Real time architectures
for the Zakai equation

and applications

John S. Baras

Electrical Engineering Department

and Systems Research Center
University of Maryland at College Park

Abstract

We examine in detail real-time architectures for the sequential
detection and/or estimation problems for diffusion type signals. We
demonstrate the fundamental role played by the Zakai equation in
defining candidate architectures. For scalar and two dimensional
state models an architecture based on systolic arrays is derived. For
higher dimensional problems a multilayer architecture based on an
asychronous paralle] implementation of the Multigrid algorithm is
derived. Properties of the architectures and practical hardware im-
plementation results are also reported.

1. Introduction

One of the basic activities of electrical engineering today is the
processing of signals, be they in the nature of speech, radar, images,
or of electromechanical or biological origin. By “processing” we gen-
erally mean conversion of the signals into some more acceptable for-
mat for analysis. Examples could be the reduction of noise content,
parameter estimation, bandpass filtering, or the enhancement of con-
trast, as required for imaging systems. In feedback control systems
analysis and synthesis, signal processing problems such as sequen-
tial detection and estimation are fundamental. The signal theorist
develops algorithms for performing these functions by constructing
mathematical models of signals and the operations conducted on
them. The result of intensive research in this area over the last

15
Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.
ISBN 0-12-481005-5

16 John S. Baras

twenty years has been a rather sophisticated theory, which utilizes
advanced concepts from stochastic processes, differential equations
and algebraic system theory. For a survey of such work the reader
is referred to [2], where it can be seen that researchers have gone far
beyond the classic work of Doob (3] and Wong [4].

One of the main reasons for the lack of impact of the more
theoretical work on the engineering applications fields has been the
failure to meet economic as well as real-time processing constraints
imposed by the problems engineers face. The fundamental issue to
be resolved for at least a wide class of signal processing problems
involves meeting the time constraints implicit in the design. The
problem is that such techniques will have much greater demands for
their numerical analysis. As this translates to mean a greater number
of arithmetic operations per second, meeting real-time processing
conditions will be all the more difficult.

This is indeed the trend throughout much of signal processing:
a greater volume of signals must be processed in a lesser amount of
time, in addition to requiring more sophisticated analysis and rela-
tively inexpensive electronics packaged on a small scale. To better
understand these issues, we should examine in more detail the na-
ture of some of these advanced techniques of signal processing. This
type of analysis will become critical in the future as designers begin
to assess model accuracy on device performance, cost of production
and other factors.

A typical problem considered in this paper is described below.
There are two hypotheses Hy, H, each representing that the observed
data y(t) originate from two different models. The decision maker
receives the data y(t) and has to decide which of the two hypotheses
is valid. This problem is generic to a plethora of digital and analog
signal processing problems, such as: pulse amplitude modulation,
delta modulation, adaptive delta modulation, speech processing, di-
rection finding receivers, digital phase lock loops, adaptive sonar and
radar arrays, simultaneous detection and estimation.

As a matter of fact almost any sequential detection problem can
be formulated in a similar manner. The underlying mathematical
models can be diverse: diffusion processes, point processes, mixed
processes, Markov chains etc. In this paper we shall concentrate on
diffusion process models. That is to say, under each hypothesis the

Real time architectures 17

model for the observed data is

d'(t) = f(a*(D)dt + ¢'(a(1))dwi (1)
dy(t) = hi(z*(t))dt + dv(t) (1.1)

where 7 = 1,2 correspond to hypotheses H; or H,. If we let
hi(t) = B {hi(*(8))|F}) (1.2)
the likelihood ratio for the problem is

A= (ha(s) - izz(s))Tdy(s)

5 | (o = W) s (13)

In [7] we showed that the optimal sequential detector utilizes thresh-
old policies under both Neyman-Pearson and Bayes formulations and
the likehood ratio A;.

First it is clear that the detector has to select two things. A
time 7, to stop collecting data, and a decision § which declares one
of the two hypotheses. Given the miss and false alarm probabilities
@, 0 one computes thresholds A, B [7] and then the optimal detection
strategy is given by

7" =inf {t > 0|]A, ¢ (A, B)} (1.4)
* __ 1) AT' 2 B
6" = {2, A < A, (15)

It is therefore clear that real time implementation of this rule
is based on our ability to compute h;(t) in real time. This is related
to the Zakai equation of nonlinear filtering [1]. This is so because

[u'(z,t)h(z)dz

W(t) = [ui(z,t)dz

(1.6)

where u*(z,t) is the unnormalized conditional probability density of
z(t) given y(s), s < t, under each model 1, or 2. This density satisfies

18 John S. Baras

the stochastic partial differential equation
du'(z,t) = Liu'(z,t)dt + ui(:r,t)hiT(x)dy(t)
u'(z,0) = po(z)

* 1 _ __62_ O’i ’U,i x _
Liv'(z,t) = ; 8zk8x1(ku'(z,t)) (1.7)
0 1 1
-3 g Ui)

’. 1. T
o'(z) = 59'(2)g'(o).
It can be shown that the likelihood ratio (1.3) can be represented as

_ Jul(z,t)dz
A= [u?(z,t)dz

As a consequence the real-time implementation issue, is reduced to
the real time implementation of (1.7), (1.8), by a digital or analog
circuit.

The Zakai equation (1.7), first indroduced by Moshe Zakai in
[1], plays a fundamental role regarding the resolution of the real-
time implementation problem for such algorithms, primarily due to
its linearity! As is also well known the real-time implementation of
the Zakai equation holds the keys to the solution of partially observed
stochastic control problems [5], since it provides the natural state for
the equivalent fully observed problem, which the feedback controller
utilizes.

In section 4 we describe a special architecture, which can achieve
real-time operation for many applications, utilizing systolic arrays,
as first demonstrated in [7]. We emphasize that this architecture
solves the problem for dimensions of z*, less than or equal to 2. The
higher dimensional problems were not addressed in [7]. In section 6
we provide a solution to the higher dimensional problem based on
the so called multigrid method applied to (1.7).

The primary ob jective of the paper is to demonstrate that Moshe
Zakai’s fundamental contribution in [1], in addition to its well known
theoretical value has paramount implications on the practical feasi-
bility of real-time implementation of any sequential detector and/or
estimator as well as feedback controller.

(1.8)

Real time architectures 19

12. Review of Basic Sequential Detection Prob-
ems

The fundamental problem (1.1) can be easily reduced to two
simpler problems of the following type. We are given a vector-valued
signal z; € R™ which satisfies the stochastic differential equation

dil?t = f((l?t) dt + g(.’l?t) dwt

o =V

(2.1)

where w; is a vector standard Brownian motion. Unfortunately, we
cannot observe z; directly, instead we only observe y;, a vector-
valued stochastic process y; € RP. Under each hypothesis the ob-
served data is the output of a stochastic differential equation, i.e.,

Under H; : dy: = h(z¢) dt + dv,

(2.2)
Under Hy : dy; = dv,

where v; is another standard Brownian motion which is independent

of w;. Notice that if f(-) and h(-) are linear and g(-) is constant

then this becomes a standard problem which can be solved by the

Kalman filter.

Data are observed continuously starting at an initial time which
is taken for convenience to be zero. We let ¥} represent the infor-
mation collected up to time ¢. At each time ¢, the decision-maker
can either stop and declare one of the hypotheses to be true or can
continue collecting data. We let 7 represent the termination time
and 6 represent the decision. The decision-maker selects his deci-
sion based on the current information ,F;, so as to minimize an
appropriate cost function. More precisely, an admissible decision
policy is any pair u = (7,6) of RV’s where 7 is an F} stopping time
and ¢ is a {0,1}-valued F? measurable RV. An admissible policy
v = (7,6) is a threshold policy if there exist constants A and B,
with 0 < A <1< B < oo and A # B, such that

r=inf(t > 0] A, ¢ (4, B)) (2.3)

1, A,>B
6= {0, Ar <A (24

20 John S. Baras

Here A; is the likelihood ratio associated with this problem, namely

t 1t
A, = exp(/ AT dy, - / 15,12 ds), (2.5)
0 JO
and)
hy = Ey(h(z) | F7). (2.6)

Using Girsanov’s theorem, it can be shown [6] that for threshold
policies

1- 4 L AB-1)
T P(=0="—2

Po((S"—‘l):

Some algebra gives the following result.
Let u be a threshold policy with A and B defined by

_ B _1-p
A=r— B=— (2.7)
where o + 3 < 1, then
Po(ézl):a Pl((S:O):ﬂ (28)

Hence, given desired false alarm and miss probabilities, «a, 3, it is
possible to find thresholds, (A, B), so that the resulting threshold
policy has the required probabilities.

Given 0 < o, < 1 with a+ 8 < 1, let U(a, 3) be the set of all

admissible policies u such that
Pl=1)<a P(6=0)<p. (2.9)

The fixed probability of error formulation to the sequential hy-
pothesis testing problem requires the solution of the following.

Problem (Pr): Find v* in U(a,) such that for all
uwin U(e, f),

Ei(/ ||izs||2ds)2Ei(/ |hs||? ds), i=0,1. (2.10)
0 0

Real time architectures 21

The term in the expectation above represents the expected sig-
nal energy present. Usually, the observation time is minimized, sub-
Ject to the error probability constraints (2.9). However, in this prob-
lem we cannot always be sure that we receive “good” data because
h(z¢) is itself a random process. It is clear that the longer we ob-
serve y the more energy signal we receive. Therefore, trying to decide
“faster” is related to trying to decide while receiving the “minimum”
signal energy. This intuitive idea is captured in (2.10). We can now

state [7, 8]:
Theorem 1. If u* is the threshold policy with constants (A*, B*)
defined by
* ,8 * 1 - IB
AT = = — 2.11
l1-a’ B a (2.11)

then u* solves problem (Pp).

For the Bayesian formulation, let H be a {0, 1}-valued RV indi-
cating the true hypothesis. By ¢ we denote the a priori probability
that hypothesis H, is true.

We shall assume, two costs are incurred. The first cost is for
observation and is accrued according to k [} ||A,][2 ds, where k > 0
and {h;, t > 0} is defined by (2.6). The second cost is associated
with the final decision é§ and is given by

c1, when H =1and é§ =0;
C(H,6) = {cz, when H =0 and § = 1; (2.12)
0, otherwise,

where ¢; > 0 and ¢; > 0.
We are interested in minimizing the expected cost. If u = (7, §)
is any admissible policy, then the corresponding expected cost is

J(u) = E(k/o hsl* ds + C(H, 6)). (2.13)

The Bayesian approach to sequential detection seeks to find the
solution to the following problem.

Problem (Pg): Given ¢ € (0,1), find u* such that,

J(u*) = ig{(J(u). (2.14)

22 John S. Baras

It can be shown that to any admissible policy u there corre-
sponds a threshold policy which has no greater cost, J(u), therefore,
the infimum in (2.14) need only be computed over threshold policies.
In fact, it can be shown [7, 8] that the infimum is obtained and the
following theorem results.

Theorem 2. There exists an admissible threshold policy u* that
solves problem (Pp). The optimal thresholds 0 < A* <1< B* < o
with A* # B*, are given by the relations

() =) - (50)(E)

where a* and b* are the unique solutions of the transcendental equa-
tions

c2 +c1 = k(¥'(a”) - ¥'(b7))
c2(1 = b%) = cya”™ + (b* — a*)(cy — k¥ (a*)) + k(¥ (b*) — ¥(a™)),
with

U(z)=(1-2z)log —

satisfying 0 < a* < b* < 1.

Here again the thresholds are unique functions of the cost pa-
rameters.

These results hold for the hypothesis testing problem described
in (1.1) with the small modification of using A; as defined by (1.3).

3. Numerical Solution for Scalar =z

In this section we discuss the numerical method used to ap-
proximate h(t), A;. As mentioned earlier, it can be shown that
At = [p. u(z,t) dz where u(z,t) is the solution to the Zakai equa-
tion (1.7). Our strategy will be to find an approximation to u(z,?)
which results in a good approximation to A,.

In this section we consider in detail the case when z is scalar.
Then in the Zaka: equation (1.7)

Lz 1) = 5 [02(2) (e 1)] - = [£(2) (1]
= a(z) ug(z,t) + b(z) ug(z,t) + c(z)u(z,t)
= A*u(z,t) + c(z)u(z,?) (3.1)

Real time architectures 23

and
a(z) = %92(93)
b(z) = g(z) ¢'(z) - f(z) (3.2)

o(z) = g(2) g"() + (¢'(2))* + g(z) g'(z) - f'(2)

with po(z) the initial density of z.

In general, it is not possible to explicitly solve (1.7), (3.1).
Therefore, we will approximate its solution using finite difference
methods. Since (1.7) is a linear parabolic equation we use an im-
plicit discretization for z-derivatives, in order to maintain stability.
The general vector valued case is treated in [8, 9].

The solution is approximated on the interval D = (a,b). Let
Az > 0 and define 2, = a + k£ Az and n such that z,, < b. Consider
the collection of points {z,}§ in D. Let At > 0 and define t; = k At.

The value of u(z,t) at the grid point (z;,?x) is represented by
v¥. We replace the z-derivatives in A* with implicit finite difference
approximations. To this end,

k+1 k+1 k+1
v; — 2077 4 v
a(z) upz(z,t) ~ a(z;) (i+l ! -1)

(Az)?

VAL g
b(z) uz(z,t) ~ b(z;) [2t) if b(z;) > 0

Az
(3.3)
'“;Hl - ”fjll .
b((L‘,) T if b(x,) <0
k+1 ok
ut(x’t) ~ v_l__—_?_)_z_

At

Let V¥ represent the vector of mesh points at time k A¢. Then
the above approximations result in a matrix A, which approximates
A*. The approximation takes the form

(I - At A,V = VF 4 other terms.

24 John S. Baras

Note that a(z;) is always positive and the special way of choosing
the first derivative approximation guarantees that the matrix A, is
diagonally dominant and of the form

-+

A, = ' ' . (3.4)
SR
+ —
Therefore (I — At A,) is strictly diagonally dominant. In fact, it is
also inverse positive, i.e., every element of the inverse is positive [10,
Corollary 1.6b, p. 221].
The final step is to approximate the solution of (3.1) assuming
A* = 0. This leads to the matrix

Dy = diag(eh(®) Aut(c(zi) = 3h(z:)%) Aty (3.5)

with Aye = yrg1)ar — e ar-
The overall approximation is

(I — At A,V = D VE, (3.6)

This approximation can be shown to be convergent [8, 9, 11].

A nice property of the above approximation is that it is pos-
itivity preserving. Regardless of the relationship of At and Az,
the solution V* is always positive. This is important since we are
approximating a probability density which we know can never be
negative.

Schemes similar to (3.6) have been discussed in [9, 11]. Fur-
thermore, numerical studies have been performed in [12] using these
methods which have produced satisfactory results for approximations
to ht.

Using V* defined in (3.6) it is easy to construct a convergent
approximation to the likelihood ratio via:

n

b
A} = / un(z,t)de = }:vlk Az
e =0

Then A} is a convergent approximation to A, [8].

Real time architectures 25

4. Real Time Architectures for Scalar and
Two Dimensional z

The finite difference scheme used to approximate the solution
of the Zakai equation involves solving the linear equation

(I - AtA,)VFT = DV, (4.1)

for each time ¢t = kAt. Here Dy is a data dependent diagonal matrix.
Our goal is to design a multiprocessor to efficiently solve (4.1). This
means that:

(1) the time necessary to compute V**1, given V¥, A, and v,

should be below a problem dependent threshold; and

(2) the control structure should be simple and regular. We have

chosen the systolic array architecture of [13] to implement
this scheme.

We are interested in systolic processors which perform linear al-
gebra operations. The basic component of these arrays is the inner
product processor (IPP). At each clock pulse the IPP takes the in-
puts z, y and a and computes az + y (the inner product step). This
value is output on the y-output line, and the z and a values pass
through to their respective output lines untouched. The number of
processors in a systolic array solving the system in (4.1) depends
only on the bandwidth of the matrix and not on its dimension. This
makes a systolic design ideal for implementing finite difference ap-
proximations, where the number of mesh points is not known a pri-
ori but where the maximum bandwidth is determined by the specific
scheme.

To solve (4.1), we use Gaussian elimination without pivoting.
This method, which is stable since (I — At A,) is strictly diagonally
dominant, results in matrices L and U such that

LU = (I - At A,) (4.2)

where U is an upper triangular matrix and L is a unit lower trian-
gular matrix.

The matrices L and U will be bi-diagonal since Gaussian elimi-
nation without pivoting is used. As is standard with Gaussian elimi-
nation, once the factors L and U are found, (4.1) is solved by simple

26 John S. Baras

back substitution. It is well known that back substitution can be
accomplished by systolic arrays [13]. The algorithm takes 2n + 2
time units to operate. Here n is the dimension of the matrix. Hence
we are able to solve (4.1) in 5n + 4 time units. The extra n units
result from a necessary buffering of the data between the two back
substitution operations.

Notice that the matrix, (I — At A,), is independent of the re-
ceived data, y;, therefore, the LU factorization only has to be done
at the time of filter design.

We have completed various implementations of the resulting
processor using board level designs and employing current signal
processing chips, with an IBM PC AT as the host. With current
technology, such boards are capable of processing data at a rate of
20 kHz. We have also completed a special purpose VLSI chip design,
which we named the Zakai Chip in honor of Moshe Zakai. We have
recently completed a much improved special purpose VLSI chip de-
sign which we named the Zakai II Chip. Preliminary performance
evaluation has been very good.

This programmable architecture solves a long standing problem
for scalar state and observation models. It can be easily extended to
vector observations of a scalar state. We have also shown that essen-
tially the same architecture works for two dimensional state process
z. However, the discovery of appropriate architectures for observa-
tions of vector states is much harder. For higher state dimensions,
a different architecture is needed. In the rest of the paper we de-
velop such multi-level architectures using numerical schemes based
on multigrid methods.

5. Multigrid Algorithms for the Zakai Equa-
tion.

In this section we show how multigrid algorithms [14, 15] can be
developed for the Zakai equation (1.7) in a systematic manner. As
before we employ an implicit full discretization scheme that provides
consistent time and space discretizations of the Zakai equation, in
the sense that for each choice of discretization mesh, the problem can
be interpreted as a nonlinear filtering problem for a discrete time,
discrete state, hidden Markov chain.

Real time architectures 27

To discretize (1.7), we choose a time step A and a space dis-
cretization mesh of size ¢ which determines a “grid” in R?, the space
where we wish to solve the Zakai equation. In other words z € RC.
Using results on estimates of the tail behavior of u(z,t) as ||z|| —
we can actually select a rectangular domain in R%, D, where we are
primarily interested in solving (1.7). Let us suppose that there are
n(€) points on each dimension of the grid of size e. Let G4(¢) denote
the hypercube generated in R? by the spatial mesh of size . We
assume for simplicity here uniform grid spacing.

Given this set-up we can construct following the methods of
Kushner [9] a matrix A(e) which approximates the operator L* in
(1.7), in the sense that A(€) defines an approximating Markov chain
to the diffusion (1.1). Let

Ay(k) = y((k +1)A) — y(k A) (5.1)
Hi(e) = h(zi(e))

where z;(€) is a generic point on the grid G4(¢). Finally let V*+1(¢)
be the vector of samples u(z;(¢€),(k+ 1)A) of the unnormalized con-
ditional density over the grid G(¢). In [8] the following was proved,
using semigroup techniques.

Theorem 3: Let
. 1
D(e,k) = diag {exp(H] ()Ay(k) - §|lHi(f)ll2A)}
and consider the implicit iteration

(I — AA(e))VF+

S = D(e, k)V*(e) (5.2)
Ve(e) = {po(zi(€))}-

Then as kA — t, with € — 0 (along some sequence)

lim sup |VF¥(e) — u(zi(e€),kA)| = 0. (5.3)
€0 ieGa(e)

In other words Theorem 3, provides a uniformly convergent scheme.
Once we have this the likelihood ratio (1.8) can be easily approxi-
mated since

/u(x,t)da: ~ Z VE(e)Az(e); for kA<t < (k+1)A (5.4)
i€G4

28 John S. Baras

where Az(¢) is the approximation to the volume element in Gy(e).
Therefore the real-time solution of (1.7) has been reduced to
the analysis of the real-time computation of (5.2). We consider the
matrix I — AA(€) on Ggy(e) and Ggy1(€). There is a convenient
way to label the states of the resulting Markov chain so as to have
some recursion between these two representations. Indeed let the
two matrices be denoted as I'y and I'y41 respectively. Then [16]

Iy T 0 - 0
T Ty T . 0
Typ1 = i (5.5)
0 T . Ty T
0 -~ 0 T T,

where T' is a tridiagonal matrix with positive entries. I'y.; is an
n X n block matrix. Furthermore it is straightforward to establish
[16] that for any d, Ty is strongly diagonally dominant. Furthermore
I — A(€)A has finite bandwidth [16]. The strong diagonal dominance
of I — AA(e) implies that we will need no pivoting. As we shall see
this property will help also in the selection of the relaxation scheme
in the multigrid iteration.

The fundamental idea of multigrid (MG) algorithms is relatively
easy to understand [14, 15]. The primary reasons for using MG
methods are as follows. Direct solvers of discretized p.d.e’s have
computation time that grows linearly with n, the width of the finest
grid, while MG methods can actually do much better than this as
we shall see. As for relaxation schemes, slow convergence is a typical
problem, although they are perfectly suited for parallel implemen-
tation, as they rely only on “local” information when a sweep is
performed. Thus, relaxation schemes have a computation time that
is independent of the size of the grid. Because of its naturally parallel
properties, it turns out that the Multigrid method has a computation
time that is essentially independent of the dimension of the problem.
Because we wish to compute in real-time, such a numerical method
is an ideal candidate for investigation.

We now described a one-cycle full Multigrid algorithm program.
Let there be K point-grids which we will denote by G1,G4,...,Gk
with the finest being G'x and the coarsest being G;.

The finest grid contains the problem:

LEuK = sk, (5.6)

Real time architectures 29

Smoothing Part I

Given an initial approximation to the problem in (5.7), smooth
41 times to obtain uX.
Coarse-grid correction:

Compute the residual d¥ = fX — KK,

Inject the residual into the coarser grid G _;,
K-1 _ K-1,K
d =I.7"d".

Compute the approximate solution 3%~ to the residual equation on
Gk-1:
A A (5.7)

by performing ¢ > 1 iterations of the Multigrid method, but this time
we will be using the grids Gx_1,Gx_2,...,G1 applied to equation
(5.7).
Interpolate the correction % = I}({_l
Compute the corrected approximation on G¥X,

’51<—1 .

uX 4 5%, (5.8)

Smoothing Part II:
Compute a new approximation to UX by applying relaxation
sweeps to uf + oK.

The recursive structure of the algorithm entering just after eq.
(5.7) is apparent. Here the algorithm simply repeats itself, so in
the case of ¢ = 1 we have initial smoothing, computation of resid-
ual equation, injection to coarser grid, all until the coarsest grid is
reached, where the equation is directly solved. Then we have in-
terpolation upward through the grids, offering each finer grid an
approximation for relaxation. This would be a “V-shape” structure
as opposed to a “W-shape struture [16]. Only if ¢ > 1, would we have
a “W shape” structure. Of course it is clear that there can be many
variants of the algorithm, depending on the number of interpolation
and injection operations.

The convergence of the multigrid method is based on the fol-
lowing representation of the algorithm. For the general grid G we
will have the equation

LUy = f ,k=1,...,K. (5.9)

30 John S. Baras

The formula for obtaining a new approximation to the solution U,
from the old one ux can be written as

g = (I = MLF)ug + M fy (5.10)
= Skuk.

Here S} is the smoothing operation on the grid G, and we assume
that M is invertible and the smoother is consistent. With this no-
tation 57 denotes the smoother that uses j relaxation sweeps, Or is
applied j times.

As examples of smoothers, define D to be the matrix whose di-
agonal entries are equal to those of L*, and which is zero everywhere
else. Then m = wD~! is the modified Jacobi method. If T is the
“upper triangular part” of L*, and zero elsewhere, then we have the
Gauss-Seidel method by setting M = T, In fact, M is usually
some approximation to the inverse of L*, which forces p(I — ML)
to be close to zero.

By constructing the “Multigrid operator” we can show that, like
any other iterative process, convergence is guaranteed under certain
conditions.

Given u* as the old approximation, the new approximation %

will be

k

g = My ue + I5_ (L5171 1515, (5.11)

M), will be the Multigrid operator on grid G, we will concentrate
on, for it is its spectral radius that determines whether the iteration
converges or not. By Mg we will mean ¢ multiples of the MG op-
erator applied on the k£ grids. The following recursion defines this
operator, which begins at grid level 2 and proceed up to k = K — 1
where we have K grid levels:

Mt = SE(L - IE (L5 7H IE LR s
A = S I Gy = G (5.12)

Afr = (L5 L (L) ST 2 Grgr — G
Thus we can write,

Mypr = ME + AR ME Af (5.13)

Real time architectures 31

Now if || ME, |l |IAFT!|| and ||Af, || for kK < K ~ 1 are known,
then one can obtain an estimate of || Mg]||, where || - || represents any
reasonable operator norm; we refer to [17] for more detailed results
on stability and convergence.

For the case of interest here, i.e. the discretization of the Zakai
equation (5.2), following well known methodology for MG applica-
tion we first identify a simpler, albeit characteristic problem. This is
the problem with no input, i.e. when the right hand side of (5.2) be-
comes V¥(¢). In other words if one understands how MG is applied
to the discretized Fokker-Planck equation

(I — AA(e)) VH(e) = Vi(e), (5.14)

then complete understanding of the application of MG to the Zakai
equation is straightforward.

It follows [16] that the spectral radius of the associated MG
operator (5.12) is determined entirely by the matrix I — AA(¢),
along with the choice of relaxation scheme. Also note that because
I — AA(e) is not time dependent all program parameters are precom-
putable. In particular for the Zakai equation, they do not depend on
the sample path y(-).

A highly recommended relaxation method in MG applications
is the so called successive overrelazation method (SOR). To define it
suppose one wants to solve

Az = b
with a;; # 0. Then define B to be the n X n matrix
—aij/aii, 1#]
0, i=7
and define the vector ¢ in R™ to have components, ¢; = b;/a;;. Then
let us consider the L — U decomposition of B, B = L + U. Choose

a real number w, and define the iteration

Tnt1 = wW(LTnp1 + Uzn+¢)+ (1 — w)z,. (5.15)

32 John S. Baras

This is the SOR method. If w = 1, the SOR method reduces to
the Gauss-Seidel method, with w > 1 implying overcorrecting, and
w < 1 implying undercorrecting.

Recall that the matrix I — A A(e), for the discretized Zakai equa-
tion, is strongly diagonally dominant. Furthermore this matrix is
also an L-matrix, i.e. it has positive diagonal elements and non pos-
itive off diagonal elements. Finally this matrix is consistently ordered
[16]. This is a consequence of the natural ordering on a rectangular
grid. One can measure the properties of smoothing operators with a
variety of measures [16]. So one can describe “optimal” smoothing
operation. We thus have [16]:

Theorem 4: Because of the properties of I — AA(e), the MG
operator converges and the optimal relaxation scheme for the Zakai
equation is the SOR method. There is an optimal choice for w in
(5.15) with respect to convergence as well.

6. Architectures for Implementing MG in
Real-Time.

In this section we analyze the complexity of the MG schemes
described in section 5, in particular with respect to real time im-
plementation. We shall see that the result is a multilayer processor
network. Here the processors and the interconnections are more
complicated than the ones used in the systolic architecture of [7]. So
fabrication is a much harder problem.

The computing network will be a system of grids of identical
processing elements. Therefore, we have two kinds of grids, one of
points and one of processors, and these will be layered one on top of
another. For each 1 < k < K, processor grid Py has (nz)” elements,
where 7 is a positive integer not greater than the problem dimension
d. Also, we have ng = n, and n; < nj, if i < j.

Similarly, in keeping with the above notation, there are, for each
1 < k < K a corresponding point grid G, with (n,)? points. (Note
that the number of processors per grid is never greater than the
number of points). Again we have ng = n while n; < n;ifi1<j. A
key assumption, which is quite realistic, is that for each step of the
multigrid algorithm on point grid G, the processing grid Py requires
O((nx)?~7) time to perform its computations.

Real time architectures 33

To design a parallel machine capable of performing the MG algo-
rithm, we assume our problem is in d dimensions over a rectangular
domain using a regular point grid of n% points. We further have

ng ="n (6.1)
ng+1 =a{ng+1)-1, k=1,2,...K -1

for some integer @ > 2. We map grid points in such a way that
neighboring grid points reside in the same or neighboring processors.

Smoothing sweeps of at least some type can be accomplished in
O(n?=7) time with this given connectivity. Let ¢ be the time taken
by a single processor to perform the operations at a single gridpoint
that, done over the whole grid, constitute a smoothing sweep. Then,
setting S as the time needed to perform the smoothing sweep over
the whole of grid G on processor grid Py, we have,

S=tnl". (6.2)

Obviously, it is to our advantage to conduct as few smoothing sweeps
as necessary and still assure sufficient accuracy.

Now processor grid Py is connected to processor Px41. Processor
¢ € Py is connected to processor a(t + 1) — 1 € Pxy; where 1 =
(1,1,...,1). These connections allow any intergrid operations, such
as interpolation, to be performed in O(S) time. Now define the
system of processor grids { Py, P», ..., Py} as the machine M for J =
1,2,..., K. Then the execution of MG performed by M} proceeds
as follows:

1. First, 7 smoothing sweeps on grid G are done by Pg; all
other processor grids idle.
2. The coarse grid equation is formed by Py and transferred
to Pk—l-
3. MG is iterated c times on grid Gx_1 by Mg_1. Py is idle.
The solution v*~! is transferred to Py by iterpolation: I¥_ v
5. The remaining m smoothing sweeps are done by Pj.

k—1

o

Now we let W(n) be the time needed for steps 1,2,4,5 and find

Wn)=(G+m+s)tn*7, (6.3)

34 John S. Baras

where s is the ratio of the time needed to perform steps 2 and 4 to the
time needed for one smoothing sweep. Note that s is independent of
n,d and 7.

We discuss now the time complexity of MG. We will denote by
T'(n) the time complexity of the MG algorithm on a grid of n? points.
It turns out that T'(n) solves the recurrence:

T(an) = cT(n) + W(an), (6.4)

where W{(an) denotes the work needed to pre-process and post-
process the (an)-grid iterate before and after transfer to the coarser
n-grid. In effect the term W(an) includes the smoothing sweeps,
the computation of the coarse grid correction equation (i.e., the
right-hand side d*~!) and the interpolation back to the fine grid
(If_, v*~1). Then we have

Theorem 5, [18]: Let T,(-) be a particular solution of (6.4),
i.e.,

Tp(an) = ¢ Tp(n) + W(an).
Then the general solution of (6.4) is:

T(n) = a n'°8° 4 Ty(n), (6.5)

where « is an arbitrary constant. Using this result we have the
general solution to (6.5),

B(a?/(a? - c))n? if ¢ < aP,
T(n)=< fBnPlog,n+ O(n?) if ¢ = a?, (6.6)
O(nlo8a ©) if ¢ > a?.

We see that it would take a single processor O(n) steps to com-
plete the above mentioned tasks on one dimension, while n processors
could do the same for a two-dimensional problem in O(n) time.

We say that the MG algorithm is of optimal order if T(n) =
O(n=7), a possibility that is sometimes precluded by some choices
of ¢,a,v and d, which in turn influence 7'(n). Examination of (6.6)
demonstrates the relations between the various parameters. As an

Real time architectures 35

example, in the one-processor case, with v = 0,d = 2, we have
g(n) = n®. We then have an optimal scheme if a = 2,¢ < 4, for
only then is T(n) = O(n?). But ¢ > 4 is non-optimal, with T(n) =
O(n?logn) for ¢ = 4.

In general, we have an optimal scheme if and only if ¢ < a®.

There also exists a natural way to build a VLSI system to im-
plement our algorithms. The ¥ = 1 machine can be embedded in two
dimensions as a system of communicating rows of processors. The
7 = 2 machine can be embedded in three dimensions as a system of
communicating planes, and so on. Realizations in three-space will
be possible in a natural way for any value of v. Consider the case of
d = 2,7 = 2. In this case, we have a set of homogeneous planar sys-
tolic arrays layered one on top of the other. If we let a = 2, K = 3,
and ny = 1,n, =2(14+1)-1=3,n3=2(3+1)—1= 7, we would
have a 7Xx 7 array on top of a 3 x 3 array which is then on top of a sin-
gle processor corresponding to ny. Unfortunately, this design differs
from the classical systolic array concept of Kung [19] in that there
exists no layout in which wire lengths are all equal. Also, each layer
of the system is homogeneous while the entire machine is clearly not.

Now the four parameters c,a,7v,d are to be chosen with any
implementation MG, and, of course, they are not unrelated to each
other. Extending the earlier notation, we call any one choice of
the four a design and denote its corresponding computing time by
T(c,a,v,d). We will now begin with an examination of the trade-offs
incurred by one choice over another. Following [18], an important
issue is efficiency, F vs. speedup S in a particular design. We define,

S(c,a,7,d)=T(c,a,0,d)/T(c,a,7,d) (6.7)
E(c,a,7,d)=T(c,q,0,d)/(P(7)T(c,a,7,d))

Note that the speedup S corresponds to the gain in speed going from
the one-processor system to that of the multiprocessor. Whereas the
efficiency F reflects the trade-off between using more processors vs.
time.

We say that a design T'(c,a,v,d) is asymptotically efficient if
E tends to a constant as n — +oo, and it will be asymptotically
inefficient if £ — 0 asn n — +o0.

Theorem 6, [18]: Let v > 0.

36 John S. Baras

1) If e < a?7 then E(c,a,v,d) = (a7 — 1)(a%~" - c)/(a% - ¢).
2) Ifc =a*" then E(c,a,7,d) = (a"—1)a®"7 /((a%—c)log, n).
3) If ¢ > a7 then

[O(1/n'o8a(c=d+7)) if ¢ < ¢

E(c,a,7,d)= < O((log, n)/n") if ¢ = a?

L O(1/n") if ¢ > a*

We have at once that

1) A design is asymptotically efficient if and only if ¢ < a%~".

2) The fully parallel design v = d, is always asymptotically
inefficient.

3) “Halfway” between asymptotic efficiency and inefficiency is
logarithmic asymptotic efficiency, with E = O(logn),asn —= oco. A
Jully parallel design (v = d) if logarithmically asymptotically efficient
iffe=1.

4) If we start with a non-optimal design in the one processor
case, then adding more processors will not make the design asymp-
totically efficient.

To get T'(n) = O(n) we have to select ¢ = 1.

We also have considered the concurrent iteration schemes of
Gannon and Van Rosendale [20].

Thus the fully parallel architecture has a computation time of
at most O(logn) and so it is very competitive with the systolic di-
rect solver. More importantly, this time is largely independent of
dimension d, at least for small values of d. Of course, increases in
d will result in large increases in circuit layout area, due to an in-
crease in interconnections between grids, and thus a subsequent loss
in computing speed.

We can implement the SOR method in a parallel fashion, using
the “red-block” or “checker board” method [16]. In higher dimen-
sions we need to utilize multicolor ordering. Employing the intrinsic
locality of the SOR we can implement it asynchronously as well.

A detailed analysis of timing performed in [16] demonstrates
that if the real-time constraint for the Zakai equation is 1 msec,
then we can realistically achieve real-time implementation with the
multi-layered networks of this section, only for dimension d < 8.

Real time architectures 37

References

[1] M. Zakai, “On the Optimal Filtering of Diffusion Processes”, Z.
Wahr. Verw. Geb., 11, pp. 230-243, 1969.

[2] M. Hazewinkel and J.C. Willems, edts, Stochastic Systems: The
Mathematics of Filtering and Identification, Proc. of NATO
Advanced Study Institute, Les Arcs, France, Dordrecht, The
Netherlands: Reidel 1981.

[3] J. Doob, Stochastic Processes, Wiley, 1953.

[4] E. Wong and B. Hajek, Stochastic Processes in Engineering Sys-
tems, Springer-Verlag, 1985.

[5] A. Bensoussan, “Maximum Principle and Dynamic Program-
ming Approaches to the Optimal Control of Partially Observed
Diffusions”, Stochastics, 9, pp. 169-222, 1983.

[6] R.S. Liptser and A.N. Shiryayev, Statistics of Random Processes
I: General Theory, Springer-Verlag, New York, 1977.

[7] John S. Baras and Anthony LaVigna,” Real-Time Sequential De-
tection for Diffusion Signals”, Proc. 26th Conf. on Decision and
Control, pp. 1153-1157, 1987.

[8] A. LaVigna, “Real Time Sequential Hypothesis Testing for Dif-
fusion Signals,” M.S. Thesis, Univ. of Maryland, 1986.

[9] H.J. Kushner, Probability Methods for Approzimations in Stochas-
tic Control and for Elliptic Equations, Academic Press, New
York, 1977.

[10] J. Schroder, “M-Matrices and Generalizations Using an Opera-
tor Theory Approach,” SIAM Review, 20, pp. 213-244, 1978.

[11] E. Pardoux and D. Talay, “Discretization and Simulation of
Stochastic Differential Equations,” in Publication de Mathema-
tiques Appliquees Marseille- Toulon, Université de Provence, Mar-
seille, 1983.

[12] Y. Yavin, “Numerical Studies in Nonlinear Filtering,” in Lecture
Notes in Control and Information Sciences 65, Springer-Verlag,
New York, 1985.

[13] H.T. Kung and C.E. Leiserson, “Algorithms for VLSI Proces-
sor Arrays,” in Introduction to VLSI Systems, C. Mead and L.
Conway, pp. 271-292, Addison-Wesley, Reading, Mass., 1980.

38 John S. Baras

[14] S.F. McCormick, Edt, Multigrid Methods, Frontiers in Applied
Mathematics, STAM 1987.

[15] W.L. Briggs, A Multigrid Tutorial, SIAM, 1987.

[16] K. Holley, “Applications of the Multigrid Algorithm to Solving
the Zakai Equation of Nonlinear Filtering With VLSI Imple-
mentation”, Ph.D. Thesis, University of Maryland, December
1986.

[17] K. Stiiben and V. Trottenberg, “Multigrid Methods: Funda-
mental Algorithms, Model Problem Analysis and Applications”,
in Multigrid Methods, W. Hackbusch and W. Trottenberg (edts),
Springer Verlag, 1982.

[18] T. Chen and R. Schreiber, “Parallel Networks for Multi-grid
Algorithms: Architecture and Complexity”, SIAM J. Sci. Stat.
Comput., Vol. 6, No. 3, July 1985.

[19] H.T. Kung, “Systolic Algorithms”, in Large Seale Scientific Com-
putation, Academic Press, 1984.

[20] D. Gannon and J. Van Rosendale, “Highly Parallel Multigrid
Solvers for Elliptic PDE’s: An Experimental Analysis”, ICASE
Report No. 82-36, Nov. 1982.

