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ABSTRACT

In this paper, several discrete—-time queues com—
gece at the beginning of each time slot for the atten-
tlon of a single server with infinite capacity. The
service requirements are geometric with queue—
Jependent parameters, independent from customer to
cystomer and independent from the arrivals. The sta-—
yility of such systems is characterized under the
jction of an arbitrary, not necessarily Markovian,
secvice allocation policy. Maximum likelihood estima-
tes are obtained in explicit form for the service
rates and their strong consistency is established.
the results are then applied to the problem of adap-—
tively controlling such systems when the service rates
are unknown, under the long-run average performance
criterion with instantaneous cost linear in the queue
sizes.

I. INTRODUCTION

In the context of resource sharing environments,

a great many situations can be modelled by the
following scenario: A natural time unit exists and
divides the time horizon into contiguous slots of unit
length. The system is composed of a single server
vith the capability of providing several grades of
service, each such grade of service being charac-
teristic of a customer class (or equivalently of a
queue) . New customers arrive on a slot-per—slot basis
and await service in an infinite capacity waiting
room. The service requirements are geometrically
distributed, with class dependent parameters, and are
" gtatistically independent from customer to customer as
well as from the arrivals.. At the beginning of a time
slot, a customer class is selected to receive service
attention during that time slot on the basis of past
decisions, service completions and arrival data. This
assigmment of service attention may be pre—emptive as
a customer may experience an interruption of service
before completion of the service requirement; the
allocation of effort may also fail to be work-—
conserving for the server may give service attention
to a customer class with an empty queue.

A cost, linear in the queue sizes, is incurred
for operating the system over one time slot and the
service discipline is selected to minimize the
corresponding expected long-run average criterion over
an infinite horizon. The policy that allocates ser—
vice attention to the non—empty queue with the largest
expected cost decrease per slot defines the pc-rule.
It is known that the uc-rule is optimal among all
admissible allocation policies when the arrival
streams have arbitrary statistics but are statisti-
cally independent of the service requirements [3,8].

The pc~rule is a fixed prioritization scheme
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cost coefficients, independently of the arrival sta-
tistics. However, in many applications, the service
parameters are not available to the decision-maker as
the system is initially put in operation, and the
simple uc-rule is thus not implementable in its given
form. Indeed, a learning capability needs to be
included into the decision-making mechanism while
steering the system to optimality. This suggests that
in many instances, a non-Bayesian adaptive formulation
might be more realistic and appropriate in studying
the problem of optimally controlling such competing
queues systems.,

The present paper deals with a particular version
of this adaptive control problem and discusses various
results of system stability, parameter identification
and performance optimality under the long-run average
criterion. Here, the Certainty Equivalence design
philosophy is adopted in conjunction with maximum
likelihood estimators. More specifically, at any
given time, a maximum likekihood estimate of the ser-
vice rates is computed on the basis of available
information; the decision to be implemented is then
generated according to the uc-rule policy for the
model that corresponds to these most recent estimate
values of the system parameters. This procedure defi-
nes the adaptive uc-rule, and the study of its estima-
tion and control performance constitutes the main
motivation behind the results reported here.

The maximum likekihood estimates are based on the
knowledge of the initial queue sizes and of the past
control actious, arrivals and service completion data,
as are the control decisions. The discussion is given
under the assumption that the arrivals of new custo-
mers are independently and identically distributed
over successive time slots, with possible correlations
between the customer types in a particular time slot.
This assumption, when combined with the other model
features, allows for the explicit evaluation of the
maximum likelihood estimators of the service parame-—
ters given an arbitrary control policy.

The strong consistency of these maximum likeli-
hood estimates is investigated in detail and under
simple conditions on the system parameters, the pro-
perty is shown to hold uniformly in the work-conserving
control policies. One of these conditions relates to
system stability of the competing queues model and
provides a complete characterization of (in)stability,
as the system is operated with general non-anticipative
(non-Markovian) strategies. This stability criterion
explicitly imvolves the mean statistics of the arrival
and service processes, and is established by comple-—
menting ideas from drift analysis with martingale-
theoretic arguments. The method 1is powerful enough to
yield the exact statistics of the passage times to the
empty state under arbitrary non-idling policies. This
methodology seems to have wide applicability for
studying the stability of many queueing systems and
elsewhere, and is particularly useful when the model
admits a state-space representation via a difference
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equation as in this work and in [1,16].

The conditions under which strong consistency is
shown to hold uniformly in the non-idling control
policies, are essentially sufficient to ensure that
the adaptive uc-rule is optimal for the long-run
average criterion,

In recent years, stochastic adaptive control has
received considerable attention, as evidenced by the -
extensive review of the subject given by Kumar in a :
recent survey paper [14]. One of the formulations
reported there does pertain to the present work; it
originates, at least in its general form, in the semi-—
nal papers of Mandl [18-20] and deals with the class
of controlled Markov chains with a non-Bayesian uncer-
tainty in the model parameters, under a long-run
average performance measure. The situation treated
here naturally fits into this framework as the multi-
queue size process plays the role of the controlled
Markov chain and the service rates constitute the
unknown model parameters.

In most papers concerned with this class of
problems, the corresponding dual control problem of
Fel'dbaum [ll] is approached by the Certainty Equiva-
lence Principle and various results on performance
optimality and parameter identification are available
under a variety of technical conditions [6,7,9,13,18-
20]. Unfortunately, owing to the special charac-
teristics of the problem at hand, these earlier
results do not apply directly and alternate arguments
are needed. The main difference between the present
paper and previous works on the adaptive control of
Markov chains lies in the allowed information pattern
for estimation and control purposes. Earlier results
all assume the information pattern customarily adopted
in the context of Markov decision processes, whereby
past states and control values are available. Here,
the state of the controlled chain is the queue size
vector and knowing initial queue sizes, and past
controls, service completion records and arrival data
thus defines a much richer information pattern due to
the discrete nature of time.

The results reported here (without proofs) extend
preliminary work by Baras and Dorsey [2, 10] on the
adaptive control of two competing queues with
geometric service requirements. A detailed discussion
of the results is available in [5].

II. THE MODEL

In this section, a simple mathematical model is
formulated to capture the evolution of the multi-queue
system described in the introduction. Throughout this
paper, the number of competing queues is fixed and is
denoted by the positive integer K.

An underlying sample space Q is given with a o-
field F of events and is assumed to simultaneously

carry an N - valued random variable (RV) E, a sgquence
{A(t)}l of NK-valued RV's and a sequence {B(n)}1 of

{O,I}K—valued RV's. As,a notational convention, the
k~t component of an R -valued RV (resp. element

in R") 1s always denoted by the same symbol as the RV
(resp. element) subscripted by k. The initial size
(at time t=1) of the k-th queue is represented by

2, and the RV Ak(t) quantifies the arrivals to the
queue during thé time slot [t,t+1), whereas B, (n)
records service completion in the slot during which
the k=th queue is non-empty and is given service
attention for the n-th time.

The assigmment of service attention in the slot
t,t+l) will be based on knowledge of the initial

queue sizes, and of past control values, service

completion and arrival data over the horizon [1,t).

Here, an admissible policy 7 is thus an sequeﬁce
{"til of mappings L from NKx({l,...,K x{O,l} xNK)t‘l

into {1,...,K}, ;kzh the domain of definition of

m being simply . .The collection of all such poli~

cles is denoted by P in the sequel,

- Fog eve§y po;icy m 1§ P, Lhe sequences {Xr(t)}:
{Uier},, (N (0}, and {D (t)}, of RV's are defined

below with values in NK, {1,...,K}, NK and {O,l}K,

respectively. The RV “(t) represents the number of

customers present in_the k—th queue at the end of the

horizon [l,t), and U (t) specifies the customer clasg

to receixe service attention in the slot [t, t+l);

the RV Nk(t) counts the number of slots over the tipe
AY

A
period [l,t) during which the k-th queue_was non-empty
and was given service attention, while Dk(t) encodes

the departure of a type k customer from the system at
the end of the time_slot |[t,t+1). To initialize the
recursion, defineﬁx (1) == and"U“(l) 1= ﬂl[E], and
for 1<k<K, set Nk(l) := 0 and Dk(l) 1=

1{z,#0]8 [k,U" (1) B, (N[ (1)+1). Here, the expression
I[A] denotes the characteristic function of the event A
inF and 6[,] stands for the standard Kronecker symbol.
Then, for all t#0 in N and 1<k<K, set

X (e+1) = Xi(e) + A (€) = D] (¢), 2.1

U (e+1) = ﬂcﬂ[E;Uﬂ(S),Dﬂ(S),A(S), 1Ks<t], (2.2)

N (e+D) 1= Ni() + 1[X (£)#0]6(k,U"(8)], (2.3)
Dy (e+1) :=1{ X (e+1)#0]6 [k, U™ (e4+1) ]B, (N (t+1)+1). (2.6) "
K =K (e , Kk - (2.

An admissible policy 7 in P is idling at time t if
ther% exists k %nd %, 1<k#2<K, %uch that for some w in
Q, Xk(t,m)>0, Xz(t,m) =0 but U (t,w) = 2. An ’

admissible policy m in P which is not idling at any
time is called a non-idling or work conserving policy.

To capture the randomness affecting the multi-
queue system studied here, a collection {Pu, ue[O,l] }
of probability measures is postulated on (Q,F) withK
the property that under each measure P*, y in [0,1] s
the following statistical statements hold true:

(Al): The sequences {Bk(n)}: are mutually independent
Bernoulli sequences with parameter Hpes 1<k<K;

(A2):

The RV £, the arrival sequence {A(t)}? and the

Bernoulli sequences {B(n)}: are mutually independent;

(A3): The RV's {A(C)}: form a sequence of independent

identically distributed NK—valued RV's, with known
probability disctribution qA given by

q,(a) := P*[At) = a] (2.5)
for all a ENK and all t#0 in N;

(A4): The RV = has a known probability distribution
4_ given by
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q.(x) := PY[z = x] (2.6)
zor all X.EE.NK'

The described model is to be put in contrast with
the single probability triple model adopted in pre-
sious studies 3,4 of the competing queues system,
the approach taken here incorporates the fact that the
sratistical system characteristics may be known to the
secision—maker only up to a parametrization. Specifi-
cally, the situation captured in the assumptions
(Al)-(A4) is one where initial conditions and arrival
patterns have a known and fully specified statistical
description, whereas the service completion mechanism
{s specified only within the class of memoryless or
gernoulli mechanisms, parametrized by the service
rates H. Under the assumptions made, the service
duration of any given customer in the k-th queue is
clearly a geometric RV with parameter i’ 1<k<K, and
each probability measure Pu, win [0,11 7, thus fully
characterizes a statistical model for the competing
queues system described in the introduction,
Throughout this paper, the true service parameters are
denoted by u{:, Kk<K,

I1I. THE MAXIMUM LIKELIHOOD ESTIMATES

When the service rate vector is unknown to the
decision-maker, learning has to take place in conjunc-
tion with the control process. Here the principle of
paximum likelihood is invoked to generate simple and
explicit estimates for these quantities.

III.1 The Principle of Maximum Likelihood

The estimation procedure relies on an information
pattern described by the following simple chain of
events: As the admissible policy = in P operates over
the horizon [1,t+l), the initial condition Z and the
data {(U™(s),D™(s),A(s))}, l<s<t become available by
time t+l through perfect monitoring of the system. On
the basis of this information, an estimate p (t+l) is
generated for the unknown service rate vector uo by
maximizing a likelihood functional evaluated on the
observed data trajectory and is used on the interval
[t+1, t+2). At time t=1, only the initial condition g
is assumed known and an initial guess is made to pro-
duce the initial vector estimate uﬂ(l) which is used
on the interval [1,2).

For all t O in N, the likelihood functional L:+1
is defined by the formula

L7, [usx,u(s),d(s),a(s),1<s<t ]
t+1 (3.1)

1= PPz ;U7 (s) =uls) D" (s)=d(s) ,A(s) =a(s) ,1<s<t ]

vith u in [0,1]%, x 1ta & @nd ({(u(s),d(s),a(s)),
1<s<t} in {1,...ﬂK} x {0,1} X NK, and the obvious
convention that Ll[u;x] = P [E=x = q.(x). :
_Far each policy n in P %nd every parameter u in
[0,1]%, the R,~valued RV's {u (t;u)}1 are defined by

CLT(e+ ) = LT (w3 E,07(s),D"(s),ACs),1<s<t]  (3.2)

L
t+l
T ™

for all t#0 in N, with L (1;1) := L;[u;8]. In other
words, L (t+l;u) is the RV obtained by composing the
likelihood functional evaluated at_u with the initial
condition % and the data [(U'(s),D"(s),A(s))}, l<s<t}.
The Principle of Maximm Likelihood states that the
pParameter estimate u (t) of the true service rates u

should be selected so as to maximize L (t;u), i.e., for

all t#0 in N,

id ™ T
L (t; ¥ (t)) = max K{ L (tsu)}. (3.3)
ue{0,1]

I1I.2 An Expression for the Likelihood Functionals

As a first step of the methodology outlined above,
an explicit expression is now derived for the likeli-
hood functionals. To do this, it is convenient to de-

"~ velop some additional notation:
XS

T fog.every %dmi§§ible policy 7 in P, the sequences
{v (t)l1 and (B (t)}1 of {0,1}~valued RV's are defined

componentwise for all t#0 in N by
Vp(e) = 1[X(£)A016(k,U7(E) ], Lekek, (3.4)
™ T
B (t) = B (NG(£)+1), I<k<K, (3.5)

Moreover, define the R+-valded mapping by G

K
Gluzd,v] := I« [ukdkvk + (1 - dk)(l - ukvk)] (3.6)
k=1 ’

for all v in [O,I]K, d in {O,l}K and v in {O,I}K.

Given these preliminaries, explicit expressions
for the likelihood functionals can now be compactly
stated:

Theorem 3.1. For every admissible policy r in P and
all t#0 in N, the likelihood functionals (3.2) are
given by the formula

t t
L™(e4+15 ) = [ 1 GlysD™(s),V™() 110 1 q,CAGNIL"(15m)
s=1 s=1
X (3.7
for all rate vectors y in [0,1] .

I1I.3 The Maximum Likelihood Estimation Scheme

With the formula (3.7) available for the likeli-
hood functionals, an explicit expression can now be
obtained for the maximum likelihood estimators. The
result is summarized in the following proposition.

Theorem 3,2. For any admissible policy min P, the
maximum likelihood estimates {u (Ej}l are given by

t v
il Dk(S) t h ¢
° 1f T Vi(s)>0
t . s=1
z Vk(s)
.s=1
- (3.8a)
u(e+l) = .
arbitraryi_g_[o,l] if & V;(s)no
s=1
(3.8b)

for all t#0 in N and 1<k<K, with w"(1) chosen
arbitrarily in [0,17.

The exact expressions (3.8) for the maximum like~-
lihood estimates readily suggest a recursive implemen-—
tation for the sequential estimation process. To see
this observe from (2.3), (3.4) and (3.5) that for
every admissible policy @ in P, the equalicy
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Nk(t+1) = (3.9)

[ e W

v{i(s) , 1<k<K,
s=1

holds for all t#0 in N, It is then easy to conclude
from (3.8) that the recursion

D, (t)
M) +=
. N (e)
uk(t+1) = = (3.}3)
vk(t) ‘9

holds provided NE(t))O.

It is noteworthy that for the system at hand,
expressions such as (3.8) and (3.10) are not available
as soon as the information pattern is modified. This
fact was clearly illustrated by Dorsey in his doctoral
dissertation [10] where the two competing queues
situation was studied and maximum likelihood estimates
computed for the service rates under the standard
state feedback information structure. The reason
behind the simplifications observed here is easily
traced. Indeed, under the information pattern
described in Section III.1l, the parameter estimation
problem is really one of esgimating the rate of the
Bernoulli sequences {Bk(n)}1 sampled under the policy

7 at the times t where V"(t)#O. The results of Theorem
3.2 are thus not surprising in that light.

IV. THE STABILITY RESULTS

The results of this section are concerned with
system stability and are valid under amy one measure
(or model assumption) Pu, ¥ in [0,1] , with the pro-
perties described in Section II. Throughout this sec-
tion, a given service parameter u in ?0,1] is held
fixed and all probabilistic statements are made under
the probability measure Pu, with corresponding expect-
ation operator denoted by E".

As the discussion shows, the stability of the com—
peting queues system (2.1)-(2. 4) is completely charac—
terized by a single quantity p defined by the relation

K
o¥ 1= I ;k— (4.1)
k=1 k
where

denotes the (pogsibly infinite) mean of each
one of "the RV's {Ak(t)}l, 1<k<K,

Under the action of an arbitrary policy = in P,
the queue sizes process does not usually enjoy the
Markov property and standard methods from the theory
of Markov chains are thus seemingly not applicable to

obtain a characterization of system stability. Here,
instead, ideas from drift analysis and direct
martingale-theoretic arguments are used. Although

drift analysis was originally formulated for Markov
chains [15,17,21,22], it has also proved successful in
handling some non-Markovian systems as recently
demonstrated by Hajek [12]. Systems with explicit
state-space dynamics such as (2.1)-(2.4) appear to
constitute a large natural class of models to which
this circle of ideas are applicable [1,16]. Indeed,
this explicit state-space representation of the queue
dynamics is most helpful in generating (super)mar-—
tingales of interest in the study of (in)stability.

The point of departure lies in the intuitive idea
that stability should be related to the frequency with
which the system visits the empty state: For every

M52

admissible policy m in P, the filtration {Fz}l is*
defined on (2,F) by setting
Fry = ol5,07(s),87(s),A¢s) 165t} (4.2)

for all t#0 in N, with FT

= of3}.

Observe from the

assumptions (Al)-(A3) ch%c for every admissible policy .

P, the relations

b
= Xk(t) + a -

7 in

e 7] e T8 1K L Gy

hold for all t#0 in N. Moreover, whenever the policy
m is non—-idling at time t, the identity

v () =1 - 1[;&(”#0 1<k<K] (4.4)

K
L
k=1
holds. With drift analysis in mind, the relatiouns
(4.3) and (4.4) together suggest that the information
as to how often the system empties itself under an
admissible policy w, is carried by the sequence

{Z (t)} of R -valued RV's, with
g
K (t)
z"(t) = I % (4.5)
k=1 Yk

for all t#0 in N, This quantity will act as a drift
functional and satisfies the following recursion

K (t)
Z(c+1)—z(c)+ z Ak -
k=1 k k

i
K v, (&)
¢ K

T
B, (t).
1] Wk

(4.6)

As pointed out by Hajek [12], the evolution of
the drift sequence (4.5) is best understood by
studying the corresponding conditional probability
generating function. Under the assumptions (Al)-(A4),
it is an easy exercise to conclude from (4.6) that

m m
(2% D FT] @ aan(z v (e)2” () ais. (41
with the argument z restricted to the interval (0,1].

In (4.7), the quantities a(z)_and b(z;v) are defined
for all Kz<1 and v in {0,1} , to be

K (t)
F A

k=1 By ]

a(z) := Eu[z (4.8)

V,
LI L

M I8

where the right handsides of (4.8) and (4.9) do not

depend on t and n as a result of the assumptions (Al)-
(A3).

X
-k

b(z;v) := Eu[z (4.9)

IV.1 The Case p">1: an Instability Result

The region of system instability is determined
first in the following proposition.

Theorem 4.1. Under the foregoing assumptions with
p >l, the queueing system is unstable under the action
of any / admissible policy T in P, in the sense that

1im 2" (t) = = PP-a.s. (4.10)

tt=

This proposition is indeed a statement of system
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instability, since it amounts to saying that at least
one of the K queues explodes in time and grows beyond
any limit. The key fact leading to (4.10) lies in the
observation that when p">1, the sequence of RV's

L @
{zZ (t)}l is a (?“,F:)-supermartingale.

1v.2 The Casg_pu<1: The Stability Results

Let 7 be an admissible policy in P. To study the
stability of the competing queues system under its
action, consider an arbitrary F_-stopping time o and
define the N-valued RV v(g) by

inf [n)l: X;(o 4+ n) = 0, 1<k<K}
if o<¢= and this set is non-empty,
v(g) := (4.11)
@ otherwise .
On the set [a < w], the RV v(o) counts the number of
slots it takes for the system to empty for the first
time after o. Also, set t(g) =0 + v(g) and observe

that 1t(¢) is an F:—stopping time.

The key result for characterizing stability is
contained in the following proposition.

Theorem 4.2. Under the foregoing assumptions with
pu<1 and an arbitrary non-idling policy m in P, the
relation

n v(oy 71 n -1 pm
B[ 1[0<w, v(0)<=] [a(2) T bz aen]T RG]
=0

T
= l[c(alzz (o) pM-a.s. (4.12)

holds for every Fz-stopping time ¢, as z ranges over

w,n.

For all 0<z<1l, the sequence {M"(t;z)}T of R+-
valued RV's defined by

m
zz M for t =0

M (e+l;z) := . (4.13)
zz (t+1)
for t#0 in N

t t
a(z)" 1 u(z;V"(s))
s=1

is a positive (Pu, F™)-martingale owing to (4.7).
Technicalities aside, the relation (4.12) follows

from Doob's Optional Sampling Theorem applied to the
martingale (4.13) with the stopping times ¢ and t(9),
if this martingale were uniformly integrable. Unfor-
tunately, this does not seem to be the case and a
straightforward application of the Sampling Theorem is
thus not possible. The required argument is somewhat
technical and is given in [5, Appendix B]. Interesting
consequences readily follow from the relation (4.12)
and are given in the next corollary.

Corollary 4.2.1. Under the foregoing_assumptions,
with p¥<1 and an arbitrary non-idling policy = in P,

Pu[v(a) < m[F:] = l[o(m] PM-a.s. (4.14)

for every F'-stopping time a. Eg_parcicular,‘if_o<°
a.5., then v(g)<= a.s.

Another case of interest arises when o<® a.s.

with Xl(o) = 0, 1<k<K, on the event [o(m]. This

situation holds promise for obtaining statistical
information on the busy periods via Theorem 4.2.
H%wever, it is possible for each 2#0 in N to have
xk(c+2) = 0, 1<k<K, with a positive probability and

the RV v(o) is thus not quite adequate to represent
busy periods, as usually understood, unless some care
is taken., With this is mind, set

b

K
inf {n>0: I A (o + n) > 0}
k=1
if o< and this set is non—empty

(o) := (4.15)

L otherwise

Ay
a%d observe that the RV y(¢) := 0o + [l + B(o)] is an
Ft—stopping time. On the set [c(ﬂ], the RV B(a)

counts the number of slots before customers again
arrive into the system after time ¢, while the RV v(o)
represents the left-boundary of the slot during which
there is at least one customer present in the system
for the first time since og.

At this stage, it is useful to make an additional
assumption on the arrival stream, so as to avoid
limiting cases of little interest. Specifically, it
is assumed that with a positive probability, new
customers always enter the system during a slot.
is formalized in the following assumption (AS),
hereafter enforced:

This

(AS): The probability distribution g satisfies the
constraint q,(0)<1l, where O denotes the element in
NK With all Zero components.

Observe that the RV 8(g) is geometrically distributed,
with

P[8(0) = n] = [1 - q,(0]q, (O (4.16)
for all n in N, owing to the statistical assumptions
(Al) - (A3) enforced on the data and the assumed fact
g<* a.s. Now, 1f q,(0)<1, then B(g)<= a.s. and so
v(g)<= a.s. obviously, whence v(y(g))<= a.s. by
Corollary 4.2.1.

If t(y(g)) := Y(a) + v(y(o)) as before, it is
now straightforward to interprete the interval [Y(o),
1(y(c))) as the first busy period after time 0. Sta-
tistical information concerning its length, namely
v(Y(o))-1, can be abtained from Theorem 4.2 as the
forthcoming result shows.

Theorem 4.3. Under the foregoing assumptions, with
p"<1 and an arbitrary non-idling policy 7 in P,

S 1f p¥<1 (4.17a)
1 - " -

' [v(y(a))] =
w 1fp¥ =1 (4.17b)

whenever g<» a.s. and X;(c) = 0, 1<k<K, g&_[c(’].

If the (possibly infinite) mean of the RV Ek 15
denoted by Ek’ 1<k<K, and define the coefficient r

to be

K § .
. T (4.18)
K=1 uk
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A result similar to Theorem 4.3 is then also available
for v(l).

Theorem 4,4, Under the foregoing assumptions, with
p 231 and an arbitrary non—idling policy w in P, the RV
v(l) 15 a.s. finite and

u
l+r if oMa1 (4.19a)
H - pu o
ESfw()] = y N
- 1f o™ = 1. (4.1959

It is now possible to completely characterize the
stability behavior of the system (2.1)-(2.4) in terms

of the quantity pu. For any admissible policy _7 in P,

recursively define the sequences {Tn 1 and {Yn}l of
F:—stopping times by setting T, = t(l) and
1= = 4,
Yo =), T w(y) (4.20)

for all n#0 in N, with the notation introduced
earlier. The epochs {Tn}l are the clearing times for

the system, and it is natural to interpret the inter-—
vals [t ,Y_ ) and [Y , T ) as idle and busy periods,
respectisel?, and to"viéw the interval lt 7 ) as
the corresponding busy cycle. Their properties are
sunmarized below:

Theorem 4,5. Under the foregoing assumptions, with
p *<1 and an arbitragy non-idling policy m in P, the
stopping times [t }l and {Y } are all a.s. finite and

their first moments obey the following relations:
First,

u
1 +_1_1Lu_ if o¥<a1 (4.21a)
1 ~-p -
Eu[rl] =
- 1fp¥ =1 (4.21p)
while for all n#0 in N,
u 1
Ely -t]=—ouo (4.22)
n n 1 -q.(0)
A
and
1 u
if o<1 (4.23a)
1 - pu
u
E [Tn+1 - Yn] =

1if p" = 1.(4.23b)

This last result is clearly a description of
system stability in terms of the mean busy periods;
the terminology of null and positive recurrence for
the case pu = 1 and p < 1 is readily justified on the
grounds of the expressions (4.21) and (4.23), in
complete analogy with the situation for Markov chains.

That the formulae (4.21) and (4.23) are indepen-
dent of the policy T may seem puzzling at first.
However, a moment of reflection should convince the
reader that in fact a much stronger property holds for
the system (2.1)-(2.4). Indeed, two different _noo~
idling policies generate identical busy periods, i.e.,
1f 7 and 7 are two non-idling policies in P and their
corresponding.. clearing times (4.20) are denoted by
{r } and (1" }1, respectively, then

(4.24)

for all n#0 in N. Of course, this is no longer true
if the policies idles. This property explains also
why the stability of the controlled system was charac~
terizable by a single parameter for all non-idling
policies. -

At this point, the reader may want to argue that
the stability results of Theorem 4.5 could have been
obtained more directly by first observing (4.24) and
then by studying the stability of the queue size pro-
cess for a given non-idling Markov stationary feedback
policy. Indeed in that case the queue size process
would be a Markov chain [5, Thm. 6.1] and standard
ergodicity results [15,17,21,22] seemingly would apply
to yield the obtained results. Unfortunately, the
results in the cited references are not powerful enough
to cover the level of generality adopted here, as no
growth conditions or bounds are imposed on the arrival

stream and a direct argumentation would have been
needed anyway. The\discussion sketched in this section
shows that such arguments do indeed exist and that they
apply to Markovian and non-Markovian control policies
alike!

In the next sections, all statements are made
under the probability measure P  that characterizes
the true model assumptions; the corresponding mathema-—
tical expectation operator and stability coefficient
are denoted by E° and p , respectively.

V. STRONG CONSISTENCY

The performance of sequential estimates is often
evaluated through their convergence properties to the
true parameter value, In this section, the con-
sistency of the maximum likelihood estimates is

investigated in some detail; a preliminary result on

this question is given in the following proposition.

Theorem 5.1. For anmy adm1551ble policy w in P, the
sequence of estimates Th (__} has the property that

lim uk(c) = uk Po—a.s. (5.1)

the
1 ¢ ki
on the event Q := [lim inf — ¢ Vi(s) > 0].
the s=l

For future use, it is desgrabls to understand when
the sequences of estimates{u’ (t)} converge to the

true parameter value u? » 1<k<K, under the true and
correct model assumptions. Clearly, as a consequence
og Theorem 5.1, this will happen if and only if

P (Q ) 1. However, such a statement constitutes a

rather weak’ and implicit version of the expected suf-
ficiency result, insofar as a direct characterization
in tems of system parameters and policy structure is
sought! This task is undertaken in the remainder of
this section, under the additional assumption (A6),
where

(A6): The arrival sequence LA(t)}j has the property

that

P“{A.k(:) =0] = L

qA(a) <1 »
a:ak=0

12k<K,  (5.2)

for all t#0 in N and u in [0,1 ]K.

This assumption implies (AS5) and is a condition
of non-degeneracy on the system, in the sense that
each queue is required to have arrivals in every slot

/ with positive probability. This is clearly necessary
154



if parameter identification results are sought; other-
wise, a given queue may become empty at some time,
stay empty thereafter with a positive probability and
since the service process will remain inactivated,
parameter identification will not take place due to
lack of relevant information,

Theorem 5.2, Under the enforced assumptions, with

pZ(lTT and an arbitrary non-idling policy T in P, .
P (Qk) = 1, l<k<K, and therefore, R
lim () = ,° P°-a.s. (5.3)
k k
the
VI. THE LONG-RUN AVERAGE COST CONTROL PROBLEM

VI.1l Problem Formulation:

Simple performance measures are associated with
the operation of the queueing system (2.1)-(2.4) by
imposing an instantaneous cost proportional to queue
sizes, With , 1<k<K, being positive constants held
fixed throughdut the discussion, the total NKcosc per

slot is defined through the mapping ¢ from into R,
where
K
c(x) 1= & ¢ (6.1)
ko] K%
for all x in NK. For every admissible policy w in P,
set
or = S 7
Jo, (m) :==E[ £ 8%c(X"(s))], (6.2)
B,t s=1
and
1
J_ () := lim inf —J, (m)
av t poo t 1,t
t (6.3)
= lm 1nf B°[L 1 o(x"(s))]
tte Eos=1

where B is a discount factor in [0,1], t#0 is in N and
the RV's {X (s)}1 are generated via the dynamics (2.1)-

(2.4). The quantity J t(Tr) is the expected B-dis-
counted costs associateé’with the admissible policy =

in Pover the finite horizon [1,t+l), whereas J ()
is the corresponding expected long-run average &st.

As in previous work on the competing queues
problem [3,8], the following optimal control problems
(p ) and (P_ ) are considered hereafter. They are
sigdftaneousl§vdefined below as problem (P), with the
convention that J(w) represents anyone of the cost
functions (6.2)-(6.3) and that in each case, the para-
meters range is the one for the corresponding cost
function:

(P): Minimize J(rw) over the class P of all
admissible control policies .
A feedback policy v is now,defined as a sequence
{“t}l of mappings 7 from NKx(NK'x{l,...,K})C‘*’1 into

{1,...K}, with the counvention,that the domain of
definition of v  1is simply « Denote the collection
of all such feedback policies by P_. Under the action
of a feedback policy 7 in P_, the dynamics of the com
peting queues system is stifl given by the equations
(2.1)-(2.4), but with (2.2) now replaced by
UM (e+1) := (55 U(s), X'(s+1), I<s<t]  (6.4)
for all t#0 in N. It is easy to see that to every

such feedback polic say m, there corresponds an
admissible policy ?Yin P with queue dynamics identical
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to the one generated under the action of w. Notwith-
standing a slight abuse of notation, the inclusion P <P
thus hold, and this inclusion is strict owing to the
discrete nature of the time parameter.

A feedback policy m is said_to be a Markov policy
if each one of its mappings {"c}l reduces to a mapping

from NK into {1,...,K}; in that case Uﬂ(t) =7 [XF(:)]
for all t 0 in N. A Markov stationary policy b is
then defined as a Markov policy for which the mappings
{72)1 are all identical., For sake of notational

simplicity, the mapping from e into {1,...,K} that
defines a Markov stationary policy " will also be
denoted by T in what follows.

The pec-rule corresponding to the service para-
meter vector y in [0,11K is the Markov stationary
policy w*(u) in P defined by

wx{x;u] := Arg wmax {u.c [1 - &[x_,0]]} (6.5)
Lok k%k e
for all x in NK, with a tie breaker, when needed.
Clearly, the pc-rule is a static prioritization
scheme and it can be interpreted as the one that
incurs the largest cost decrease per slot [3,4].

V1.2 Optimality of the uc-Rule for Problem (Pav)

As a result of earlier investigations by the
authors [3] and by Buyukkoec, Varaiya and Walrand [8],
it is now known that the pc-rule provides a solution
to the discounted problems (P ), 8 in (0,1) and t#0
in N, under the enforced assugﬁgions (Al1)~(A3), as
it minimizes (6.2) over the class P of all admissible
policies.,

Theorem 6.1. Under the assumptions (Al)-(A3), the

nc-rule solves problems (PB t) for all B Eg_(O,l) and
t#0 in N, in the sense that °®

% ¢

for every admissible policy w EE! P. -

Js,c(“*(”o)) < (m) (6.6)

The main result of this section is concerned with
the long-run average cost problem and is now easily
derived.

Theorem 6.2. Under the assumptions (Al)-(A3), the
uc-rule is optimal for problem (Pav).

As in [3], it is convenient at this stage to
introduce the following finite mean assumption (A7),
where
(A7) : (6.7)

£ <=, a <=, ICkeK.

k

Routine calculations [3, Section III] show that for
every t#0 in N and every B in (0,1], the discounted

cost J t(rr) is finite for all admissible policies 7
in Piffénd only if the condition (A7) holds; coa-

sequently, the long-run average cost function (6.3) is
then identically infinite when (A7) fails to hold and
the problem (P__) is meaningful only when the finite
mean condition®’ holds.

VII. THE ADAPTIVE LONG-RUN AVERAGE COST CONTROL
- PROBLEM

VII.1 Problem Formulation

The results of the previous section show that the

minimum long-run average cost is achieved by imple-
menting the pc-rule; this, of course, requires



knowledge of the true value of the service parameters
in the model assumptions. However, this information
may not always be available to the decision-maker and
a natural question thus arises: In the absence of
knowledge of the true model parameters, how should
service attention be allocated so as to minimize the
long-run average cost? This question defines the
adaptive long-run average cost control problem (P d)
to be studied in this section. a

The optimization problem (P_ ) for the fully spe-
cified model has a kunown solutio%Y the uc-rule, which
involves the unknown service parameters W 1in a very
simple manner. In view of this, it is thus natural to
{nvoke the so-called Certainty Equivalence Principle
for generating easily implementable policies: At time
t, on the basis of accumulated data, compute an esti-
mate of the unknown parameters and generate a control
action by making use of the optimal strategy for the
system with true service parameters equal to the
estimate value.

Here, the parameter estimate to be used is the
maximum likelihood estimate derived in Section IIIL.
The admissible policy produced by applying the Cer—
tainty Equivalence Principle is called the adaptive
pc-rule and is denoted by a. It is defined recur-
sively by the following chain of events: At time t=1,
only the initial queue size is known to the decision
maker and the corresponding maximum likelihood esti-
mate _of p  consists of a value chosen arbitrarily in
[0,1] , say p. The coantrol action to be made at time
t=1 is thus

u%(1) := Ar 1{s, #0]} = wE5p
g TX«{I“C“ (5,20} = #125w]

(7.1

with a tie breaker. Now at time t, the data 2 and
{(UG(S),Da(S),A(S)), 1<s<t} become available as a is
used on the interval [l,t) and the maximum likelihood
estimate u (t) 1sacomputed according to Theorem 3.2
while the state X (t) is generated by the dynamics
(2.1)-(2.4). By the Certainty Equivalence

Principle, the service assigmment in the time slot
[t,t+1) is determined to be U®(t), where

u%(t) := Arg max | a(t)ckl[xa(t)¢0]}
1<k<K

= x5 ()] (7.2)
with the usual tie breaker.

VII.2 Optimality of the Adaptive uc-Rule

It is clear that the adaptive uc-rule a is a
non-idling policy but it is no longer a feedback policy
as understood in this paper, thus no longer a Markov
stationary policy. Nevertheless, under reasonable
conditions, it shares some of the properties assoc—
iated with of the pc-rule w*(u°).

Theorem 7.1 Under the foregoing assumptions, with
p’¢1 and the finite mean assumption (A7), the adaptive
yc-rule a enjoys the following properties:

lim uﬁ(:) - uﬁ, 1<k<K, P°-a.s. (7.3)

tteo
1 ¢ a o
Jav(a ) = 1im T L (X (s)) P -a.s. (7.4)
t e s=1

SEIMCHCDIR (7.5

i.e., g_solves (P d) and parameter identification takes
place. a
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