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A general signal description, called an inherently bounded Adaptive Quasi Linear Representation
(AQLR), motivated by two important examples, namely the wavelet maxima representation, and the
wavelet zero-crossings representation, is introduced. It is shown, that the dyadic wavelet maxima
(zero-crossings) representation is, in general, nonunique. Using the idea of the inherently bounded
AQLR, a global BIBO stability is shown. For a special case, where perturbations are limited to the
continuous part of the representation, a Lipschitz condition is satisfied.

1 Introduction!

S. Mallat in [4] and, together with Zhong, in [5], in-
troduced zero-crossings and extrema of the wavelet
transform as a multiscale edge representation. Two
important advantages of these methods are low al-
gorithmic complexity and flexibility in choosing the
basic filter. Moreover, [4] and [5] propose reconstruc-
tion procedures and show accurate numerical recon-
struction results from zero-crossings and maxima rep-
resentations. In [4, 5], as in many other works in
this area, the basic algorithms were developed using
continuous variables. The continuous approach gives
an excellent background to motivate and justify the
use of either local extrema or zero-crossings as impor-
tant signal features. Unfortunately, in the continuous
framework, analytic tools to investigate the informa-
tion content of the representation are not yet available.
The knowledge about properties of the representations
is mainly based on empirical reconstruction results.
From the theoretical point of view, there are still im-
portant open problems, e.g. stability, uniqueness, and
structure of a reconstruction set (a family of signals
having the same representation).

Our objective is to analyze these theoretical ques-
tions using a model of an actual implementation. The
main assumption is that the data is discrete and finite.
The discrete multiscale maxima and zero-crossings rep-
resentations are defined in a general set-up of a linear
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filter bank, however, the main goal is to consider a par-
ticular case where the filter bank describes the wavelet
transform. Since reconstruction sets of both max-
ima and zero-crossings representations have a similar
structure, a general form called the Adaptive Quasi
Linear Representation (AQLR) is introduced. More-
over, many generalizations of the basic maxima and
zero-crossings representations fit into the framework
of the AQLR.

We first present conditions for uniqueness, then
apply these conditions to the wavelet transform-based
representation, and then obtain a conclusive result. It
turns out, that neither the wavelet maxima represen-
tation nor the wavelet zero-crossings representation is,
in general, unique.

The next subject is stability of the representation.
This issue is of great importance because there are
many known examples of unstable zero-crossings rep-
resentations. In order to improve the stability proper-
ties, Mallat bas included additional sums in the stan-
dard zero-crossings representation and, together with
Zhong, they have introduced the wavelet maxima rep-
resentation, as a stable alternative to the zero-crossings
representation. Using the idea of the inherently
bounded AQLR, global BIBO (bounded input,
bounded output) stability is shown. For a special case,
where perturbations are limited to the continuous part
of the representation, a Lipschitz condition is satisfied.
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2 Multiscale Maxima Representation

Consider £, a linear space of real, finite sequences:

L2{f:f={f (NS fn) e R}

Let X and Y denote operators on £ which provide
the sets of local maxima and minima, respectively, of
a sequence f € L. The formal definitions are :

Xf={k: f(k+1) < f(k) and f(k~1) < f(k))
Yi={k:f(k+1)2 f(k) and f(k-1) > f(k)}

In this work, in order to avoid boundary problems, an
N-periodic extension of finite sequences is assumed.

Let Wy, Wy, ..., W,, S be linear operators on £.
The multiscale local extrema representation, R, f is
defined as:

1,5,f}‘

B f & {{XW, YW, (W () o, s}

i=

where EW,f = XW; fU YW, f.

Following (5], R..f, will be called the multiscale
maxima representation as well. In the particular case,
when Wi, W,,...,W;, S, correspond to a wavelet
transform, R, f will be called the wavelet maxima rep-
resentation.

The determination of the extrema point sets is
highly nonlinear. However, for the given extrema sets,
XW; f and YW, f, the remaining data, called the sam-
pling information, are obtained by a linear operation
of sampling an image of a linear operator at fixed
points.

Let oy denote the linear operator associated with
the sampling information. Then, R, f is written in an
alternative way as:

Rof = {XW, YW fH T f} . (1)

For a given representation Rf, a reconstruction set
D(Rf) is defined as a set of all sequences satisfying this
representation, i.e.

[(Rf) 2 {y€ L:Ry=Rf}. (2)

It is clear that in order to satisfy a given maxima
representation, a sequence h € £, in addition to obey-
ing the sampling information ), h = Ty f, needs to
meet the requirement that W;h has local extrema at
the points of XW;f and YW, f. Loosely speaking, we
have to assure that W is increasing after a minimum
and before a maximum and it is decreasing otherwise.
Straightforward analysis yields:

Theorem 1 R,.f is a given multiscale mazima rep-
resentation. h € (R, f) if and only if

Tngh = Tugf ()
t(k) - (Wih(k +1) = W;h(k)) > 0 (4)

The last inequality should be satisfied forj =1,2,...,J
and for almost all k (if two consecutive k’s belong to
EW; f then the first is omitted here). t(k) is called the
type of k and can be either +1 or —1.

The maxima representations can be cast into the
form Rf = {Vf,Tf}, where V f is a set of points and
T'is a linear operator which may depend on Vf. How-
ever, the key feature of the maxima representation is
the fact that the set V f yields additional constraints,
in the form of linear inequalities, which do not appear
directly in Rf. Stimulated by this observation, we
define the following general family of signal represen-
tations.

Definition 1 Rf = {Vf,Tf} is called an Adaptive
Quasi Linear Representation (AQLR) if there exists a
linear operator A and a sequence a such that:

sel(Rf)© Te=Tf and Az > a. (5)

A,a may depend on V f, but they must be independent
of Tf.

The reasoning behind the name “Adaptive Quasi Lin-

ear Representation” (AQLR) is as follows. This rep-

resentation is adaptive since T, A, a depend on the se-

quence f (via the set V f). It is quasi linear because it

is based on a set of linear equalities and inequalities.
Clearly, the following is true.

Proposition 1 Any multiscale mazrima representation
is an AQLR.

The next definition is a generalization of an essen-
tial boundness property of the wavelet maxima repre-
sentation.

Definition 2 An AQLR is called inherently bounded
if there exists a real K > 0 such that

z € [(Rf) = ||| < K|Tf}.

The coefficient I{ can depend on the parameters of the
representation e.g. N,J, Wy,..., W, S, but it must
be independent of V f and Tf.

Proposition 2 The wavelet mazima representation is
an inherently bounded AQLR.

It turns out that the- wavelet maxima represen-
tation, as defined here, provides bounds for ||W¥;A],
[1Ssh||. These bounds, due to Parseval’s equality, yield
a bound for the original sequence h. For details, the
reader is referred to [3].



3 The Multiscale Zero-Crossings

In defining the multiscale zero-crossings representa-
tion, we essentially follow [4), but minor changes are
necessary due to our basic assumption that only a dis-
crete signal version is available. Let Z be an operator
which provides the set of zero-crossings of a given se-
quence f € L, i.e.

Zf = {k: f(k=1) f(k) <0). (6)

Mallat in [4] has stabilized the zero-crossings repre-
sentation by including the values of the wavelet trags-
form integral calculated between consecutive zero-
crossing points.  Therefore, the multiscale zero-
crossings representation, R, f, is defined as:

sz = {{ZI/VJf’ UJ'Z/f}}LI’S‘If} : (7)

where
n{k)-1

UZf(R) = 32 W;f(0).
I=k

k and n(k) are two consecutive zero-crossings of W f.
As in the maxima representation case, for fixed
sets ZW; f, the remaining data Uf/f and S f are ob-
tained by a linear operator, denoted by T, ;. The zero-
crossings representation can also be written as:

R.f = {{ZW; £}, Ty s} (8)

We have the following characterization of the recon-
struction set.

Theorem 2 Let R,f be « given multiscale zero-
crossings representation. h € T(R.f) if and only if

Tth = Tyuf (9)
tk)- Wih(k) > o. (10)
t(k) is the type of k and can be either +1 or —1.

The last inequality should be satisfied for almost all k
(if W;F(k) =0 then k is omitted).

As an immediate consequence of Theorem 2 we have:

Proposition 3 Any multiscale zero-crossings repre-
sentation is an AQLR.

Moreover:

Theorem 3 The wavelet zero-crossings representation
is an inherently bounded AQLR.

4 Nonuniqueness

A representation Rf = {Vf, Tf} is said to be unique,
if the reconstruction set I'(Rf) consists of exactly one
element. We have the following uniqueness character-

ization for AQLR’s.
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Lemma 1 Let Rf = {VA£,Tf} be an AQLR. Then
Rf is unique if and only if the kernel of the operator
T is trivial, i.e. NT = {0}.

The proof is clear from topological considerations.
Nevertheless, an elementary but constructive proof is
given in [3].

This claim has some significant consequences. Us-
ing the above lemma, an algorithm which tests for
uniqueness can be developed. Perhaps the most im-
portant consequence of Lemma 1 is the fact that
uniqueness of the representation Rf is equivalent to
uniqueness of the underlying irregular sampling T f.
In other words, in the unique case, all the informa-
tion about the signal is already contained in Tf. Ad-
ditional constraints Af > 4 are redundant. On the
other hand, from the signal compression, understand-
ing and interpretation point of view, it seems to be
desirable that a little information would be specified
explicitly by Tf and as much as possible informa-
tion about a signal should be described implicitly by
Af > a. Therefore, in our opinion, the most impor-
tant and interesting features of AQLR s appear in the
nonunique case,

Using the previous lemma, we are able to show
that:

Theorem 4 A discrete dyadic wavelet mazima (zero-
crossings) representation based on a discrete low pass
filter H(w) is given. If H(z) =0, J > 3, and N is a
multiple of 27 then there ezists a sequence f which has
a nonunique mazima (zero-crossings) representation.

As a universal example of nonuniqueness the fol-
lowing sequence is proposed.

f(n):cos(’_)#;j) n=90,1,...,N—1. (11)

Observe that the same sequence is proposed for all
dyadic wavelet transforms and for both the maxima
representation and the zero-crossings representation.

The example of the nonunique maxima represen-
tation is described in {1, 2]. Now, let us consider
the zero-crossings representation based on the wavelet
transform defined in [4]. Let J = 5 and N = 256.
Consider two sequences:

18 = o (322)

2rk . [ 2nk
Ja(k) = cos <§—> + 0.1 -sin (ﬁ) .

It can be shown that they have the same Zero-crossings
representation. Figure 1 describes these sequences,
while Figure 2 gives their first level wavelet transforms
(other levels wavelet transforms are very similar).
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Figure 2: The sequences W, f and W, fa
5 Stability

To address the stability issue, the standard approach
is to introduce the notion of perturbation of the rep-
resentation, and of the reconstruction set. In addi-
tion, distance measures between distinct representa-
tions and between different reconstruction sets should
be defined. In general, this is not an easy task. Ob-
serve that V f, T'f may have different sizes for different
representations. Fortunately, for inherently bounded
representations, the following characterization of BIBO
(bounded input, bounded output) stability is easily
verified.

Proposition 4 Let Rf; = {Vfi,Tif;} (i = 1,2) be
inherently bounded AQLR’s. Then for all I{; > 0 there
ezists Ko such that (i=1,2):

“T,f‘“ <K;= “:El - 1'2“ < Ko Vz;e F(Rfl)

In many applications, the reasons for perturbations in
a representation are arithmetic or quantization errors
in a reconstruction algorithm. This kind of pertur-
bations may change the continuous values of T'f but
it preserves the discrete values of V f. Therefore the
perturbed representation, (Rf),, can be written as:

(Bf)p ={VL,Tf+A(Tf)}. (12)

Let ', be the corresponding reconstruction set. In
general, the distance, d, between two reconstruction
sets, I' and T, is defined as:

d(T,T,) = sup{|ly — ]| : v € )%, € 1}

Observe, that for an inherently bounded AQLR,
d(T',T,) is always finite. The measure of the perturba-

tion in the reconstruction set is the difference between
d(I',T,) and the size of ' which is defined as follows:

s(0) 2 d(T,T) = sup{m = |l : 1,72 € T}. (13)
s(I') and d(T, T;) describe the largest possible Euclid-
ian norm of a reconstruction error, from the original
representation and from a perturbed one, respectively.

One remark is in order. In general, for an arbi-
trary A(T f), the associated reconstruction set may
be empty and then d(I",[',) would not be defined. In
the sequel, it is assumed that this problem is treated
by a reconstruction algorithm and hence A(T f) yields
a nonempty I';. In this case, the following Lipschitz
condition is satisfied.

Theorem 5 For all inherently bounded AQLR, there
exists K > 0 such that:

d0T,) S K JATHE+sT).  (14)

Conclusions

The described theoretical results about uniqueness and
stability are new. In our opinion, the most signifi-
cant contribution of this work is to create a frame-
work to define and analyze a wide family of represen-
tations, Important examples are generalizations of a
basic maxima representation obtained by using only
a subset of local extreme points. Their properties are
the subject of the undergoing research.
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