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392 M. R. JAMES AND J. S. BARAS
1. INTRODUCTION

An important problem in nonlinear system theory is the construction
of observers for control systems of the form

X=f(x,u),

y=h(x).

(1

Baras and Krishnaprasad [1] have proposed a method for construct-
ing an observer as a limit of nonlinear filters for a family of
associated filtering problems (3), parameterised by ¢>0. More recent
work in this direction is presented in Baras, Bensoussan and James
[2]. It is of interest then to study the asymptotic behaviour of the
corresponding unnormalised conditional densities ¢%(x, f) as ¢—0, via
the Zakai equation (5). We obtain the asymptotic formula

1
q'(x, 1) =exp < — - (W(x.1) +0(1))>, 2

as ¢—0, where W(x,t) is the value function corresponding to a
deterministic optimal control problem, namely that arising in deter-
ministic estimation.

Hijab [11] has studied this asymptotic estimation problem, and
obtained a WKB expansion when W(x,t) is smooth. This identifies
the limiting filter as Mortensen’s deterministic or minimum energy
estimator [14]. In addition, Hijab [12] has proved a large deviation
principle for the conditional measures for the filtering problem (3).
We extend Hijab’s large deviation result by allowing random initial
conditions in (3), and observe that the resulting variational problem
(cf. action functional) is exactly the optimal control problem mentioned
above.

The asymptotic formula for the unnormalized conditional densities
(Theorem 5.1) and the large deviation principle for the unnormalized
conditional measures (Theorem 6.2) characterize the limiting filter in
terms of the deterministic estimator.

Our method is inspired by the Work of Fleming and Mitter [7],
and Evans and Ishii [6]. A logarithmic transformation is applied to
the robust form of the Zakai equation, yielding a Hamilton-Jacobi
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equation in the limit. A related Hamilton—Jacobi equation is inter-
preted as the Bellman equation for the deterministic estimation
optimal control problem, of which W(x,t) is the unique viscosity
solution. In particular, W(x, t) is not assumed to be smooth.

2. PROBLEM FORMULATION

We consider a family of diffusion processes in R* with real valued
observations:

dx(t)=f(x*(1)) dt + "2 dw(r),  x*(0)=x5,

(3)
dyi(t) =h(x*(e) dt + "2 dv(t),  y¥0)=0.

Here w,v are independent Wiener processes independent of the
initial conditions x§, which have densities

1
qo(x)=C, exp ( — So(x)> 4

where lim,_,elogC,=0 and S;=0 is Lipshitz continuous. As ¢—-0
the trajectories of (3) converge in probability to the trajectory of a
corresponding deterministic system.

The Zakai equation for an unnormalized conditional density
q°(x, t) is

1
dqi(x, t) = A¥q(x, t) dt += h(x)q*(x, t) dy*(t),

(%)
q°(x, 0) = g5(x),

where A¥ is the formal adjoint of the diffusion operator

We assume throughout the following: f, h are bounded C*® func-
tions with bounded derivatives of orders 1 and 2.
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Defining

1
Pi(x, )= eXp( — y‘(t)h(x)> q°(x, 1), (6)
the robust form of the Zakai equation is

P 1
— P, 0= g Ap(x, 1)+ Dp(x, Dg(x, )+ Ve(x, 0P, /=0,
(N
P(x, 0) = go(x),

where
g°(x, )= f(x) — () Dh(x)’, (8)

Vi(x, 1) =3h(x) + y(0) A.h(x) = 39(0)* | Dh(x)|* + & div(f (x) — (1) Dh(x)).
)

Note that (7) is a linear parabolic PDE and the coefficient V*
depends on the observation path t—y(f). We shall omit the e-
dependence of y, and view (7) as a functional of the observation path
yeQ,=C([0, T], R; y(0) =0). This transformation provides a conve-
nient choice of a version of the conditional density, and under our
assumptions we can recover the unnormalized density g°(x,t) from
the solution of (7); see for example Pardoux [15].

Following Fleming and Mitter [7], who considered filtering prob-
lems with e=1, we apply the logarithmic transformation

Si(x, t)= —elog p(x, t). (10)

Then $%x, t) satisfies
0 £
% S¥(x, t)— 2 AS(x, t) + H(x, t, DS*(x, 1)) =0,

Ss(xa 0) = SO(x) —¢& log Ca’
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where
H(x, 1, ) = Ag"(x, 1) +3|A[* — V¥(x, 1). (12)
Equation (11) is a nonlinear parabolic PDE, which can be interpreted

as the Bellman equation for a stochastic control problem [7].
Formally letting e—0 we obtain a Hamilton-Jacobi equation

% S(x, t)+ H(x, t, DS(x, 1)) =0,

(13)
S(x, 0) = So(x),
where
H(x,t,2)=Ago(x, ) +3|A|* = V(x, 1), (14)
go(x, 1) = f(x)— () Dh(x)’, (15)
V(x, £) =$h(x)* + y() Dh(x) f (x) = 3y(1)* | Dh(x)|*. (16)

Note that g°>g,, V*—V and H*—> H uniformly on compact subsets.
We shall interpret solutions of (13) in the viscosity sense. If we
define

W(x, t)=S(x, t) — y{t)h(x), y€Qy, (17

then, for yeQy,n CY([0, T], R), W(x,t) satisfies a Hamilton—Jacobi
equation, which in Section 3 is presented as the Bellman equation
for the deterministic estimation control problem.

Our main task is to prove that $*—>S as ¢—0 uniformly on
compact subsets. From this the asymptotic formula (2) will follow
(Theorem 5.1).

3. DETERMINISTIC ESTIMATION

We begin by reviewing Mortensen’s method [14], [10] of determin-
istic minimum energy estimation. )
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Given an observation record #,={y(s),0<s=<t}, 0<t<T, of the
deterministic system

x=f(x)+u, X(0)=X0,
(18)
y=hx)+v, y0)=0,

we wish to estimate the state at time y, the initial condition x, being
unknown. Define

7 (xor v)=so(xo)+%:§) ()2 +v()%) ds. (19)

A minimum energy input triple (x¥, u* v*) given %, is a triple that
minimises J, subject to the constraint that the trajectory of (18)
produces the output #,. By replacing v(s) by y(s)— h(x(s)) in (19) and
omitting the y(s)> term, we can formulate an equivalent un-
constrained optimal control problem. Define

J(xq, 4) = So(x0) +j£ L(x(s), u(s), s) ds, (20)
o

where
L(x, u, s) =%|u|> + 3h(x)> — y(s)h(x). (21)

We now minimise J, over pairs (xo, u). The deterministic or minimum
energy estimate %(t) given %, is defined to be the endpoint of the
optimal trajectory s—>x*(s), 0<s=<t, corresponding to a minimum
energy pair (x3,u*): £(t)=x*(t).

Next, we use dynamic programming to study this problem. The
controls t—u(t) take values ue U=R", and are square integrable.
Given such a control, let x, denote the corresponding trajectory
(given a specified initial condition). Following the general scheme
presented in Fleming and Rishel [8], define a class of admissible
pairs (x,, u) by

U, ={(x0, 4):%,(0) = X, X, () =x}; (22)

that is, pairs for which the corresponding trajectory passes through a
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specified point x at time ¢. Define a value function

W(x,t)= inf J(xq,u). (23)

(XO’“)GWIx,r
Note that this is a reversal of the standard set-up of dynamic
programming [8]. By using standard methods, we see that W(x, ) is
continuous and formally satisfies the Bellman equation

% Wi(x, )+ H(x, 1, DW(x, 1)) =0,

(24)
W(x, 0) = So(x),

where

H(x, t, ))=max {A(f(x)+u)— L(x, u, t)}. (25)

uel

W(x, t) is the minimum value (if it is attained) of J, subject to the
end point condition x,(t)=x. To obtain %(t), one minimizes W(x, t)
over x:

W(x(t),t) S W(x,t) for all xeR". (26)

Notice that the definition (23) for W(x,t) makes sense for
yeQ,n CY([0, T], R). We can directly interpret (13) as the Bellman
equation of another optimal control problem (see (40){42) below),
with S(x,t) as its value function. This makes sense for all yeQ,,
since y does not appear. Thus defining W(x,t) by (17) is valid for
any yeQ,. If yeQ,n CY([0, T], R), these definitions coincide.

Now we prove that W(x,t) is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation (24). Our assumptions imply
that %, ,#0 for all xeR", 0=t=<T, and consequently W(x,t)<oco.
We do not assume existence of optimal controls.

The following definition is taken from Crandall, Evans and Lions
[5]. Write C=C(R" x (0, T), R), and similarly C*=CYR"x (0, T), R).

DEeFINITION Let WeC. We say that W is a viscosity subsolution of
(24) provided that for all ¢ € C' the following property holds:
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if W— ¢ attains a local maximum at a point (x, t), then
0 .
En @(x, 1)+ H(x, t, Dd(x, 1)) 0. 27

We say that W is a viscosity supersolution of (24) provided that for
all ¢ C! the following property holds:

if W— ¢ attains a local minimum at a point (x, ), then
0 ~
b? d)(x’ t) + H(X, L, D¢(x9 t)) ; 0. (28)

If W is both a viscosity subsolution and supersolution, we say that
W is a viscosity solution of (24).

Lemma 3.1 (Principle of Optimality) Let 0<t,<t,<t, and choose
(xg.u)eU, , Then

W(xlta). 1) S W(xlt) 1) + | Lixu(s), uls), s) ds. (29)

Proof Let (%o, 0)€¥, ,,,- Define

_ fis)  0=ssr
= uts) tySs<ty

Then ue,,,,, and hence
131 tz
W(xu(t2)9 t2) é SO()’EO) + j L(xﬁ(s)a ﬁ(s), S) dS + j L(xu(s)a u(S), S) dS.
0 t

Taking the infimum of the right-hand side over (%o, #)e ¥, ., we
obtain (29). O

Fix (x,t) and choose y> W(x, t). Define
%Zc,t = {(xo, u) € %x,t:']t(xm u) é )’},

B,={x' eR"|x—x'|<¢}.
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LemMa 3.2 Fix ¢>0. Then there exists n>0 such that if
(xo, u) €U, then x,(t—h)e B, for all 0=h<n.

Proof Note that x,(t)=xe€ B,. Define
n.=sup{h>0:x,(s)e B, for all se[r—h,]}.

Then |x,(t —n,) —x|=¢. Let

n= inf 7,

(xo,u)eqli‘,

We want to show that n>0. Suppose not; #=0. Then there is a
sequence (xg, u") € ¥} , with 5, -0 as n—oc0. Write x,=x, , etc.

Now f is continuous, so there is a constant K>0 such that
|/(x)|£K for all x'e B,. Then

O<e= [x—-x,,(t——n,,)]
= | (o] + (o) ds

t
<Kn,+ | |uds)|ds.
t<n

n

Choose N,>0 such that n= N, implies K#,<¢/2. Then

t
0<e2< | |ugls)|ds for nZ=N,.
t—n

n

(Note that if U is bounded, then the lemma follows from this
inequality.)
Next, since (x3, u") e %}, , it follows that

j |u(s)|? ds <.
t—n

n
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Then

0<e2< _t[ |u(s)| ds

n

é W for n g NOa

using the Cauchy-Schwarz inequality, which is impossible since
/1,—0. Consequently #>0 proving the lemma. [J

TueoreM 3.1  The value function W(x, t) defined by (23) is the unique
viscosity solution of the Hamilton—Jacobi—Bellman equation (24).

Proof First we show that W(x,t) is a viscosity subsolution. Let
¢eC! and suppose that W—¢ attains a local maximum at (x,?).
Then there exists ¢>0 such that

W(x, )= d(x, ) 2 W(x', 1) — $(x', 1) (30)

for all x'eB,, |t—1t|<e

Choose a constant control #i(s)=ue U. There is an x, such that
(xo, u) €U, ,. Choose 0<d<e¢ such that x,(s) e B, for |t—s\ <6é.

The Principle of Optimality (29) implies
)
W(x, ) S W(xz(t—h),t—h)+ j L{xys), i(s), s) ds. (31
t—h
If 0<h <4, then (30) gives
W(x, t)— d(x, 1) 2 W(x{t —h), t —h)— d(x{t—h),t—h).  (32)

Combining (31) and (32) we obtain

¢(x',(t—h),t;h)—¢(X, t) _% j LxAs), (s), ) ds <O.
— t—h
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Letting h—0 we have

% @(x, 1)+ Dp(x, t)(f (x) +u) — L(x, u, t) 0.

But this holds for all ue U, hence (27) and so W(x,t) is a subsolution
of (24).

To see that W(x,t) is a viscosity supersolution, let ¢eC' and
suppose that W—¢ attains a local minimum at (x, ). Then there
exists an £>0 such that

W(x, 1) —¢(x, ) S W(x', 1) — p(x', 1) (33)

for all x'eB,, |t —t|<e.
Suppose, contrary to (28), that there exists a 8> 0 such that

% d(x, )+ H(x, t, Do(x, £)) < —6<0.
By continuity, reducing &> 0 if necessary,
0
En ¢(x', ')+ max {DP(x', ')} f(x) +u)— L(x', u, ')} < —0 <0 (34
uel

for all x'eB,, |t—t|<e Let y>W(x,7) and let n be given as in
Lemma 3.2. By the Principle of Optimality (29) we have

W(x,t)= inf {W(x,,(t —h),t—h)+ jr' L(x,(s), u(s), s) ds}. (3%)
t=h

(xg u)e”lll‘,
Let 0<h<n A ¢ and choose (xq, u) €%} , such that

W(x,(t—h),t—h)+ j L(x,(s), u(s), syds= W(x, t) +0—2h. (36)
t=h

Since x,(t —h) € B,, we have from (33)

W(x(t—h),t—h)— (x,(t—h), . —B) 2 W(x, 1) — d(x, 1). (a7
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Combining (36) and (37) we have

_%’g‘ﬁ("u(’—")’t;")“l’("’ D _L§ Lixdsputsnds. (39)
- C hids

However, for t—h=<s<t, x,(s)eB, and |t—s|<s, so from (34) we
have

0
37 P0xu(8), 8) + Dplx,(5), 8)(f (xu(5)) +1(5)) — Lix,(s), u(s), 5) < —0.

Integrating, we obtain

P(x, t)—d’(xg(t —h,t—h % j L(x,(s), u(s),s)ds< —0.  (39)

But (38) and (39) contradict each other, so we must have 6<0;
proving (28). Thus W(x, t) is a supersolution of (24).

The uniqueness assertion follows from Ishii [13, Theorem 1]. In
fact, since Sy(x) is uniformly continuous, it follows that W(x,t) is
also uniformly continuous. []

Finally, we state an optimal control problem for which S(x,t) is
the value function. Consider the dynamics

X =go(x,5)+u, x(0)=x,. (40)

We wish to minimize

t
I(x0, 4) = So(Xo) +£ Fu(s)* + V(xuls), 5)) ds. (41)
Denote by %, , the corresponding class of admissible pairs (xq, ).
Define
S(x,t)=inf  I(xg,u). (42)

(xo, weF, ,
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The above arguments can be used to prove the following.

THEOREM 3.2 The value function S(x,t) defined by (42) is the unique
viscosity solution of the Hamilton—Jacobi equation (13).

4. SOME ESTIMATES

Let S%(x, t) be the solution of (11). In this section we obtain estimates
for |S¢| and |DS‘| on compact subsets independent of the parameter e.
These estimates will be used in Section 5 to prove that $°—S.

TueoreM 4.1  For every compact subset Q =R"x [0, T], there exists
£o>0 and K >0 such that for 0 <e<eg, we have

|S*(x, )| <K, for all (x,1)€Q, (43)

|DS*(x, )| <K, for all (x,1)eQ. (44)

To prove (43), we use a comparison theorem which depends on

the maximum principle for linear parabolic PDE. Let BzcR”

denote the closed ball centred at 0 with radius R>0, write I'g=

Bg x {0} 0B x [0, T] and define Qgr=Bg x [0, T], denoting by 10}
its interior.

LeMMA 4.1 (Maximum Principle, Friedman [11]) Define

0
$w=aw—§Aw+ow£,

where b® is smooth. If #w<0 (Fw=0) in Q%, then

w(x, )< sup w(z,s)( inf  w(z, s) Sw(x, t))

(z.s)el'R (z,s)sFR

for all (x,t) e Qg.
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LemMMa 4.2 (Comparison Theorem) Let S be a solution of (11), and
define

0 £
_v_.—

Po o 2Av+Dvg‘+%|Dv]2—V”.

Let w=v—S If Pvz0 (Pv=0) in QF, and if S°<v (V<57 on [,
then S*<v (v<S%) in Q%.

Proof If $v=0, then

%w— %Aw+Dwg‘+%(|Dv|2 —|Dse?) 0.

Now |Dv|?>—|DS*|* = Dw(Dv + DS?. Set
b*=g*+4(Dv + DS®).

Then £wz=0 and on Ty, w(z,5)20. Hence w(x,t)=0 for all
(x,t}e Qg by Lemma 5.1. [J

Proof of Theorem 4.1 We now construct a function v such that

Zv>20 in Qf and S°<v on T, independent of (sufficiently small)
¢>0 (Evans and Ishii [6]). Define

1
v(x, f)=R—2_,T‘2+#t+M, (45)

where the constants >0, M >0 are to be chosen.
We write v, for v,, etc. Then

- £ 2n 8|x|?
gvm'u_§<(R2—|x|2)2+(R2—|x|2)3>

no 2gtx; 2|x|?
+i;1 (RZ—’x|2)2 +(R2—|x’2)4 -V

£

S eC 1 N x|? N 2]x|? 3
= RE—[xP)? T (RE—|x]?) " (RE=[x])*
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20 in Qf,

for all small >0, provided u is chosen sufficiently large. Choose M
so large that

So(x}=M for all xe Byg.
Now v(x, t)—>o0 as |x|—R uniformly in t€[0, T], hence
S<v in QR

and since v is continuous in Q%, there is a constant K >0 depending
on R such that

S¥(x,)<K for all (x, )€ Qg,,,

for all sufficiently small £>0.

Similarly we can find a lower bound for S° on Qg/,.

Next we estimate the gradient, using a variant of the techniques
used in Evans and Ishii [6], as suggested to us by L. C. Evans. To
simplify the notation we write v=_S% which from (11) satisfies

&

> i+ 300+ 08" — Ve=0, (46)

U, —

where we have used the summation convention. Let Qc = Q' < cR" x
(0, T), where Q,Q’' are open and “c <” means “compactly con-
tained in”. Choose { such that {=1 on Q and {=0 near 4Q’, and
define

z=v,0,— Av (47)

where the constant 1>0 is to be chosen.
Suppose that z attains its maximum over Q' at (x,,t,)€Q’. Then
we have

z;=0 : (48)

and

0=z, — >z, (49)
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at the point (x,, ty). Then at this point, using (49),

0220w+ 2C217kvkr — A, — &l {0y, — 8000 — 46L 0,0y

€
2 2
— {2004 — EL 00 + 5 A

2

< —eCL2|D*0|+20%, (v,— %vi,) +i<—v,+§v,~,~>+C|Dv[2
k

for ¢ sufficiently small. Using (46) we find that

0< —vk(szivi)k—g“'(szkv,‘)pL% v;v;+ CL|Dv|* + C|Dv|* + AC|Dv| + AC.

This together with (48) implies
%‘DU|Z§CC‘DU|3+C|Dv|2+/1C|Dv|+/1C. (50)

Let
A= pu[max {|Do|+1], (51)
where p>1 is to be chosen. Then
{|Dv|® £|Dv|*[max {|Dv| + 1],

and from (50),

g|pu|2§c|Dv|2+c/m. (52)
Choosing u so large that p/4<u/2— C, we have from (52)

|Dv2<CA at (xq,10). (53)
This implies

z<CA in Q. (54)
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If it happened that (x,, t,) € Q’, then

z=—AvSCA at (xq, tg),
and this also implies (54). But from (54),
max {?|Dv|* <maxz+CAL CA,
and using the definition (51) we have
max {?|Dv|* < Cp[max {|Dv|+1]
which implies
{|Dv|£C inQ,
and hence
|Dv|<C in Q.

This completes the proof of Theorem 4.1. []

5. MAIN RESULT

We are now in a position to state and prove our main result.
THEOREM 5.1  Under the above assumptions, we have

lim elog g°(x, t) = — W(x, 1) (59)

e~ 0

uniformly on compact subsets of R"x [0, T], where W(x,t) is defined
by (17).

Proof Using Crandall and Lions [4, Lemma 5.2] we obtain
uniform estimates of the Holder norm of S§° as a function of
te[0, T]. From Theorem 4.1 and the Arzela—Ascoli theorem, there is
a subsequence & —0 such that S* converges uniformly on compact
subsets to a continuous function §. By the “vanishing viscosity”
theorem (Crandall and Lions [3]), § is a viscosity solution of (13).
By uniqueness, Theorem 3.2, §=S5. In fact, $°—S as ¢—0.
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From this we have

lim ¢log g%(x, ) = —(S(x, £) — y()h(x))

e~ 0

uniformly on compact subsets, for yeQ,. Using the definition (17) of
W(x, t) completes the proof. [

This pathwise asymptotic result can be used to obtain a
corresponding probabilistic result. Let zeQ, denote the limit in
probability of y*€Q,. Recall that §?, W, etc. are functionals of ye€,.
Define W=WI[z], S$°=8§[)"], etc. Then lim,, yelogg’(x,t)=
—lim,_, o(S%(x, t) — y*()h(x)) = — W(x, t) in probability.

6. LARGE DEVIATIONS

We have seen that the optimal control problem associated with
deterministic estimation plays a key role in studying the asymptotics
of the Zakai equation (5). In this section we shall see that this
control problem is exactly the variational problem arising in a large
deviation principle for certain conditional measures.

We begin by reviewing the results in Hijab [12]. Fix x, and
consider the stochastic differential equation (3), with initial condition
x5=x, for all ¢>0. Let Q% , be an unnormalised conditional
measure on Q"=C([0, T],R" of x* given yeQ, and the initial
condition x,. As in Section 3, given a control t—u(t), let x, denote
the corresponding trajectory of (18). Hijab [12] proved the following.

THEOREM 6.1 For any open subset O and any closed subset € of Q",

liminfelog Q. x)(0) 2 — I(Xo, ¥, O)
e—0

lim S(:lp elog Q% x(€) = — 1(x0, ¥, )

where for of <Q",

I(xq,y, )= inf{% f(|u(s) |* + h(x,(s))?) ds
u 0
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T
_g h(xu(s)) dy(s)lxu(0)=x0’ xue'd}a (56)

with the understanding that the infimum over an empty set is infinite.

Now let the initial conditions of (3) be random with density
defined by (4). Let Qfx.xy|y b€ an unnormalized joint conditional
measure of (x%, xj) on Q" x R* given yeQ,.

THEOREM 6.2 For any open subset O and any closed subset € of 0",
and for any open subset Oy and any closed subset €, of R", we have

liminfelog Q.+ (0 X Og) = —J(O x Oy, y) (57
-0

limsup elog @, s € X Co) S —J(€ x €, ) (58)
e=0

where for of X o Q" x R",

Nt x o, y)= inf {So(xo) +I(xe, 3, )}, (59)

xosdo
To prove this theorem we employ the following version of
Laplace’s asymptotic method, adapted from Freidlin and Wentzell

[91.

LemMMa 6.1 Let f,g:R">R be Borel measurable, bounded below, and
let C, be a family of positive real numbers such that lim,_,,¢log C,=0.
Assume that f is upper semicontinuous. Then for any open subset A
and any closed subset B of R" we have

liminfelog j C exp(— —f(x)) dx2 —inf f(x), (60)
£—~0 xeA

lim sup ¢log j C.exp ( - —g(x)) dx< — 1nf g(x). (61)
=0

Proof Let m=inf,_,f(x). If m= oo, the result is clear; so assume
m< co. For any >0 define
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As={xeA:f(x)<m+3,|x| <R},

where R is chosen large enough to ensure A;#@. Then A; is a
bounded open subset of A4, and

stexp<—%f(x)>dx;j Cgexp<—%(m+5)>dx

/1
g Kécs €xp K - g (m + 5)))
and hence

1
liminfelog | Ceexp<— Ef(x))dx; —(m+9).
A

=0

This holds for all § >0, hence (60) follows.
Next, write m=inf _pg(x) and assume m<co. Then

1 1
jCeexp(——g(x)>dx§jCsexp<—vm>dx,
B £ B &

from which (61) follows when B is bounded. The general case follows
by approximation. []J

Proof of Theorem 6.2 From Theorem 6.1, for any >0 there
exists £,,>0 such that for 0<e <,

1
Qil(y'xo)(@) gexp < - E (I(XO’ Vs (9) + 5))
Then

Qfx,x0)|y((9 X (90) :é[ Qil(y,xo)((p)qg(xo) de
[0}

1
g j Ce exp(_ E(SO(xO)-i_I(xO’ ¥, (9)+5)> dXO'
00
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Note that I(x,, y, 0) is upper semicontinuous as a function of x, e R"
since ¢ is open. Applying (60) we have

liminfelog Qf; .., (0 x Og) 2 —J(O x O, y)— 6.

=0

However, 4 >0 was arbitrary; hence (57).
The estimate (58) follows from

1
ff|()’,x0)((g) é €Xp < - ; (I(xoa ¥, %) - 5))

for ¢ sufficiently small, using (61).

Note that the variational problem (59) corresponds to the optimal
control problem (18)«23) discussed in Section 3. Theorem 6.2
implies that the limiting measure is concentrated on the optimal
initial condition x} and optimal trajectory x*(s), 0<s<T
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