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Abstract

We consider the nonlinear filtering problem dz = f(z)dt +
Vedw, dy = h(z)dt + \/edv, and obtain lim.; ¢log ¢°(z,t) =
—W (z,t) for unnormalised conditional densities ¢*(z,t) using
PDE methods. Here, W{z,?) is the value function for a deter-
ministic optimal control problem arising in Mortensen’s deter-
ministic estimation, and is the unique viscosity solution of a
Hamilton-Jacobi-Bellman equation.

Introduction

An important problem in system theory is the construction of
observers for nonlinear control systems. Baras, Bensoussan and
James [1] have studied a method for constructing an observer
as a limit of nonlinear filters for a family of associated filtering
problems (2), parameterised by ¢ > 0. It is of interest then
to study the asymptotic behaviour of the corresponding unnor-
malised conditional densities ¢*(z,t) as € — 0, via the Zakai
equation (3), We obtain the asymptotic formula

qe(z,t) — e‘f(W(z,t)#—o(l))’ (1)

as € — 0, where W(z,t) is the value function corresponding to
a deterministic optimal control problem, namely that arising in

deterministic estimation.
Our method is inspired by the work of Fleming and Mitter

[4), and Evans and Ishii [3]. A logarithmic transformation is
applied to the robust form of the Zakai equation, yielding a
Hamilton-Jacobi equation in the limit. A related Hamilton-
Jacobi equation is interpreted as the Bellman equation for the
optimal control problem arising in deterministic estimation, of
which W (z,t) is the unique viscosity solution. In particular,
W (z,t) is not assumed to be smooth.

This' problem has been studied by Hijab (5] using differ-
ent methods. Hijab also obtained a large deviation principle
for conditional measures on C([0,T]; IR"). An extension of his
result is presented in James and Baras [6], which includes com-
plete proofs of the results discussed in the present paper.

Problem Formulation

We consider a family of diffusion processes in R" with real
valued observations:

F(z5(t))dt + Vedw(t), z5(0) = =5, (2)
h(zf())dt + edv(t), ¥(0) = 0.

I

dz*(2)
dy(¢)

CH2505-6/87/0000-1588$1.00 © 1987 IEEE

1588

Here w, v are independent Wiener processes independent of
the initial conditions zf, which have (unnormalised) densities
g5(z) = C.e %) where lim,.oelogC, = 0 and Sp > O is
smooth and bounded. As ¢ — 0 the trajectories of (2) converge
in probability to the trajectory of a corresponding deterministic
system. We assume throughout the following: f,h are bounded
C* functions with bounded derivatives of orders 1 and 2.

The Zakat equation for an unnormalised conditional density

¢‘(z,t) is

il

Az 0 + = 0d (), ()
%(z),

dg*(z,t)
¢‘(z,0)

where A is the formal adjoint of the diffusion operator. Defin-
ing

Pt = exp (~2y k() o'(o.0) ()

the robust form of the Zakai equation is

¢ € < 1
%p (z,t)— EAp‘(z,t) + Dpf(z,t)g"(z,) + ;V‘(z, t)p*(z,0) = 0,

(5)
r°(z,t) = ¢i(z).

Note that (5) is a linear parabolic PDE and the coefficient
V¢ depends on the observation path ¢ ~ y(t). We shall omit the
e~dependence of y, and view (5) as a functional of the observa-
tion path y € Ny = C([0,T), R™; y(0) = 0). This transforma-
tion provides a convenient choice of a version of the conditional
density, and under our assumptions we can recover the unnor-
malised density ¢*(z,¢) from the solution of (5).

Following Fleming and Mitter [4], who considered filtering
problems with € = 1, we apply the logarithmic transformation

S¢(z,t) = —¢logp®(z,t). (6)
Then S¢(z,t) satisfies
%S‘(z,t)——-;—AS‘(z,t)+H‘(z,t,DS‘(z,t)) =0, (7)
5%(z,0) = Soz),
where
Ho(z,t,0) = M@0 +5 A -Vt (8)

Equation (7) is a nonlinear parabolic PDE. Formally letting
¢ — 0 we obtain a Hamilton-Jacobi equation

25(z,t) + H(z,t,DS(z,t)) = 0, (9)

5(z,0) = S{z),



where
1
H(:z:,t,)\) = ’\QO(I’t) +§ ’ A ;2 _V(xvt)v (10)

Note that g* — g0, V¢ — V, and H* — H uniformly
on compact subsets. We shall interpret solutions of (9) in the
viscosity sense. If we define

W(z,t) = S(z,t) —y(t)h(z), v € Qo, (11)

then, for y € N C?, W{z,1t) satisfies a Hamilton-Jacobi equa-
tion, which is presented as the Bellman equation for the deter-
ministic estimation control problem below.

Deterministic Estimation

We begin by reviewing Mortensen’s method [5] of deterministic
minimum energy estimation. Given an observation record Y; =
{y(s), 0 <s<t}, 0<t LT, of the deterministic system

z = flz) + u, z(0) = zo, (12)
h{z) + v, y(0) = 0,

we wish to estimate the state at time ¢, the initial condition zg
being unknown. Define

Hanu) = Sofmo) + [ Llals)ulsho)ds, (19
where
Lizus) = 5wl + 2hz) - oh@). (1)

We now minimise J; over pairs (zo,u). The deterministic or
minimum energy estimate %(t) given Y, is defined to be the
endpoint of the optimal trajectory s — z*(s), 0 < s < ¢, corre-
sponding to a minimum energy pair (z7,u") : Z(t) = z*(¢).

We use dynamic programming to study this problem. Define
a value function

W(z,t) = (i&{‘){.],(xo,u) : z(0) = zo, z(t) = z}. (15)

By using standard methods, we see that W{z,t) is continuous
and formally satisfies the Bellman equation

2W(z,t) + H(z,t,DW(z,t)) = O, (16)
W(z,0) = So(z),
where

H(z,t,)) = max {A(f(z) +u) - L(z,w,)}.  (17)

To obtain £{t), one minimises W (z,t) over z. In fact, using
the definition of viscosity solutions in Crandall, Evans and Lions
[2], we can prove:

Theorem The value function W(z,t) defined by (15) is the
unique viscosity solution of the Hamilton-Jacobi-Bellman equa-
tion (16). In addition, the function S(z,t) defined by (6) is the
unique viscosity solution of the Hamilton-Jacobi equation (9).

Some Estimates

Let S¢(z,t) be the solution of (7). The following estimates are
used to prove that S¢ — S.
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Theorem For every compact subset @ C R™ x [0,T], there
exists g > 0 and K > 0 such that for 0 < € < ¢y we have

| S¢(z,t) | < K, forall (z,t) € Q, (18)
| DS¥(z,t) | < K, forall (z,t) € Q. (19)

To prove (18), we use a comparison theorem which depends
on the maximum principle for linear parabolic PDE. The gra-
dient estimate (19) uses a variant of the techniques presented
in Evans and Ishii [3], as suggested to us by L. C. Evans.

Main Result

We are now in a position to state and prove our main result.

Theorem Under the above assumptions, we have
lirr&elog ¢ (z,t) = -W(z,t) (20)

untformly on compact subsets of R™ x {0,T), where W(z,t) is
defined by (11).

Proof: From the above estimates and the Arzela~Ascoli the-
orem, there is a subsequence ¢, — 0 such that S converges
uniformly on compact subsets to a continuous function S. By
the “vanishing viscosity” theorem [3], S is a viscosity solution
of (9). By uniqueness, S = S. In fact, ¢ — § as ¢ — 0.

From this we have

limelog'(z.) = ~ (S(z,t) ~ 4(t)h(2)

uniformly on compact subsets, for y € (3. Using the definition
(11) of W(z,t) completes the proof.
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