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ABSTRACT

This paper discusses a distributed version of Wald’s sequential hypothesis testing problem in the continuous
time framework. For sake of concreteness, two decision-makers equipped with their own sensors, are faced with
the following hypothesis testing problem : Decide between hypothesis Ho and H;, where

Under H; : dX; = wdt +o;dWi, i=1,2
Under Hp : dX; = o dW{, i=1,2,

with p; # 0 and o; # 0, i = 1,2, non-random; here the noises {W}, t > 0} and {W2, t > 0} are independent
Brownian motions.

Data is observed continuously and at each instant in time, each decision-maker can either declare one of
the hypotheses to be true or continue collecting data. In either case, they base their individual decisions on the
data collected by their own sensors up to that time; they do not communicate with each other and so do not
share information. The decisions are selected to minimize a joint cost function with two components, the first
one capturing the cost for collecting data, and the second assessing the cost for tncorrect decisions. This is the
simplest problem of its type, for the coupling between the two decision-makers occurs only through the cost
structure. This problem was considered first in discrete—time by Teneketzis [6] who showed that the person-by-
person optimal strategy was of threshold type for each sensor. Here a similar result is derived by simple and
direct arguments based on well-known facts for the single detector problem. Moreover, ezplicit formulae are
derived for this joint cost function when the detector policies are of threshold type, owing to the fact that at
the decision times, the likelihood functionals assume one of two threshold values owing to the continuity of the
paths of Brownian motion. This is in sharp contrast with the overshoot phenomena that leads in the discrete-
time situation to the celebrated Wald approximations. These explicit formulae not only vividly display the cost
interaction taking place between the two sensors but readily allow for a reduction of the original problem to a
mathematical programming problem in four variables over a simple constraint set.
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1. INTRODUCTION:

Consider the following sequential testing of two simple hypotheses Ho and H; with two
decision-makers: Decision-maker ¢ is equipped with its own sensor and observes the increments
dX} of the stochastic process X' = {X},t > 0} with values in IR. Under each hypothesis, the

observed data is the output of a stochastic dynamical system, i.e.,

Under H; : dX:':;L,-dt+a¢th", i=1,2

Under Hy : dXi = CoidWf, i=1,2,

where p; # 0 and o; # 0,1 = 1,2, are non-random. Here the noises {w},t>0}and (W2, t >0}
are independent Brownian motions. As usual, hypotheses H, and Hg correspond to the “signal
in noise” and “noise only” situations extensively treated in:the literature on signal detection.

Data is observed continuously starting at an initial time which is taken for conveniencé to
be zero. At each time t > 0, each decision maker can either declare one of the hypotheses to be
true or continue collecting data. In either case, the decision makers base their individual decisions
on the data collected by their own sensors up to that time; they do not communicate with each
other and so do not share information. These decisions are made in some “optimal” fashion in
that they minimize a joint cost function with two components, the first one capturing the cost
for collecting data and the second assessing the cost for incorrect decisions. This is the simplest
problem of its type, for the coupling between the two decision-makers occurs only through the
cost structure. Such a problem was considered first in discrete-time by Teneketzis 6] who showed
that the person-by-person optimal strategy was of threshold type for each decision-maker. Here a
similar result is derived by simple and direct arguments based on well-known fagts for the single
detector problem.

The advantages of the continuous-time formulation over the discrete-time one lie in the
following features: Ezplicit formulae can be derived for the joint cost function when the detector
policies are of threshold type. This follows from the fact that at the decision times, the likelihood
functionals assume one of two threshold values owing to the continuity of the paths of Brownian
motion. This is in sharp contrast with the overshoot phenomena that leads in the discrete-time
situation to the celebrated Wald approximations. These explicit formulae not only vividly display
the cost interaction taking place between the two sensors but readily allow for a reduction of
the original problem to a mathematical programming problem in four variables over a simple

constraint set.

The paper is organized as follows: The precise problem formulation is given in Section 2, the
single-detector problem is presented in Section 3, and the results described in Section 4. The
technical discussion is contained in Sections 5 and 6, each section being devoted to the proof of a

main result. A useful technical lemma is given in the appendix for completeness.
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2 PROBLEM FORMULATION:

In this paper, a Bayesian formulation is adopted for the problem loosely described in the
introduction. Let (1, 7, P) be a probability triple carrying a {0, 1}-valued random variable (RV)
H and two IR-valued processes {W}, t > 0} and {W2, t > 0}. Throughout the discussion, it is

assumed that under P,

(A1): The RV H and the processes {W/, t > 0} and {W#, t > 0} are mutually independent,
(A2): Each process {W/, t > 0},i=1,2,is a standard Brownian motion, and
(A3): Forsome A ,0< A <1, -

PlH=1=X=1-P[H=0. (2.1)

The IR-valued processes {X}, ¢ > 0} and {XZ, ¢t > 0} are defined as outputs of the dynamical

system )

dX; = H p;dt + o; dW},

_ 1=1,2, (2.2)
X5=0

or equivalently,

Xi=Hupit+o; Wi, t>0, i=1,2, (2.3)

where u; # 0 and o; # 0 are non-random.
To fix the notation, let {F¥°, ¢ > 0} and {FX',t > 0} be the (P-completion of) the filtrations
generated by the processes {W{, ¢t > 0} and {X}, t > 0}, respectively. Let

Gi=7X"Vvo(H), t>o0 . (24)
with
g =V 6 (2.5)
t>0

The decision policy for decision-maker ¢ , ¢ = 1,2, involves the selection of a termination time
7; and of a binary valued decision §;, and an admissible decision policy for decision-maker 1 is
thus any pair v; = (7, 6;) of RV’s, where 7; is an ftxi-stopping time and §; is an 7,fi-mea,surable
{0, 1}-valued RV. Denote by I'; the collection of all admissible decision policies for decision-maker

tand let T :=T,; x 5.

Let ky and k; be positive constants and let C be a mapping {0,1} x {0,1} x {0,1} — R™.
For every pair v = (v1,72) in T, define the cost function J () to be

J(’Y) = E[lel +k2T2+C(61,62;H)]. (2.6)

The problem (P) investigated in this paper is then
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(P): » Minimize J, () over T.
An admissible policy 4* in T is said to solve problem (P) if
J() < J(). forallninT. (2.7)
The purpose of this paper is to identify the structure of an optimal policy.

3. THE SINGLE-DETECTOR PROBLEM - - =

Consider- the following single-detector sequential hypothesis testing problem defined say on

some underlying probability triple (Q,f, P). A decision-maker observes the increments of a

stochastic process {Xt, t > 0} with values in IR. Under each hypothesis, the observed data

include a signal which is the output of a stochastic dynamical system, i.e.,

dX, = pHdt + o dW, (3.1)

where as before u # 0 and ¢ # 0 are non-random, and {W,, t > 0} is a standard Brownian
motion. '

Data is observed continuously starting at an initial time which is taken for convenience to
be zero. At each time ¢ > 0, the decision maker can either declare one of the hypotheses to be
true or continue collecting data. Decisions are made so as to optimize a cost function with two
components, the first one capturing the cost for collecting data, and the second one assessing the
cost for incorrect decisions.

More formally, let {7X, ¢t > 0} be the {P-completion of the) filtration generated by the
process {Xt, t > 0}. An admissible policy is any pair v = (r,6) of RV’s where 7 is an 7*-stopping
time and 6 is a {0,1}-valued 7X -measurable RV. The collection of all admissible policies is

denotes by I',. The cost corresponding to any ~ in T, is given by
J(v;k,c) = E[kr +c1[6 # H]] (3.2)
The problem faced by the single detector is the to find 4* in I, such that
J(7'ik,¢) < J(v3k,c) | (3.3)

for all other v in T,.

Let {m¢, t > 0} be the 7X-adapted process defined by
me=P[H=1|7%], t>o0. (3.4)

Note that m; is the posteriori probability of hypothesis H; given the observations #X.
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Theorem 8.1. The admissible decision policy v* = (v*,6") given by

m* =inf{t > 0| m # (A%, B")}, (3.50)
- 1’ My 2 B"
5" = { NI (3.55)

is optimal in the senscrof (8.8). The constants A® and B* are the unique solutions to the tran-

scendental equations
_ 2ko?

2¢c e

(¥'(4%) - ¥'(B")) - (39)

¢(1-B*)=cA"+ (B - A")(c- -2%’1\1/'(,4')) +k(¥(B*) - ¥(4")) (3.7)
where \Il(a:) = (1 - 2z) log(z/(1 — z))-
Proof: See ( [5], Theorem 5, p.185).

It is further known [5] that for all admissible policies of the form (3.5) with constants (A, B)
satisfying 0 < A < 1 < B < oo and A # B, the relations

Blr | H=1]=20w(,e),  Elr|H=0]=2%u(a,f) (38)
hold with
w(zg) = (1 2)log(122) + zlog( 5 Z ) 0<zy<L, (3.9)
and B)Y(A-A A(B— A
4. THE RESULTS:
Throughout the discussion, the decision cost satisfies the natural conditions
C(m,nin) > C(n,min) (4.1)
C(m,m;n) > C(n, m;n) (42)
C(m,n; k) = C(n,m; k) (4.3)

for all n , m , h in {0, 1}, with m # n. In other words, it always cost more to make an error than
it does to make the correct decision, regardless of which decision is taken by the other decision-
maker. As readily checked, there is no loss in generality in assuming zero cost for correct decisions,

i.e.,

C(1,1;1) = €(0,0;0) =0, (4.4)

an assumption enforced from now on.
To state the results of this paper, it is convenient to introduce the 7X ‘-adapted processes

{ri, t > 0} and {4}, t > 0}, i = 1,2, where
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mii=PH=1|7X"], t>o, (4.5)
and
i Bioi 1 .
t = exp[ E(Xt - "2‘ﬂ t)], t>0. (4'6)

1
For each decision-maker, a policy ~; = (7i,6;) in I';, ¢ = 1,2, is said to be of threshold type
if there exists constants A; and B;, with 0 < A; < B; < 1, such that

ri=inf{t > 0: =} ¢ (As, Bi)} - (4.7)
and :
. 1 ifw} > B ]
6; 1= 7 (4’.8)

0 ifﬂ'il_ < A;.

As is well known [5, p:. '181], the relation

. ,\i
B P S t>0

. 9
(1=2A) + A¢}’ -7 (4.9)

holds. Therefore, any threshold policy for decision-maker ¢ with constants (A, B;) takes the form
7 :=inf{t > 0: #: ¢ (as,b;)} (4.10)

and .
1 if QS’T' > b
b 1= . (4.11)
0 if ¢“r. < a4,

where the new thresholds a; and b; are given by

(D)) () e

From now on, a threshold policy ~; in I'; will be described in the form (4.10)-(4.11) and will

thus be identified with two threshold constants a; and b;, 0 < a; < 1 < b;, a; # b;. Let T; be the

collection of all threshold policies in T'; for decision-maker ¢, with the notation T = T} x Te.

Theorem 4.1: Under the foregoing assumptions,

inf J(v) = inf J :
inf J(v) = inf J(v), (4.13)

t.e., only threshold policies need to be considered in solving problem (P ).
For simplicity of exposition, the discussion is carried out under the additional assumption

that the decision cost has the form

e for dy # dy (4.14)
f for dl = d2 # h.

0 for d1=d2=h
C(dl,dg;h):{
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The general case can be handled in a similar way but the calculations are more involved. Details
are worked out in a lengthier version of this paper [3].
Let 1 and vz be threshold policies with parameters (ay,61) and (a3,b,), respectively, and

pose

a; =Pl =1|H=0], Bi=Pl6=0H=1], i=1,2, (4.15)

the so-called error probabilities of the first and second kind, respectively, or in radar parlance,

the false alarm and miss probabilities.

Theorem 4.2: Under the foregoing assumptions, any pair of threshold policies v, and ~, with

parameters (a1, b1) and (a3,b2), respectively, incurs a cost J(v) given by the ezpression
() = J (ki e) + J(vaikzye) + (f — 26)[AB1B2 + (1 — Nayas]  ~ ~ (4.16)

where J~('7; k,c) is the function defined in (8.2).
Together Theorems 4.1 and 4.2 thus reduce the search for a solution v* to problem (P) toa

mathematical programming problem in the variables {(ai, 81, @2, 82) over a simple constraint set.

Theorem 4.3: Under the foregoing assumptions, problem (P ) is solved by a pair v* = (v1,73) of
threshold policies in T .

5. A DISCUSSION OF THEOREM 4.1.

The discussion given below hinges upon arguments very similar to the ones proposed by
Teneketzis in the discrete-time case [6], as would be expected. Here too, the basic idea lies in
switching attention from optimality for problem (P) defined in (2.7) to person-by-person optimal-
ity, as understood in the literature on multi-agent decision-making. Under the strong independence
assumptions made here, this procedure leads to a decoupling of the two decision-makers. Some of
the details underlying this line of reasoning are presented in the next two technical lemmas.

For every admissible policy 3 in I';, define the mapping 5.72: {0,1} x {0,1} — R by

~

C'h(dl,h)2:E[C(d1,62;h)lH:h] )
= C(d1,1;h) P[6; = 1| H = h] + C(dy,0; R) P{6, = 0| H = h| (5.1)
for all (dy, k) in {0,1} x {0,1}. The conditions (4.1)-(4.2) readily imply that this mapping satisfies
the condition
Cor(61,4) > Cop (b, ). (52)
for all (dy,h) in {0,1} x {0, 1}.

Lemma 5.1: Under the foregoing assumptions, the o-fields G and G2 are conditionally indepen-

dent given H.
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Proof: This readily follows from the assumptions (A1), (2.3) and the obvious o-field identity
Gi=7X vo(H)=F¥ vo(H), t>o. 0
Lemma 5.2. With the notation (5.1), the relation

E(C(61,6:3 H)) = E|Co, (61, H)|  (53)

holds true for every pair v = (y1,72) in T.

Proof: By standard properties of conditional expectations, the eqﬁalities

E[C(61,62; H)| = E| E{C(&l,iéz;H| Gy (5.4)

= E[ E[C(d1,62h) | 6", =6, h=t1 ] (5.5)
are readily obtained. From Proposition A.1 of the appendix and from Lemma 5.1, it follows that
E[C(d1,62;k) | §'] = E[C(dx, 623 k) | o(H)] (5.6)

for all (dy,h) in {0,1} x {0, 1}. Substitution of this last relation into (5.5) and use of the definition
(5.1) now yield the result. o

Proof of Theorem 4.1: With v = (v;,42) in I', Lemma 5.2 implies that

J(fy) = E[lel + k2T2 + 6'12(51aH)]

= ks B[ 2] + T, (1), (5.7)
where
Jna(11) = E[kyry + Copy (61, H) . ' (5.8)
The sequential hypothesis problem (P/~;) faced by decision maker 1, with ~, fixed, takes
the form
(P/72) Minimize J.,(v;1) over T;.

Under the assumed conditions, this problem is a single-detector sequential hypothesis testing
problem with decision cost 5,, of the type discussed in Section 3. Here k = k; and ¢ = ¢. As
pointed out in Theorem 3.1, the admissible policy i in 'y that solves problem (P/~2) is of
threshold type ([5], Theorem 5, p. 185).

Therefore, for every pair v in T, there exists a threshold policy §; in Ty such that

‘7‘12 (%1) < j:n (71 )’ (5'9)

or equivalently,

J(F1,72) < J(v1,72) = J(7)- (5.10)
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By symmetry, interchanging the role of «; and ~2, there exists a threshold policy 42 in T, such
that
J(71,72) £ J(). (5.11)
This last step, when applied with the pair (71,72) (instead of (v1,72)) yields the existence
of a threshold policy 42 in T such that
J(§l7§2) S J(;laﬁZ)- _ (5.12)

This shows that to every admissible policy v in T, theré corresponds an admissible policy ¥ in. T

s;xch that ) 7
’ J@<Iq,  (513)

and the result of Theorem 4.1 is now immediate since T CT. D

6. PROOF OF THEOREM 4.2:

Let « be an admissible policy T. By elementary calculations, the corresponding cost is given
by

J(4) = Bl kary + kara + C(61, 623 H) | (6.1)
= B[ kamy + karo + C(1,65 H) P 6 = 1| H]+ C(0,65; H) (1 - P&, = 1| H))| (62)
= E[kury + kyro + C(1, 1, H) P8y = 1 | H| P(6; = 1| H]
+C(1,0; H)P(6, = 1| H) - P6, = 0| H]
+C(0,1;H) (1- P{é, =1 | H]))P[62=1]| H]
+C(0,0;H)(1—P[6,=1|H])(1—P[62=1])] (6.3)
= E'[klrl + km] + ,\[C(l,l; 1)(1 - B1)(1 = B2) + C(1,0;1)(1 = B1)B:
+€(0,0;1)8: (1 — B2) + C(0,0; 1),31/32]

+(1-A) [C(l, 1;0) a0z + C(1,0;0)0 (1 — az)

+C(0,1;0)(1 ~ ay)az + €(0,0;0) (1 — g ) (1 — az)] (6.4)
= B[ kiry + kara | + A[e(B1 + B2) + (k — 2¢)B152]
+ (1= N [efen + a2) + (k - 2)enaq] (6.5)

where a; and §; were defined in (4.16).

In order to compute the first expectation term in (6.5), it is cé‘rxvenient to observe that
E[Ti]=)\E‘[rg|H=1]+(1—A)E[T;|H=O], i=1,2 (6.6)
thus reducing the final step of the computation to the evaluation of the conditional expectations
E[T.- | H = h], P=1,2,

whose expressions are given in (3.8). The result of Theorem 4.2 now follows. C
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7. CONCLUSIONS:

Based on Theorem 4.2 an explicit solution can be computed for the thresholds of each agent
once the parameters of the problem are given (k1,kz,e,f). The mathematical programming
problem described in Theorem 4.2 is readily seen to have a unique solution, and can be solved by
a variety of methods, say a Newton-like scheme. By solving (6.5) for the constants (e, B1, a2, B2),

the thresholds are easily determined via the relations (3.10) and (4.12).
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APPENDIX

On some probability triple (2, 7, P), consider three o-fields 71, 72 and 73, and X be an
integrable IR-valued RV.

Proposition A.1: If the o-fields #1 and 7, are conditionally independent given the o-field 73,
then

E[X‘fz\/?;;]:E[Xl;:;} P — a.s. (Al)
whenever X ts an Fy-measurable RV.

Proof: By virtue of the Monotone Class Theorem, it suffices to establish (A.1) for any bounded
F1-measurable RV. To that end, let F7 and F3 be arbitrary elements of the o-fields 7, and 73,

respectively. By the very definition of conditional expectation,

E[lpmp,E[X|7,v53}]=E[1F2xlpa] (A2)
= E[1p, E[1r, X | F3]] (43)
:E[I'F:E[1F2|73]E[le3] ]i (A4)
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where the last equality was obtained by making use of the conditional independence of the o-fields

#; and % given F3. The F3-measurability of the RV’s 1p, and E{ X | 73] now readily yiclds

E[1p, E{15, | | E|X | 73] | = E[E| 15, E[X | |15, | %3] ] (A5)
:EllpanaE[X|f3]] : (A8)
via the smoothing property for conditional expectations.

Consequently, N = ]
E[lpnr B[ X | 2V H3] | = E(1rnr B[ X | 73] ] (A7)

and the result (A1) immediately follows by standard arguments. : o




