) which inter-
acts with the input image to transform it, and, in the
process, extract useful information about its geomet-
rical and topological structure. Let

WE{:e2’| ~:zeW}
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The dilation of a set ¥ 27 by a structuring element
W is defined as!

Y@Ws.—-{zezz

W,nY #0}

whereas the erosion of a set ¥ C Z? by a structuring
element W is defined as

Yew ={:e2?| W, C v}

Erosion and dilation are dual operators, in the sense
that YOW* = (Y°@W*)*, where here ¢ stands for com-
plementation with respect to Z2. Two fundamental
composite Morphological operators are opening and
closing. The opening, Y o W, of aset Y C Z% by a
structuring element W, is defined as
YoWES(Yew)aW= |J W
2€22 | W,CY

Similarly, the closing, Y ¢ W, of a set Y C Z? by a
structuring element W, is defined as

YeWE(YaW)eWw

By duality of erosion/dilation it follows that opening
and closing are dual operators. Both can be viewed as
nonlinear smoothing operators. Opening and closing
are idempotent (stable) operators in the sense that (Yo
W)oW=YoW,and (YeW)e W =Y ¢ W. A set
Y is said to be (Morphologically) open (closed) with
respect to the structuring element W iff Y o W =Y
(Y o W = Y). We shall say that a set ¥ is smooth
with respect to W iff Y can be expressed as a union of
shifted replicas of W. Y is open with respect to W,
iff Y is smooth with respect to W. Y is closed with
respect to W iff Y° is smooth with respect to W.

Morphological filters are very flexible, mainly be-
cause of the freedom to choose the structuring el-
ement(s), to meet specified criteria. Among other
things, Morphological filters have been widely used
to filter out certain kinds of impulsive noise, such as
the so-called salt-and-pepper noise, in both binary and
gray scale images [17, 4, 7, 6, 2, 3, 23]. For example,
it is widely believed that opening is suitable under a
union noise model, while closing is suitable under an
intersection noise model. Indeed, these filters are used
extensively, and they deliver adequate filtering in a
variety of noisy environments. The natural question,
then, is whether we can provide some sort of theoret-
ical justification for their use. As it turns out, these
filters are indeed optimal under a reasonable worst-
case scenario. In particular, if we assume that the
signal, X, is sufficiently smooth, and the noise is i.i.d.,
then these filters provide the Maximum A Posteriori
(MAP) estimate of X, on the basis of the observation
Y. We have the following results.

Theorem 2 Let Ow(B) denote the collection of all
W -open subsets of B. Assume that the signal DRS, X,

Here we follow the original definitions of Serra {18]. In his
work the symbol & stands for Minkowski set addition, and the
symbol & stands for Minkowski set subtraction.



on B, induces the following probability mass function

on E(B):

oo o € Ow(B)

0 otherwise

where | | stands for set cardinality. Furthermore, as-
sume that the observable DRS is Y = X U N, where
N is a homogeneous Bernoulli lattice process of inten-
sityr € [0,1) (i.e. each point z € B is included in N
with probability r, independently of all other points),
which is independent of X. Then Y o W is the unique
MAP estimate of X on the basis of Y, regardless of
the specific value of r.

The proof (see [19, 22}) crucially depends on |B| be-
ing finite. Indeed. theorem 2, as well as the three
theorems that follow, do not make sense when the lat-
tice extends to infinity. Thus, a uniformly bounded
discrete random set approach offers a fresh statistical
perspective of Morphological filtering, one which is not
apparent within other formulations. The suppositions
of the theorem indeed correspond to a worst-case sta-
tistical scenario: if all that is known about the signal
is that it is almost surely (a.s.) smooth (open) with re-
spect to W, then it is reasonable to model this knowl-
edge using a uniform distribution over the set of all
W-open subsets of B, to reflect the fact that the sig-
nal exhibits no other (known) probabilistic structure.
Also, i.i.d. noise is the worst kind of noise, in the sense
of maximizing the Shannon entropy of the noise DRS
N. Both these suppositions are plausible in practice.
and this explains why the opening filter is successful
under a union noise model. It is worth noting that the
MAP estimate does not depend on the noise level, 7.
The following theorem is a straightforward extension
of the above theorem.

Theorem 3 Let Ow, ..wy, (B) denote the collection of
all subsets K of B which can be written as

K= |J K. K€Ow(B), i=1M
i=1, M

Assume that the signal DRS, X, on B. induces the
following probability mass function on Y(B):

1 P
m of K oe OW,,-»~,WM(B)

Py(X =K) =

A

0 otherwise

Furthermore, assume that the observable DRS is Y =
X UN, where N is a homogeneous Bernoulli lattice
process of intensity v € [0,1), which is independent of
X. Then

1=

Xuar(Y)= |J Yow,
t=1,- M

By duality with respect to complementation, we can
obtain the following result.
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Theorem 4 Let Cw, ..w,, (B) denote the collection of
all subsets I of B which can be written as

K= | K.,
i=1,- M

Ki e Cwi(B),i=1,--,M

Assume that the signal DRS, X, on B, induces the
following probability mass function on %(B):

G @ U K€ Cwipwy (B)
Px(X=K)=

0 otherwise

Furthermore, assume that the observable DRS is Y =
X NN, where N is a homogeneous Bernoulli lattice
process of intensity r € [0,1), which is independent of

X. Then

Xnap(Y) = ( YeW,
f=1,0 M

A natural question which arises is what happens if we
loose the uniform probability structure over the collec-
tion of “smooth” realizations. The answer is that the
MAP estimate will typically be intractable. However.
we can still claim that the proposed estimate in any of
the above theorems is the Maximum Likelihood (ML)
estimate of X on the basis of ¥ [19].

In general, if we assume that X satisfies some arbi-
trary (not necessarily Morphological) smoothness con-
ditions, i.e. ome € S, a class of smooth subsets of
B, and that X is uniformly distributed over S, then
under an i.i.d. symmetric (Binary Symmetric Chan-
nel, BSC) noise model of pixel inversion probability
r < 0.5, it is easy to see that

//\'\MAP(Y) = arg mingesd(Y, )

where d(Y, K) is the area of the symmetric set differ-
ence distance between Y and K (cf. section 4). In
other words, Xps4p(Y) is the “projection” of the data
Y onto §. However, it is not clear how to compute this
projection under general smoothness conditions. Fur-
thermore, quite often the noise is not i.i.d., and the
signal is nonsmooth, or only approximately smooth.
The lack of a rigorous DRS-theoretic optimization ap-
proach for this general case has been evident in the
literature. Our programme is to develop such an ap-
proach. For this, we need to abandon the MAP rule,
and define optimality via the minimization of an ap-
propriate cost function.

4 Formulation of the Optimal
Filtering Problem

Let X,N,Y be DRS’s on B. X models the “signal”,
whereas N models the noise. Let g : E(B) x %(B) —
L(B) be a mapping that models the degradation (mea-
surability is automatically satisfied here, since the do-
main of g is finite). The observed DRSis ¥ = g(X,N).
Let d : £(B) x £(B) — Z, be a distance metric be-
tween subsets of B. In this context, the optimal fil-
tering problem is to find a mapping f : B(B)— Z(B)
such that the expected cost (expected error)



E(e) 2 Ed(X,X), X = f(Y)= flg(X,N))

is minimized, over all possible choices of the mapping
(“flter”) f. This problem is in general intractable.
The main difficulty is the lack of structure on the
search space. The family of all mappings f : Y(B)—
Y(B) is just too big.
pose structure on the search space, i.e. constrain f to
lie in F, a suitably chosen subcollection of admissible
mappings (family of filters), and optimize within this
" subcollection. The resulting filter is the best among its

peers, but it is not guaranteed to be globally optimal.

It is common practice to im-

We adopt the following distance metric (area of the

symmetric set difference)

A, X)) = (XX U X\ X))

= (AT + (VX))
= (X UXN(X NN
S X UX) - 1Y n S
where | | stands for set cardinality, \ stands for set
difference, i.e. X\¥V = X NYe and ¢ stands for
complementation with respect to the base frame, B.
This distance metric is essentially the Hamming {11\-
tance [15] when X, X are viewed as vectors in {0,1}'?
Since the component variables are binary, it can also
be mterpreted as the square of the L, distance of vec-

tors in {0, l}l , i.e., with some abuse of notation,

dX,X) = (X - X)T(X - X)

where on the left hand side symbols are interpreted
as sets, while on the right hand 51de symbols are in-
terpreted as column vectors in {0, 1} Bl and 7 stands
for transpose. In terms of the degradation, we assume
that N is independent of X, and that the mapping ¢
is given by

g(X,N)=XUN

(union noise model)

or,
g(X,N)=XnNN

(intersection noise model)
Although we shall be mainly concerned with either
union or intersection noise, on one occasion we will
allow g to be a mapping from Z(B) x L(B) x L(B) to
2(B)

g(X, N1, No) = (X NN )U N,

(combined union/intersection noise model)

where X, N1, N; will be assumed to be mutually inde-
pendent.

5 Optimal Mask Filters

In the case of union noise, we can assume, without loss
of generality, that the optimal filter is of the form:

fY)= fw(Y) =

for some W € £(B). Similarly, in the case of intersec-
tion noise, we can assume that the optimal filter is of
the form:

YAW =(XUN)NW,
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YUW =(XNN)UW,

Yy ="y) =

for some W € Z(B). Finally, in the case of combined
union/intersection noise, we can assume that the op-
timal filter is of the form:

fY) =) =
(X NNy U Ng) 0 W) U WA,

for some Wy, Wa, both in £(B). We will collectively
refer to these filters as mask filters. For example, in

(YN yuW, =

the case of union noise, the optimal filter should re-
tain a subset of the observation points and reject the
rest; this should be done in some sort of statistically
optimal fashion. This is achieved by intersecting the
observation with a suitably chosen "mask™, W which,
in general, depends on the observation.

As a first step, we might want to investigate how
much we can achieve using a fixed mask W, i.e. one
which does not depend on the observation, and op-
timize the choice of this fixed mask over all possible
observations. We will call the resulting constrained op-
timal filter the optimal fixed mask filter. The second
step would be to allow W to depend on the observa-
tion, via some suitable adaptation strategy. The ideal
situation would be to optimize the mask pointwise,
i.e. construct a mapping W(:): S(B) + S(B), which
takes an observation and maps it to the best mask
for the given observation. However, it seems that. in
general, this optimization is intractable. Furthermore,
the implementation of such a pointwise optimal strat-
egy requires a realization of the mapping W (), which
seems impractical. Nevertheless, we will show that ex-
plicit optimization is possible under some restrictions
on the adaptation strategy. We will call the resulting
constrained optimal filter the optimal aduptive mask
filter.

Let us first consider fixed mask filtering. Here, we
only work with the combined union/intersection noise
model. The other two noise models are special cases.
We have the following proposition.

Proposition 1 Under the capected symmetric set dif-
ference measure, an optimal fived pair of masks,

(Wy, Wo), is given by?
Wy = supp W(Tx({z}) > mar(Ti({z}), Ta({z})))

Wy = supp 1(Ta({z}) < min(Tx{{z}). =1

whereas, the associated minimum expected cosl
achieved by such an optimal paiv of masks 15

= Z min (Tx ({z}), Til{=}), Ta({=}))

2€B
with
Ti({z}) = Tx({z}) (1 = Tv ({=1)) (1 = T, ({2}))
2Here, supp 1(BE) stands for the support set of the indicator

function, i.e., the set of points at which the Boolean expression
BE is true.




TR AT

+(1=Tx({z})) Tnv,({z})
and

T>({z}) = Tx({z}) (1 = Tn, ({2})) +
(I =Tx({z})

An obvious drawback of fixed mask filtering is that
1t does not exploit the autocorrelation structure of
the signal and the noise. Furthermore, it is non-
adaptive. Whenever higher-order statistics are avail-
able, we would like to use them. We would also like
to allow for an adaptation of the mask using informa-

tion extracted from the given input. Adaptive mask )
filtering fits both bills. The trade-off is an increase in

design/implementation complexity.

Let us first consider the case of unjon noise. As-
sume that we are presented with a specific input, K,
l.e. we are given that ¥ = X UN = K. One adap-
tation strategy is to incorporate this information into
the cost function. This is done by considering the con-
ditional expectation of d(X, ;\7)7 conditioned on the
given information. However, this does not lead to a
closed-form solution for the optimal filter. The rea-
son is that the minimization of this conditional expec-
tation requires the explicit computation of a pseudo-
convolution of likelthoods on the lattice of realizations.
This computation is in general intractable. Instead,
we can condition on part of the available informa-
tion. This corresponds to minimizing the expected
error over a wider collection of events than what is
necessary (and optimal). The trade-off is in terms of
tractability. If we condition on the event X UN C K,
Le. (XUN)NK® =10, ther we can work out closed-
form expressions for the optimal filter and the associ-
ated minimum error. In what follows E denotes condi-
tional expectation, conditioned on (X U N)N K¢ = §.

Proposition 2 Given that X UN C K, an optimal
intersection mask, W, for filtering out the noise com-
ponent, N, is given by the intersection of K with the
set

supp 1([1 = Tx(K°U {2})} [Tu(K7 U {=}) — T(K°)
< [Tx (KU {2}) = Ty (K1 = Tw(K9))

The corresponding minimum cost achieved by such an
optimal choice of W is given by

. 1
B = o mmoa = me )

doman{[l = Tx (KU {z})] [Tw(K°U {z}) = Tn(K)

2€K

ATx (K€ U (=) = Ty (K [1 = T (7))

Observe how information about the higher-order
statistics of the signal and the noise is incorporated
into the filter structure, by means of the capacity
functionals of the signal and the noise. Note that
the minimum cost achieved by an optimal choice of
W is not necessarily increasing in A" in the expres-
sion for the minimum cost, we can show that the

3We assume that Pr(X U N C K) > 0. Note that this, in
turn, implies that Tx (K¢) < 1, and Ty (K<) < 1.
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sum is increasing in K, but the normalizing factor,
/(1 = Tx (KN — Tn(K<))), is decreasing in K.
Thus, the tightest possible K (i.e. the observation it-
self) is not necessarily the best choice. However, we
have experimented with this particular choice with sat-
isfactory results. For example, when the signal and the
noise can both be modeled as simple Boolean DRS’s
(19, 20], then, under what essentially amounts to a
high 5/N ratio condition, the optimal adaptive mask
filter can be shown to reduce to a simple Morphological
opening filter.

The case of intersection noise can be addressed by
appealing to duality. One can simply take the com-
plement of all the sets and operations involved, and
apply the results which have been obtained for the
case of union noise [19, 21].

6 Conclusions

We have employed a DRS-theoretic approach to the
problem of digital binary image restoration under a
union or intersection noise model. This has allowed
us to prove that certain popular Morphological filters
are indeed optimal (in the MAP sense), under reason-
able worst-case statistical scenarios. Mask filters arise
quite naturally from the set-theoretic analysis of opti-
mal filters. We have derived explicit formulas for the
optimal mask filter, under quite general assumptions
on the signal and the degradation process.
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