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ABSTRACT 

We consider the problem of simultaneous detection and estimation when 

the signals corresponding to the M different hypotheses can be 

modelled as outputs of M distinct stochastic dynamical systems of the 

Ito type. Under very mild assumptions on the models and on the cost 

structure we show that there exist a set of sufficient statistics for 

the simultaneous detection-estimation problem that can be computed 

recursively by linear equations. Furthermore we show that the struc- 

ture of the detector and estimator is completely determined by the 

cost structure. The methodology used employes recent advances in 

nonlinear filtering and stochastic control of partially observed 

stochastic systems of the Ito type. Specific examples and applica- 

tions in radar tracking and discrimination problems are discussed. 

INTRODUCTION 

In a typical present day radar environment, the radar receiver is sub- 

jected to radiation from various sources. A very important function 

of the radar receiver is its ability to discriminate between the 

various waveforms received and select the desired one for further pro- 

cessing. Furthermore an equally important function of the receiver is 

to estimate important parameters of the radiating source from the 

received waveforms. Thus the receiver is required often to perform a 

"combined detection and estimation" function. 

An abstract formulation of the combined detection and estimation 

problem in the language of statistical decision theory has been deve- 

loped by Middleton and Esposito in [I]. They correctly point out 

that optimal processing in such problems often requires the mutual 

Couplin5 of the detection and estimation algorithms. Although from 

the mathematical point of view estimation may be considered as a 

generalized detection problem, from an operational point of view the 
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two procedures are different: e.g. one usually selects different cost 

functions for each and obtains different data processors as a result. 

It is then correctly argued in I that it is practically appropriate 

to retain the usual distinction between detection and estimation. 

There are various ways that the detector and estimator can be coupled 

leading to a hierarchy of complex processors. We describe here some 

important cases. 

Detection-directed estimation 

Here the detection operation is optimized with a priori knowledge of 

the existence of an estimator following it. The estimator is depen -~ 

dent on the detector's decision by being gated on only if the detector 

decides that the desired signal is present. Here the coupling is via 

cost terms that assess the performance deterioration when the estima- 

tor is turned off while the signal is present C , or the estimator 
e,1 

is turned on when the signal is not present C . Therefore the 

average risks corresponding to the operationse~ ~ n detection and estima- 

tion can be minimized separately. This leads to a detection test that 

is a modified generalized likelihood test. If the cost terms C 
e,1' 

C are constant the coupling just reduces to a modification of the 
e,0 

threshold [I]. Since the detector's decision rule does not depend on 

the estimate, the structure of the optimal estimator is not a function 

of the data region specified by the decision rule of the detector's 

operation, when the detector's decision is to accept the signal. In 

practical terms this means that we can choose to estimate only when 

the detector has decided that the desired signal is present. 

Coupled detection-estimation with decision rejection 

Here detection and estimation run in parallel and are followed by 

rejection of the estimate if the detector's decision is not to accept 

the signal. Here the detector's cost depends on the value of the 

estimate. Typically, one solves the detection problem knowing the 

estimator. Then a second optimization is performed over all estima- 

tors. This case usually results in relatively simple estimators and 

complex highly nonlinear detectors [I]. 

Motivation for these problems stems from distributed target problems, 

see in particular [2]-[7]. 

We concentrate in this paper on a two hypothesis detection for- 

mulation, but it is clear that the methods can be easily extended to 

M-ary detection problems. The two hypotheses are H = the received 
0 

signal is a process Y0t plus noise, HI = the received signal is a pro- 

cess Ylt (different from Y0t ) plus noise. Both processes are modeled 

as outputs of stochastic dynamical systems of the diffusion type. The 
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noise is the same in both cases. Due to this fact we can assume that 

noise is eliminated from the mathematical formulation of the problem 

of detection, while as we shall see its presence may be crucial for 

the estimation problem. 

We did not study detectors with "learning" and we suggest this as a 

promising extension of the results reported here. We note however, 

that our formalism includes general "learning" algorithms. Most of 

the work on detectors with "learning" is problem specific and does not 

utilize dynamical system models for the signals as we do. 

The major criticism for the work of Middleton and Esposito [I], is 

that although they used a Bayesian approach to the estimation problem, 

they considered nonrecursive solutions and detection was coupled to 

estimation through cost structure which explicitly considers coupling 

of the detection and estimation costs. Clearly nonrecursive solutions 

are not appropriate for advanced sensors employed in guided platforms. 

Furthermore it would be unrealistic to assume that the designer has 

such explicit knowledge of the functional couplings between detection 

and estimation costs. 

Several other authors have analyzed the problem. Scharf and Lytle 

1131 studied detection problems involving Gaussian noise of unknown 

level, thus including noise parameters in the problem. As in [I], 

their solution is also nonrecursive, and focuses on the existence of 

uniformly most powerful tests. Spooner [14], [15] considered in 

detail unknown parameters in the noise model. Jaffer and Gupta [16], 

[17] consider the recursive Bayesian problem using a quadratic cost, 

Gauss-Markov processes and estimating only signal parameters. 

Birdsall and Gobien [18] considered the problem of simultaneous detec- 

tion and estimation from a Bayesian viewpoint. This work is close in 

spirit with our approach, although the class of problems we can ana- 

lyze by our methods is significantly wider. We also follow a Bayesian 

methodology during the initial phase of analysis. It becomes clear 

that using Bayesian methods one can analyze the problems under con- 

sideration in an inherently intuitive, simple conceptually manner 

which can be easily obscured in highly structured methodologies uti- 

lizing specific detector structures and cost relationships. As a 

result one can analyze the special problems described earlier as spe- 

cializations of a wider picture and framework. The results reported 

in [16] are limited by two important assumptions: (a) the observed data 

have densities that display finite dimensional sufficient statistics 

under both hypotheses for the unknown parameters and (b) the unknown 

parameters form a finite-dimensional vector. Both nonsequential and 

sequential problems are analyzed in [18]. The most important result of 
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[18] is the proof that through a Bayesian approach both estimation and 

detection occur simultaneously, with the detector using the a 

posteriori densities generated by two separate estimators, one for 

each hypothesis. A particularly attractive feature is that no assump- 

tions are made on the estimation criterion and very flexible assump- 

tions are made on the detecction criterion. When finite-dimensional 

sufficient statistics exist the optimum processor partitions 

naturally into three parts: a "primary" processor which is totally 

independent of a priori distributions on the parameters, a "secondary" 

processor which modifies the output according to the priors and solves 

the detection problem, and an estimator which uses the output of the 

other two in estimating the unknown parameters. Only the estimator 

structure depends on cost functionals. 

Since dynamical system models are not utilized to represent signals in 

[18], there is great difficulty in analyzing the far more interesting 

sequential problem. It is for this reason that one is forced to make 

the limiting assumptions mentioned above. In our approach we consider 

diffusion type models for the signals and we utilize modern methods 

from nonlinear filtering and stochastic control to analyze the problem 

119]-123]. Corresponding results for Markov chain models can be easily 

obtained, but we only give brief comments for such problems here. 

NOMENCLATURE AND FORMULATION OF THE SEQUENTIAL PROBLEM 

In this section we present a general formulation for the continuous 

time, sequential, simultaneous detection and estimation problem when 

the signals can be represented as outputs of diffusion type processes 

[20]. To simplify notation, terminology and subsequent computations 

we consider only the scalar observation case here. All results extend 

to vector observations in a straight-forward manner. The observed 

data y(t) constitute therefore a real-valued scalar stochastic pro- 

tess. 

The statistics of y(') are not completely known. More specifically 

they depend on some parameters and some hypotheses. For simplicity we 

shall consider here only the binary hypotheses detection problem. 

Extensions to M-ary detection are trivial. We shall denote by HO, H I 

the two mutually exclusive and exhaustive hypotheses. 

Under hypothese H0, the received data y(t) can be represented as 

0 0 
dy(t) = h (x0(t),e)dt + dv(t) 

(I) 
0 0 0 0 0 0 0 0 

dx (t) = f (x (t),e)dt + g (x (t),8)dw (t) 
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0 
where e is a vector-valued unknown parameter that may be assumed 

fixed or random throughout the problem. Here v('), w(') are indepen- 

dent, l-dimensional and n -dimensional respectively standard Wiener 
0 

processes [20]. In other words when hypothesis H is true the 
0 

received data can be thought of as the output of a stochastic dynami- 
0 0 0 

cal system, corrupted by white Gaussian noise, h , f , g , 
0 

B parameterize the nonlinear stochastic system. 

Similarly when hypothesis H is true, the received data y(t) can be 
I 

modeled as 
I 

dy(t) = h1(x1(t),e )dt + dv(t) 

(2) 
I I I I 

dx (t) : f (t),el)dt + g (x1(t),O)dw1(t) 
I 0 I 

where now x is n -dimensional. The vector parameters e ,e may have 
I 

common components. For instance, in the classical "noise or signal- 

plus-noise" problem any noise parameters clearly appear in both 
0 I 

hypotheses and would thus be common to 0 ,8 

We note that we have the same "observation noise" v(') under both 

hypotheses. This is clearly the case in radar applications (see [6]). 

On the other hand when one is faced with state and parameter dependent 

observation noises, a simple transformation translates the two models 
i i i 

in the form (I) (2). We shall assume that h ,f ,g , i=0,I, have suf- 

ficient properties to guarantee existence and uniqueness of probabi- 

lity distribution functions for y(') under either hypothesis. As a 

minimal hypothesis we assume that the marti#gale problems for (I) and 
v I 

(2) are well posed [24] for all values of e ,O in appropriate compact 
0 I 

sets e ,0 respectively. Furthermore neither (I) nor (2) exhibit 

esplosions [24] for any value of the parameters. Often we shall make 

stronger assumptions such as existence of strong solutions to (I) (2), 
i 1 l 

or smoothness of f ,g ,h , i=0,I, or existence of classical probabi- 

lity densities for y under either, hypothesis. 

i loZ We shall denote bYipy(',t ), i=0,I, the probability density z 9f y(t) 

under hypothesis H and when the parameter obtains the value e , 

i=0,I. We shall denote the probability measures corresponding to y 
0 I 0 I 

under H or H by ~ and p respectively. As is well known these are 
y Y 

measures on the space of continuous functions [24]. 

Finally we note that although we have assumed time invariant 

stochastic models in (I), (2) the results extend easily to the time 

varying case. 

Following a Bayesian approach we assume a priori densities for the two 
U ] 1 

parameters B ,B which will be denoted by pe(',O), i=0,I respectively. 
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o 1( 
Similarly initial densities for x (0) and x O) are assumed known and 

0 1 i 
independent of e ,e respectively. They will be denoted by px(',0). 

The choice of these a priori densities, is frequently a very 

interesting problem in applications, as they represent the designer's 

a priori knowledge about the models used. 
t 

With these preliminaries we can now formulate the problem. Let y 

denote as usual the portion of the observed sample path "up to time t" 
t ~ 

i.e. y = {y(s),s<t}. Given the observed data y , we wish to design a 

processor which at time t will optimally select simultaneously which 

of the two hypotheses H or H is true, and optimal estimates for the 
O 1  0 I 

parameters 8 and 8 . Moreover the processor should operate recur- 

sively so as to permit real-time implementation. 

To complete the problem formulation we need to specify costs for 

detection and estimation. Let c (~l(t),01),- i=0,I be the penalty for 
i ^i i 

"estimating" 8 , by 0 (t) at time t. If c is quadratic we have the 
i 

well known minimum variance estimates. Similarly let y(t) denote the 

decision, at time t, of whether we declare hypothesis H or H to 
0 I 

hold. Then k(y(t), i), i=0,I will denote the penalty when the true 

hypothesis is H and we decide y(t), at time t. Obviously there are 
i 

infinitely many variations on the possible choice for a cost function. 

We shall consider only two possibilities in this report. Finite time 

average integral cost 

J 
f 

T 
^0 0 

= E{f ke[C0(e (t),e)X{t,x(t)=0} + 

0 

^I( I 
c (8 t),8 )X{t,~(t)=1}dt + ~ k(~(t),i)dt} 
I d 

(3) 

and infinite time average discounted cost. 

~0 ~I -~t 
J = E{f C(y,e ,e ,x)e dt} 
d 

0 

(4) 

,0 41 
where C(y,e ,e ,x) is the integrand in (3) and ~ the discount rate. 

,~ are weights. The reasons for the characteristic functions 
e d 

appearing in (3), (4) are rather obvious. The estimator will contri- 
0 

bute cost only when utilized, and it will be utilized for e only when 

y(t)=O. We would like to point out that this does not preclude both 

estimators from running continuously. This scheme is used only to 

assess costs properly. 
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The appropriate formulation of the problem is as a partially obser- 

vable stochastic control problem. The admissible controls are 

"y' : R + { 0 , i 1 }  

nO 0 
e : R - ~  e (5) 

^I I 
e : R÷ e 

where all functions are nonanticipative with respect to y; i.e. 

measurable w.r. to FY: 
t 

y('),oO('),eI(')¢FY (6) 
t 

The cost is either (3) or (4). For the system dynamics we proceed as 

follows. The state equations are mixed consisting of the continuous 

components 

0 x 0 O(xO dx (t) = fO( (t),00(t))dt + g (t),00(t))dwO(t) 

I fl I I I I I 
dx (t) = (x (t),6 (t))dt + g (x1(t),$ (t))dw (t) 

O 
de (t) = 0 (7) 

I 
de (t) : 0 

and the discrete component z(t) which can takeo o~lY0th~ values 0 or I 

and is constant. The initial densities for x ,x ,e ,e have already 

been described. The initial probability vector for z(t) (which tracks 

which hypothesis is true) is 

Pr{z(0) : 0} : PO' Pr{z(0) = I} = PI (8) 

The observations are 

I) 
dy(t):(l-z(t)hO(xO(t),eO)dt+z(t)h1(x1(t),e dt+dv(t (9) 

Since (7) are degenerate, there are some technical minor difficulties, 

which can be circumvented however using recent techniques. This 

completes the formulation of the problem. 
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STRUCTURE OF THE OPTIMAL PROCESSOR 

Following recent results [25]-[29] in stochastic optimal control theory 

we have obtained first the following results that reduce the partially 

observed stochastic control problem described in section 2 to an 

equivalent, infinite dimensional fully observed problem. 
~0 AI 

Theorem I: There exist optimal y,0 ,e for the stochastic optimal 

control problem (3)-(9). 

Proof: This follows from the results of Fleming and Pardoux [27) and 

Bismut [29]. The only difference is that due to the structure of the 
A0 ~I 

dynamics here (i.e. they do not depend on the controls y,8 ,e ) we can 

show that optimal controls exist in the class of strict sense controls 
^0 41( 

as specified in section 2 (i.e. y(t),8 (t),e t) are measurable with 

respect to F~)° 
We then introduce as in Fleming and Pardoux [27] the associated 

"separated" stochastic control problem. In the separated stochastic 
N 

control problem the state at time t is a measure A on R (where N = 
t 

n +n +2), which is an unnormalized conditional distribution of the 
0 I T 

state x(t)~[x0(t),x1(t),eo(t),e1(t),z(t)] of the problem formulated 

in section 2. The dynamics of the measure-valued process A obey the 
t 

Zakai equation of nonlinear filtering [26]-[31], and [20]. 

In the sequel we assume that all functions appearing in (I)-(9) are 
0 0 I I 

bounded and continuous and that g ,f ,g ,f are Lipschitz in 
0 0 I I 

x ,e ,x ,e , respectively. Due to the discrete component z(t) of the 

state x(t) we have to consider a two dimensional measure valued pro- 
0 I i 

cess A ,A , where A is the unnormalized conditional distribution of 

the state x(t)~[Xo(t),x1(t),e0(t),e1(t)] (slight abuse of notation 

here) when hypothesis H is true, i=0, I. We further assume that for 
i 

i=0,I the corresponding Zakai equation has a unique solution which is 

absolutely continuous with respect to Lebesque measure; i.e. we assume 

the existence of conditional unnormalized probability densities for 
t 

x(t)ER N given y . For results on this see [30], [31]. 
i 

Let u (x,t) denote the conditional probability density of x(t) given 
t 1 

y when hypothesis H holds. Then u (',') satisfies the Zakai 
i 

equation 

i * i i i 
du = L u dt + dy(t)h u , i=0,I (10) 

i 

where L is the formal adjoint to the infinitesimal generator of the 
th 

i component of (7); i.e. it has the form 
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1 

L = - -  ~: 
2 

1 , j : l  
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2 N 
i a i 

a (x) ~ +  z b (x) 
• 3 x x i ax 

i j i=I i 

(11) 

Here 

i i i T i 
a =(~( ) ,~  i i] i 

= b 

fi 

= 

0 i] (12) 

To complete the description of the "separated" stochastic control 
^0 41 

problem, let C(¥,e ,e ,x) denote the integrand in the cost definition 

(3). then if we let 

u(x,t) = I (x1'e1't)] (13) 

we can rewrite the cost (3) as 

T [P01 ~0 ^I 
Jf(~) = E {f f C(y,e ,e ,x)[u(x,t) T ]dxdt} 

Y 0 [P1J 
(14) 

where ~ is the policy corresponding to a particular selection of y('), 

90('), el(-), and E is expectation with respect to y. Note that u 
Y 

depends explicitly on y. 

The s eparated problem is to choose a policy ~ which is a function of 
0 1 0 

u , u to minimize (14). This is a fully observed problem since u , 
I 

u satisfy (10) and enter directly into (14). We then have the 

following very important result: 
^0 ~I 

Theorem 2: Under the above assumptions the optimal y,0 ,~ (which 
0 I 

exist according to theorem I) are functions of u ,u only. That is 
t 

they depend on y only through the unnormalized conditional densities 
O I 

U t U  • 

P r o o f :  The p r o o f  f o l l o w s  f r o m  a p p r o p r i a t e  m o d i f i c a t i o n s  o f  t h e  

results in [25]-[29] and will appear elsewhere. 

The significance of the result is that it0Provides, the basic structure 

of the optimal processor by identifying u ,u as the sufficient sta- 

tistics for the original problem. Furthermore the result is free from 
structural assumptions on the detection and estimation costs and can 
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be established in far greater generality than the results presented 

here may indicate. 

In figure I below we give a pictorial illustration of the result. We 

basically have to run two "filters" in parallel, one for each hypothe- 

sis. The output of each filter (which by the way is represented by 

the bilinear stochastic p.d.e. (10)) is the unnormalized conditional 
0 0 

probability density of x , e or 

F i l t e r  
fo r  H 0 

y(t)  

Fi l ter 
for H 1 

J 
Estimator 

U o 

Detector 

8o,81 

Figure I Illustrating the generic structure of the optimal processor 
11 0 I 

x ,e given H or H . Each filter is driven directly by the obser- 

vations. 

The estimator, detector and their coupling will depend on the explicit 

cost structure. They are problem dependent. Their explicit func- 

tioning can be computed as our final result indicates. 

Theorem 3: The explicit dependence of y (which is discrete valued), 
^ ^ 0 I 
BO'B1 on u ,u can be determined by solving a variational inequality 

on the space of solutions of (10). 

Proof: The result is rather technical. A complete proof will be 

given elsewhere. It follows by appropriate modifications to the 

results of [26], [32]. 

This result opens the way for promising electronic implementation of 

the optimal processor by the following steps: (I) solve numerically 

the resulting variational inequality using the methods of [33], (2) 

implement the resulting numerical algorithm by a special purpose, 

multiprocessor, VLSI device along the lines of [34]. In simple cost 

cases explicit solutions of the variational inequality can be obtained 

of course. 

MOTIVATION AND EXAMPLES FROM RADAR TRACKING LOOPS 

The primary motivation for the mathematical problem studied in section 

3 comes from design consideration of advanced (smart) sensors in 

guided platforms. To be more specific let us consider radar sensors. 
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The radar return from a scatterer carries (depending on the radar 

sophistication) significant information about a scatterer. For 

example range, Doppler extend, shape and extend, motion, of a scat- 

terer can be extracted from a radar return by appropriate processing. 

In today's dense environment a very important function of an advanced 

processor is classification of scatterers. This function is required 

for example by sensors participating in a surveillance network (since 

threats must be classified, so that appropriate response can be 

applied), in electronic warfare (since decoys and other counter- 

measures can be designed to emulate target characteristics) and in 

tracking radars (since the sensor often must develop a tracking path 

for a designated priority target). 

A related equally important function of a radar receiver is the esti- 

mation of parameters embedded in the return signal. For example pulse 

length, pulse repetition frequency, amplitude scintillation spectrum, 

conical scan frequency, antenna pointing, surface roughness. The two 

problems of detection and estimation are indeed closely related, as 

explained earlier. 

In our earlier work [2]-[5] we have developed statistical models for 

distributed scatterers which can represent accurately phenomena 

characteristic of distributed scatterer radar returns such as ampli- 

tude scintillation and angle noise or glint. In addition we have 

developed similar statistical models for the effects of multipath on 

radar returns, for sea clutter returns and for chaff cloud returns. 

The models developed in [2]-[5] are of the form 

dx(t) = A(t,e)x(t)dt + B(t,O)dw(t) 

dy(t) = h(t,x(t),e)dt + dv(t) 

(15) 

Furthermore A,B,h are piecewise constant with respect to time since 

the models developed in [2]-[5] are piecewise stationary. For example 

in [2] we used models like (5) to describe the RCS scintillation for 

ships. The same type models can be used for other distributed targets 

such as tanks or armored vehicles. For example when the return 

appears spiky, indicating higher probability of strong return, an 

appropriate model is provided by a lognormal process, where x(') in 

(15) is scalar and h is chosen to be an exponential function of x. 

For chaff clouds a more appropriate model is provided by a Rayleigh 

process, where x(') is two dimensional, with the two components being 

identically distributed, independent Gaussian random processes and 
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h(t,x(t),e) = /x2(t)+ x2(t). 

Clearly then in target discrimination problems with distributed 

targets of this type one encounters problems like those treated in 

section 3. It is important to note that since the first of (15) is 

linear the corresponding filtering and stochastic control problems 

described in section 3 are definitely more tractable. For further 

examples of this type we refer the reader to [2]-[5]. 

Further research is needed to apply the powerful results of section 3 

to specific problems in order to evaluate current design principles 

and more importantly in order to suggest new electronic implemen- 

tations capable of performing in a dense, hostile environment. In 

particular the methodology developed in 3 can be used to identify the 

cost structures that lead to the specific hierarchies suggested in 

the introduction. 
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