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ABSTRACT

We employ recent results of analysis in several complex variables to come up with a set of compactly supported
approximate deconvolution kernels for the reconstruction of a two dimensional signal based on multiple linearly
degraded versions of the signal with a family of kernels that satisfy suitable technical conditions. We discuss the
question of convergence of the proposed deconvolution kernels, present simulation results that demonstrate the gain
in bandwidth, and propose two data parallel grid layouts for the off-line computation of the deconvolution kernels.

1. INTRODUCTION

Signal deconvolution is a fundamental problem related to a variety of scientific and engineering disciplines. The
traditional problem formulation can be stated as follows. We observe the output of a sensor modelled by a convo-
lution operator with known kernel, and wish to synthesize the input signal based on output observations. In some
cases it is possible to use more than one sensors, and attempt to reconstruct the common input signal by linearly
combining the outputs of all available sensors. The motivation here stems from the fact that multiple operators
are indeed necessary for the deconvolution problem to be well posed.? The specific application we have in mind is
deconvolution for electro-optic imaging devices (Imaging Detector Arrays).2*¢

Consider the system of figure 1. The f!s are distributions of compact support defined over R? and Ly, denotes
convolution with kernel f;. The natural question that comes up is: what is the minimum possible m and what
conditions should the f;’s satisfy so that we can uniquely determine s(-) from the d;(:)'s? We are specifically
interested in obtaining linear estimates of the input signal based on output observations from the bank of available
devices. Mathematically the problem can be formulated as a convolution equation. We are looking for a family of
deconvolvers h;(-), i =1,.-.,m such that:

dyxhy+ - +dy xhy, =s (1)
Alternatively, we need a family of entire analytic functions Tti(-), i=1,.--,m such that:
(,[17;1 +-+ (zrlﬂ'nz =3 (2)
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Here ~ denotes Fourier Transform. Now observe that

~

d;=5f, i=1,...m (3)
Therefore equation 2 above is equivalent to
fl’};‘l"‘“"f"ﬁn?lm:l (4)

The later equation is known as the Analytic Bezout Equation (ABE). It is a well known fact that the existence of

a family of deconvolvers, {711, . -,Z,,,,} that solves the Bezout Equation is completely equivalent to a coprimeness
condition on the part of the f;’s.

2. CONSTRUCTION OF DECONVOLVERS OF COMPACT SUPPORT

Let 5‘;{2 denote the space of all distributions of compact support defined over R%. Let 57’22 denote the Paley-
Wiener space. The mapping é,,q — é,,q given by f f where” denotes Fourier transform, for all f € ERZ, is 1-1

and onto the Paley-Wiener Space é . For convenience we drop the index R2.

Theorem 1 ° There exists a family of functions {?;1, e 7.ﬁn1} in & that solves the Bezout Equation iff the family of
entire functions {fy ---, fm} in E' is strongly coprime, i.e. iff: Z;.”:l Lfi(W)? > e=?@) Y € C?, for some constant
c. Here, p(w) = [Imw| + log(1 + |w]).

Definition 1 Let K be a compact subsel of R*. Define the supporting function of K as follows:

Hy (&) 2 maz{z - &lz € K}
where - denotes inner product and € € R>.

Consider a family of 2 distributions {f1, f2} of compact support in R2. Let H; denote the supporting function of
the convex hull of the union of the support sets of fi, fa.

Definition 2 A family of 2 distributions {f, f2} of compact support in R? is well behaved if there ezxist positive
constants A,B,N,K,C and a supporting funclmn Hy, such that 0 < Hy < Hy, such that the common zero set, Z, of
the functzons {fl,f'v} is almost real t.e. Yw € Z - |Imw]| < C'log(2 + |w|) and the number of zeros in Z zncluded in
an open ball of radius v satlisfics the growth (011(/1t10n n(Z,r) = O(r?), and denoting

BE [2 |ﬁ-<z>12}
i=1

1/2

the following inequality holds
B([(:‘Z)I\'CHO(Imz)

(L+ =DV

1f()] >

where d(z, Z) s the minimum of 1 and the Euclidean distance from the point z to the set Z.
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It can be shown that under these conditions the set Z is discrete, i.e. the points ¢ € Z are isolated.

Definition 3 A well-behaved family {f,, f2} is very well behaved if there exist constants M,Cy > O such that
for all (€ Z it holds that R
91

701 2 [det[2

(Ol > i1+ [Kh=™

This last condition guarantees that the points in Z are well separated, i.e. there exist constants M',Cg >0
such that for any ¢ € Z there exists » = r(¢) such that

e
(1+I¢h

and such that the open ball B,.(¢) contains no other points in 2.

r¢) 2

Theorem 2 3 Let {f1, f2, f3} be a strongly coprime family of compactly supporied distributions over R*. Suppose
that the subfamily {fy, fo} is very well behaved. Suppose fs is the kernel with the smallest support. Let Hgy, Hy be
as in definition 2 for the subfamily {f, f2}. Let Ha denole the supporting function of the convezr hull of the union
of the support sets of fi, fo, fs, and suppose Ha < 2H;. Furthermore suppose 3 v, > 0 such that ro|0] < 4H,(0) —
2H,(0) — Ho(0). Then for any u € CF(R?), with support set spriu C {zx€ R™ : |z| < ro }, & can be writlen as

i) = o) p(z ) (5)

21O
where z = (z1,22), ¢ = (C1,¢2), both in C?,
R CY RN CRO I {CHY
Do) 2 a0 =0 (=0 (6)
1(2) 2(2) f3(2)
oA Jilz1,6) = fil61,G2)
91(5.¢) = -G (7)
gi(z,0) 2 "r"(“’zj,z:g;(z"“) (8)
and, J(¢) = det(M(2))|.=¢, where the Jacobian matriz M(z) is defined as
M(z) 2 ou Ot 9)
Jzq Dzq
and R R
Z={:eC*: fi(2) = fa(z) = 0} (10)
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The significance of Theorem 2 can be demonstrated by a simple manipulation of equation (5), which yields

(2) = hi(2)fiz) + ha(2) Jal2) + ha(2) fa(2) (11)
with

7;1(:) é Zg€7%(<<l(<—) [(]2(’aC)yg(Z,C)—9?(3’C)gg(zvc)]

T 2 () NS PR VS
h?(*) - Zkgzm{U?(z)ﬁ)(lzl)(mm—!/i(nﬁ)gg(no] (12)

Ba(2) 2 T 7= [, 003(2,0) — 03(2, b (2,0
If u is designed to approximate a delta distribution, then @ will be approximately equal to one in the vincinity of the
origin, in which case {/11( h')( ), /1; )} will give an approximate solution to the ABE. Next we show that there
exist unique distributions of compact support, {h;(t), ha(t), h3(t)}, with corresponding FT {hy (2), hg(z) hg(z)} Let
us consider hl( ). The dew]opmuxt for the other two follows along the same lines. It suffices to show that every
term of the sum over { € Z is the Fourier transform of a distribution of compact support and obtain an upper bound
on its support which is m(lepen(lenl of ¢. This is crucial. Fix ¢ and consider the following function (which is analytic
in z) )

u(q)

J($)f3(¢)

For ( fixed, the first factor is just a scaling constant. By (lemma 1)3 gi(z,¢) is the Fourier transform of a distribution of
compact support. Furthermore ch sprt FT~gi(z,{)} C ch sprt f;. Here ch denotes convex hull of a set. Therefore

[/1('»().}' ( )—Jl( )9’3(3»()]

ch sprt FT='g}(2,¢)} C ch sprt fo (13)
ch sprt FT=Hg3(2,¢)} C ch sprt fs (14)

By Titchmarsh Theorem? if f and g are both distributions of compact support then

chsprt f+g = chsprt f @& chsprt g

= {a 4+ b : a&chsprt f, b€ chsprt g} (15)
Hence
ch sprt 17'[’_1{_r/f(:,g')g/::f(z,(')} Cch sprt fo @ ch sprt f3 (16)
Similarly
ch sprt FT‘I{{/?(:,C)(/S(:,()} Cch sprt fo & ch sprt f3 (17)
Thus
ch sprt FT™ {g¥(2,Q)g3(=.C) = ¢3(=,O)3(2,0)} C ch sprt fo & ch sprt f3 (18)
And since the factor 7;—‘;% is a constant which does not affect the bound on the support
J3
(¢ Y 9
ch sprt FT~! {——(E)— UHERSVHENS BWHE: Q)Jz(z,C)]} Cch sprt f» ® ch sprt fs (19)
() f3(C)

SPIE Vol. 1569 Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision (1991) / 359



i.e. the bound on the summation term is independent of ¢. Hence

ch sprt hy(t) C ch sprt fo & ch sprt f3 (20)
Similarly

ch sprt hao(t) C ch spri fi & ch sprt f3 (21)
and

ch spirt hy(t) C ch sprt fi @& ch sprt fa (22)

It has to be emphasized that there are two levels of approximation here. First, we generally choose u to be
different from & for reasons that are going to be discussed in section 3. This results in a family of deconvolvers
that approximate the exact deconvolvers. Second, we further approximate these deconvolvers by truncating the
corresponding sums. Let us call the deconvolvers of the first level of approximation the intended ones, and the
deconvolvers of the second level of approximation the realizable ones. These realizable deconvolvers are going to be
compactly supported by virtue of the fact that every term of the sums over ( € Z 1n equation (12) is the FT of a
distribution of compact support whose support can be bounded independently of ¢.

We remark that our approach is beneficial if the common zeros can be precisely localized. In this case, we can
achieve good quality of deconvolution without introducing additional truncation errors, since the proposed deconvolu-
tion kernels are compactly supported and can be realized with finite delay. Otherwise, if the common zeros cannot be
localized with sufficient precision, it is probably better to use the Wiener deconvolvers® and suffer the error due to the
truncation of their duration, rather than the error induced by the incomplete knowledge of the common zero locations.

Under certain independence and stationarity assumptions, Wiener deconvolvers have been shown to be optimal
in the presence of noise.>* Numerically, the proposed deconvolvers are very close to the Wiener Deconvolvers in the
Fourier transform domain, except for a certain degree of rounding up of very sharp peaks present in the Wiener
deconvolvers (we attribute this to the fact that the proposed deconvolvers are analytic, and, therefore, cannot follow
very sharp peaks exactly). Hence the behaviour of the proposed deconvolvers in the presence of noise is expected to
be very close to optimal.

3. WINDOWING AND AVERAGING

Our goal is the pointwise evaluation of the F'T of the intended deconvolution kernels over a suitably chosen finite
grid. Here, we must strike a balance between computational feasibility and noise averaging on one hand, and quality
of deconvolution on the other. The choice of u strongly affects the convergence of the realizable deconvolvers to the
intended deconvolvers (because the smoother u is, the faster the decay of @ at infinity, and, therefore, the faster the
convergence). Noise considerations dictate a smooth choice of u which in turn implies a fast decay of @ at infinity. If
these issues were of no concern then we would like u to be as close to & as possible, or, equivalently, i to be as close
to unity as possible, in order to achieve good recoustruction of the original signal. Extensive simulations indicated
that the following family of functions is a good compromise®

u(z) = (H \;————111(‘_\5.31‘)) () (23)

i=1 ?

2P
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Here, N is a small positive integer and ¢, .c» are small positive reals. The function pr(2) is defined as follows:

1, Zi<1‘,i:1,2
e ={ 5 S (24)

0, elsewhere

The first factor is a two dimensional sinc-like function. The parameter r (forced cutoff in rads/sec) is to be chosen
sufficiently large to include the main features of the first factor, while keeping the size of the computation reasonable.

At this point, it is useful to introduce a concrete example, in order to demonstrate the issues involved. Let xx
denote the characteristic function of the compact set X' C R? and consider the following family of convolution kernels

Sty te) = X'[_\/g'\/g]x[_\/g'\/g](tl,tz)
Lltnt) = XL /a/ax-vava (it te) (25)
Jalty te) = X-1agx=1,1(t, 82)

Then it is easy to verify that {f1, f2, f4} satisfy
deconvolvers are given by the infinite sums

o= SO G 2
(1, 2) Z](C)f.}(c) (zl—cl)(zz—Cz) ( )

all conditions of theorem 2. The Fourier transforms of the resulting

(eZ
with . ~ ~ ~ R R
Ci(2,¢) = fol=1,¢2) [f:s(i’l,l'.») - fs(CuCz)] — fa(z1, 22) {fs(zhCZ) - fs(Cl,Cz)] (27)
Ca(z,¢) = fi(z1,22) [/?3(311(:2) - ﬁK(CIyC’_’)J - fi(z1,¢2) [ES(CMQ) - fa(zl,zz)] (28)
C3(z,¢) £ Ji(z1,Ca) falzr, 20) — fila, 22) fa(z1,2) (29)

Simulation results for this specific family of convolution kernels are presented in figures 2 up to 5. The sums
are taken over the 3200 zeros which are located closest to the origin. A frequency step of 0.1718 rads/sec and a
frequency resolution of 256 x 256 points is adopted throughout the whole sequence of simulations. The magnitude of
the Fourier transform of the third convolution kernel (best one) is depicted in figure 2. The bandwidth of this kernel
is the available bandwidth before any attempt is made to deconvolve the common input signal. It is given here for
comparison purposes. The magnitude of the Fourier transform of the overall system (i.e. bank of convolvers followed
by bank of realizable deconvolvers, whose outputs are summed up to produce the overall system output) using the %
given by equation (23) with parameters ¢; = ¢, = ¢ = 0.1, N = 3 is depicted in figure 3. The overall system exhibits
a high degree of energy concentration along a ribbon-like neighborhood of the z4 axis. Observe that the magnitude
of the response vanishes in the vincinity of the origin! This suprising behavior is attributed to a somewhat arbitrary
(and asymptotically irrelevant) choice hetween two interpolation formulas, in the construction of theorem 2. The
details, along with proposed solutions, can be found in®. For the example under consideration, by symmetry, a simple
trick suffices to take care of the problem. The transforin of each deconvolution kernel is averaged with a replica of
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itself rotated by 90 degrees. It can be shown that the resulting family of transforms converges to an approximate
solution of the ABE. This type of frequency averaging of the solutions results in an overall system response which
is significantly better behaved than the one obtained by using the deconvolvers computed by brute force. This is
especially true when it is combined with a suitable choice of the window parameters. In particular, the magnitude
of the overall system response can be driven away from zero in the vincinity of the origin. The trade-off is that we
suffer some loss of high frequency information. Figure 4 depicts the magnitude of the Fourier transform of the
overall system using the %@ given by equation (23) with parameters €; = 0.1, €2 = 0.5, N = 3. Figure 5 depicts the
magnitude of the Fourier transform of the overall system using frequency averaging of the resulting deconvolution
kernels which were used in the configuration whose FT is depicted in figure 4.

4. EFFICIENT COMPUTATION

The actual computation of the deconvolution kernels is a very demanding task; one basically needs to calculate
pointwise approximations to an infinite sum. We have implemented all relevant computational procedures on Think-
ing Machines Corp. Connection Machine CM-2 system. This 1s a single instruction multiple data system which
supports the Data Parallel Computing model.

In order to optimize the target computation with respect to work-time efficiency considerations one needs to
exploit the special structure of the particular problem at hand. Let n denote the cardinality of the subset of Z
over which we sum, and let W (n) denote the number of operations required for a brute-force computation of the
deconvolution kernels. Our implementation has been developed around the paradigm of characteristic functions over
squares of suitably chosen size. 1t takes advantage of the symmetry of the deconvolution kernels in the transform
domain, the regular structure of the nullset Z, and the similarity between the deconvolution kernels, to reduce the
required number of operations by a factor of 24, i.e. from W(n) to ,_,1—4H/(n).

Assuming “enough” processors, a time-efficient strategy is as follows. For each pair of frequencies, (z, z2), in the
upper-right transform quadrant assign one dala processor to each nullpoint (C1, (), and use the NEWS GRID nearest
neighbor communication facility to implement the prefix sums on paths (pointer jumping) algorithm® row-wise along
the grid. This scheme should be replicated for all three kernels and for all frequency pairs (21, 22) 1n the upper
right transform quadrant. The data processor grid layout would be as in figure 6, where o denotes a data processor,
and + denotes floating point addition. The overall algorithm inherits its work and time bounds from the underlying
pointer jumping algorithm which it uses as a building block. The number of frequency points z at which we compute
the corresponding sums is a finite constant, and, therefore, is hidden in the big-O notation. The pointer jumping
algorithm is not work optimal (needs O(nlogn) operations instead of O(n) which is the optimal)®. On the other
hand it is very fast , with time complexity O(logn). Therefore the proposed grid configuration also needs O(nlogn)
operations (and hence it is not work optimal) and O(logn) time (which is very fast). The drawback with this grid
configuration is that it requires a very large number of virtual processors. This implies that each actual processor
must be timeshared between a large number of tasks. In practice, only the values over a relatively small subset of
frequency points, z, are simultaneously computed at any given time.

In its full configuration the Connection Machine model CM-2 employs 64K processors. With a frequency resolu-
tion of 512 x 512 points we can simply assign cach processor the task of sequentially computing one point value for
all three kernels. This requires 32X312 = G4K processors. This way no interprocessor communication is needed and
the size, n, of the subset of the nullset over which we sum is not as big a concern as before, because it does not affect
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the number of processors required (only affects the execution time). Thus quite large nullsets can be accommodated.
Notice that since each processor computes a specific point value for all three kernels, the similarity between the
three kernels can be easily exploited. The number of operations and execution time are both O(n) here. This grid
configuration is clearly work-optimal. Tn a fully configured Connection Machine with 64K processors the run time
(excluding I/0) is around four minutes (for the upper right hand quadrant only). A further computational step
would be to use the Accelerated Cascading Strategy (ACS) to come up with a work-time optimal algorithm based
on the optimal list ranking algorithm?.
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Figure 1: Multiple convolutional operators operating on a single input
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Figure 2: Magnitude of Il of convolver 3 (best one)
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Figure 3: Magnitude of F'T of overall system, €
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Figure 4: Magnitude of F'T of overall system, ¢; = 0.1, e¢2 =05, N =3
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Figure 5: Magnitude of F
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Figure 6: Layered grid configuration for distributed computation
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