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Abstract

A uotion of weak coupling Dbetween
subuystoms of & lurge-scale system 1s developed
based on a sufficient condition for a linear,
time-invariant MINO systems. The weak coupling
measure provides & frequency dependent
requirement on the system response for stability
of a decentralized controller for the system.
An sbstruct notion of a generalized Nyquist
criterion for MIMO systems (as discussed in
Brockett &nd byrnes [7)) is extended for
decentralized feedback control. Computational
methods are provided which exploit & connection
between a gap-metric and the principal angles
between pairs of subspaces. The principal
angles ure shown to be related to the singular
values of an easily computed matrix.

1.0 Introduction

The srea of control of large scale systems
desls with control problems for large
dimensional multivariable yplants. Typically
geveral models for the plunt dynumics may be
developed bLesed on various levels of detailed
subsystem models and their interconnections at s
wicroscople level to verious level of wugpregute
or macroscopic models of the oversll plant.
These verious modeling levels have been used to
sdvantage in the design methods for large scale
problems &and are reflected in various
decentralized and hierarchical control
gtructures.

As a first step in meny such procedures a
simple decentralized feedbuck controller ip
sought where the decentralization is consistent
in some method specific technical sense with the
model structure. The objective of the
decentralized feedback controller typically
comprises some low level compensation providing
simplitied interface to hierarchical controller.
The success of such a decentralized compensation
schieme 1is often based on an underlying model
structure ussumption. One such model structure
sssumption which has been exploited in the
design and snalysis of decentralized feedback is
the notion of weakly interacting subsystems.

Although various researchers have provided

conditions for testing the weak interacting
bypothesis on a system model (cf. Aplevich [6])
we will be more concerned with conditions
providing for the stability of decentralized
feedback. Results along these lines have been
obtained by Cook [2], Araki [1], Lasley and
Michel [3] for a fairly general class of systems
including linear, time-varying, and including
certain types of memoryless nonlinearitics.
These approaches employ various function space
norms representing the system impulse response
or transfer function and may lead to rather
gross estimates of the robustness of =&
decentralized feedback.

In some earlier work the present authors 1v]
have explored the use of a frequency domain
notion of weekly-interacting systems towards the
goal of establishing sharper estimates of
stability margins for the decentralized feedback
control system. The notion of weak coupling
described in [5] is buscd on the idea of a block
diagonally dominant (BDD) transfer function
matrix. The bLD concept described in [5] is
motivated as a generalization of the lnverse
Nyquist Array (INA) method of Rosenbrock [4J.
However it is clear that the design method of
[%] differs from the design methods of
Rosenbrock and his colleagues in that:

1) whereus in INA methods one may be required
to provide series multivaridble compen-
sation to achieve open-loop diagonal
dominance, in our method no attempt is
made to modify the natural open-loop
subsystem coupling

2) whereas in INA methods the MIMO design
problem is reduced to a series of SISO
design problems for which classical design
methods can be applied, in our methods the
large scale MIMO problem is reduced to a
series of smaller MIMO problems

%) whereas in INA methods the freguency
dependent Gershgorin sets for the transfer
function matrix sweep out a fuzzy Nyquist
locus for each of the SISO feedback
designs, in our method the block
generalized Gershgorin sets provide no
such interpretation.
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Technteal detulla ol romurk 5 wbove uare
discussed st length in [‘)J However, we can say
loosely that the problem - up until now - has
been that one was not wsure what 1is the

appropriate notion of a generalized Nyquist
locus for the local MIMO design problems which
can capture the effect all of the local MIMO
compensators in the oversll decentralized
design. 'This is the contribution of the current
paper.

The format of the paper is &s follows. In
section 2 we briefly review several notions of
generulized Nyquist criterion for MIMO fuedback
focusing on the version we propose to employ for
which the Nyquist locus becomes s curve on a
complex Grassman menifold. In section 3 we
review several metric functions which can
provide a bunis for a topology of the Crassman
manitold. Focusing on a notion of "near
intersections” between subspaces of a unitary
space we discuss the relationship between
principal sngles between subspaces and .the
singular values of a certain matrix [_13].
Finally in section 4 we provide several results
addressing the main problem of decentralized
feedback stabilization end provide a new notion
of weakly coupled systems for which broad or
fuzzy Nyguist loci are established for the
individual local MIMO feedback designs
comprising the decentralized feedback control
system,

Throughout the paper we will use the
following mnotation. Capital letters will be
metrices and if they ure underscored then they
represent finite dimensional subspaces according
to context.

2.0 A Generalized Nyquist Criterion for MIMO
Systems

The use of Nyquist type arguments in
providing tests for the stability of feedback
systems has been implicit in the development of
frequency domain methods for MIMO systems over
the pust decade. In the early 1970's kosenbrock
[4J applied the principle of the argument to the
rational function det[I + FG(s)] associated with
the feedback equations

y(s) = G(s) u(s)

ulu) = Fy(s) + r(s) (2.1)
where y(s) is p-vector of outputs and u(s) is
m-vector of inputs. More recently Postlethwaite
und hackurlune L‘)_l und Degocr and Wang [10 have
developed explicitly a generalized Nyquist
criterion for the special case of F=fIP where

pm. Using this special structure Postethwaite
and hucFarlane 9] are able to develop bounds
for & notion of gain and phase margin for MIMO
feedback. In these cases the genersalized
lyquist locus is taken as the p eigenloci of the

return dillerence moteix 1 v Fu(s) eveluated
along the imaginary axis in the complex plane.
Doyle and Stetn [11] point out that since the
eigenvalues of the return ditference may be very
sensitive to general perturbstions in the matrix
G(jw) one should look at the frequency dependent
singular values of the return difference in
assessing robustness.

A geometric viewpoint is taken in Brockett
and Byrnes [7] in describing a generalized
Nyquist criterion. Here for the first time the
general case of F wmxp with pfm is treated,
alihough somewhat abotractly. Significuntly,
their approach avoids formulation of the return
difference matrix and as a result sallows the
separate characterization of an abstract
critical point (resulting from F) and a Nyguist
locus (resulting from G{(jw)). This formuistion
preserves most nearly the practical aspects of
Nyquist criterion exploited in SISO system
design [4}

The setup is as follows. The feedback
equations 2.1 are written in matrix form as

6(s) -I (s8) 0
I (2.1")

n F y(s) o /.

where it is clear that a complex scalar s is a
closed loop pole if and only if the ker[G(s),
-1 intersects ker lm,F] in some nontriviel

way. In the case that p<m we can construct an
abetract Nyquist locus FG for the pxm transfer

function matrix G(s) by thinking of I; @ the

image of the imaginary uxis under the map G(s) =
ker[G(s), -Ip]. For each s=ju the object G(s) =

ker[G(s), —lp] is & p-dimensional subspace of a

ptm dimensional complex space. Thus l‘G

thought of as a “curve” in the complex
Grassmanian l‘chrasa(p,m*p) of p-dimensional

planes in m+p space. The gquestion of whether
c(s) = xer[c(s), -Ip] intersects F = ker[Im, ¥l

can be ascertained by utilizing the dual
structure of the Grassmanian in the following
woy. The Schubert hypersuri‘u(inti sssociated with
en m-dimensional subspace of C P is defined as

can be

o(F) = {M ¢ Gruss(p, m+p): dim{MpF) > o},

a hypersurface in Grass(p, m+p) representing the
point FeGrass(m, m*+p), the dual of Grass(p,
m*p). Then ¥ intersects G(s) if G(s) intersects
o(F) in Grass(p,m*p). -

Using this dual structure (cf. [7] & [8]
for details) the following theorem is provided.
Pheorem 2.1: (Generalized Nyquist Theorem):

Suppose G(s) is &a proper rational pxm



trunster tunctlion metrix with no poles on lics-0O.
Suppose the wubstract Nyquist locus PP does not
tnterseet the Schubert hypersurfuce U(E) defined
by the feedback matrix F. Let p  be the number

of open loop poles of G(s) in the closed right
half plane (CKHP) and b, be the number of closed

loop poles in CKkHP. Then
P, T P, te

where p is the number of encirclements of the
abstract Nyquist locus T, about the Schubert

G
hypersurfuce o({) tuke¢n in « positive direction.
Proof: {(ef. [7])

Clearly theorem 2.1 does not admit any
resdily obvious graphical representation that
would permit the determination of the winding
number p (except in triviel cases). However 'the
theorem does permit us to ascertain the
stubility of & MIMO feedback system involving a
plant Gi(u) with feedbuck F, by testing for
homotopical equivalence with some other feedback
system Gz(s) with F, (of appropriate dimensions)

which is known to be stable. To show such
equivalence we will need & measure of how close
a point G(s) ¢ Grass(p, m*p) is to some Schubert
hypersurface o(F) Grass(p, m+p).

3.0 ‘Topology of “Neur" Intersecting Subspaces:
Equivslence of some well known metrics on
the Gragssmun Spuce

3.1 Plucker Metric

As discussed above the Grassmen space,
Grass(p,n), is the space of all p dimensional
subspaces of C. Clearly for any Necruss(p,n)
we can express p basis vectors for N in terms of

some coordinute systems by writing an nxp metrix
suy Bi' ln terms of wsome other coordinate

system we can write a new matrix B2. In this
case there exists & nonsingular pxp matrix A

such that B1 = Bz A and conversely. Thus

E*imuge(Bi)ﬂimage(Bz).

Following byrnes, et al [8] we state

e

Definition %.1: The Plucker coordinates of. &
pxn matrix B is the (s) dimensional vector of

determinants of all pxp submutrices of L.

It is easy to show that for any B1 and ﬁz
as  wsbove thelr respective Plucker coordinates
will differ by a scaler multiple of each other;

their Plucker coordinates are aligned.
notion of distance on

t.e.,
One wuy to provide e

Definition 3.2:

Graps(p,u) s then to think of any iwo subspuceu
of dimcension p say g,ﬂcuruas(p,n) in terms of

their Plucker coordinates (say Ve € C(g)).
Then the function

*
dH) = (0= v )y Tyt Ty b, (51)
is a metric and obasys the property
-1 L a(,m) <t
3.2 Gap-Metric

Another sort of metric can be described by
thinking of points in Grass(p,n) in terms of the

p-dimensional subspaces of ¢® that they
represent. Here we take an abstract
"basis-free" viewpoint in describing the

subspaces.

Let N, ggc“ be subspaces. Let dim M = p
and dim N = m. The following function called
the gup (BrAupurture) between M und N is defined
in Kato [11]. - -

The gap between M and N is

6(M,N) =
sup  infllx-yll, sup  inf|ly-x||
max |jx|f=1 yeN {lyl]=1 xeM .
xeM yeN
(3.2)

The gap function obeys the following properties
which follow immediately from the definition.

(P1) o(M,N) = O if and only if M = N
(p2) 6(M,N) = $(n,n)
(P3) 0 < 8(M,N) X7

Furthermore the gap function obeys the following
property which will be significant for us:

(P4) 6(M,N) <1 if and only if
dim(M) = dim(N)

(cf. {1, pg. 200}). 1In general the gap 6(},N)
is not a metric. However modifying the
definition slightly by taking infimums over the
appropriate unit ball in each subspace the

resulting modified gep 6(ﬂ,ﬁ) obeys the triangle
inequality and thus becomes a metric.

Property (P4) clearly indicates that using
this modified "gap-metric” one can actually form
a basis for a topology of the Grassman space via
nelighborhoods of the form

BC(M) = {N € Grass(p,n): &(M,N) < : <t}

543 Orthogonal Projections in Unitary Space
and the Gap Metric

In a unitary space E" we can employ the



notion of un orthogonal projector to represent u
subspuce N & En; ¢opr., tuke Hn » Cn and  the

natural inner product <x,y> = ily. If PM(resp.

PN) is an orthogonul projector whose runge is

the subspace ﬁs;En (resp. }j_qEn) then using the
nontural Euclidean norm we can otate  the

following
Theorem 5.5:

S(0,N) = by = kL, (5.5)

Proof: (cf. Kato [11]).

Property (P4) of the gap is then related
to the following fact.

v

Theorem 3.4:

Any two orthogomnal projectors PM' PN which

sativfy IIPM - P < 1 are uniterily

Wl
equivalent. That is there exists
transformation U such that UPMU* = PN.
unitary if U*U = I).

a unitary
(U is

Proof: (cf. Kato [11]).

Unitary transformations have an intuitive
geometric appeal ©because they represent
orthogonal rotations of the given vector space
coordinate system. Thus we see that with the
structure of a unitary spuce the gap-metric
(here the gup function 6(*,*) becomes naturally
a metric) takes on a particularly natural
geometric appeal. Indeed, in finite dimensional
unitary spaces, for which we have interest, the
transformation U of theorem 3.4 can be
represented by an easily computable matrix. In
Kato [11] these results (und others) are used to
study perturbations of linear operations on
infinite dimensional spaces. In Stewart [2]
gimilar idess are opplied to certain numerical
problems in the computation of dinvariant
subspuces for mutrix (finite dimensional)
operutors. As we discuss  in the wsubsequent
sections our concern is slightly different but
will follow along the same line of reasoning.

3.4 Intersection Between Subspaces and the
Dual Structure of the Grussman Space

From the statement of the generalized
Nyquist criterion above it is clear that we will
b interested in ocharnctorizing the “nenr”
intersection between certain pairs of subspuces.
On the Grassmanian manifold this is character-
ized by an intersection between un element
NeGrass(p,n) and a Schubert hypersurface o(N)
Grass(p,n) associated with the subspace N e
Graso(n-p,n). -

Towuards this end we provide the following:
betinition 3.4:

Let yg;c“ be a p-dimensional subspace und Ng
C" an m-dimensional subspace. Then the minimun
rap between Moand N oin c" in
Y(_l‘_";H)'
atn § 306 Juf TPevihoogep

| =t Hy H=t

Obviously, the winimum gop
properties:

Hly=x 11},
(5.3)

sativticys the

(P1) 0 < v(M,N) < 6(n,N)
(P2) y(M,N) = O if and only if dim(MAN) > O.

Baged on (P2) it is clear that for the
abstract Nyquist criterion described in section
2.0 that the min-gap cen provide a measure of
distance between the abstract Nyquist contour FG
and the sbstract critical point o(F) as

min
8 on

p Y(6(e),F) (3.5)

where G(s) ¢ Grass(m,n) and F ¢ Grass(p,n).
This can be considered a geometric construction
of a “"stability margin" for MIMO feedback.

Following the line of reasoning of section
3.3 we mgke the following claim.

If PM

projectors in ¢ with mege () = M, image (P.)
M - N
= N then

and PN are both orthogonal

-1~ ..
v(M,N) = H(PM- PN) . (3.6)

3.5 Canonical Angles Between Subspaces

There is a natural notion of angles
between pairs of subspaces in s unitary space.
In finite dimensional spaces these angles can be
computed from eingular values of a particular
matrix. If we let ¥,N be a pair of subspaces of

¢" with dim M=p dim N=m. Aesume m>p. Then we

say the smallest angles between M end N (cf.
[13]) 01(g,§) = 01 ¢ |0,n/2] is given by

max max u*v
cos 01 = ueM veN . (3.7
uTl,=t LTl

¥ollowing Bjorck & Golub [13] we define
recursively the principal angles ek k=t,...,p &8
follows

Definition 3.6:

The principal angles. 8 [0 w/2] between N



and Loore piven recarsively toe k1,0, 000, p by

mux max
SO TR VA uch vieN u v
‘ ‘ k Tk

[}u[j =1 flv,=
2 2 (5.8)
subject to the constraints

* *
uju O and vV 0 for j=1,...,k-1. (3.9)

We cull the vectors (ul,...,up) and (v1,...vp)

the principal vectors for the pair of subspaces.

In this section we vreview how the
principul angles cdn be computed for a puir of
subspuces. The relation between certain
principal angles and the gep will be clarified
using orthogonal projectors. The result will be
a computational procedure for determining the
gup 6(.,.) and the min-gap ¥(.,.) between a pair
of subspaces kM, N. Moreover using the principal
vectors we can compute & basis for the
intersection M N N. For the problem of
multivariable feedback such a basis can be used
to describe how certain modal behavior of the
system 1is reflected from an input-output view
point. In section 4.0 we provide (based on
these ideas) & new notion of weakly interacting
subsystems with respect to stability using
decentralized feedback. '

The main computational result which we
exploit requires that we have a unitary basis
for each of the subspaces d and N. Since this
can be obtained conceptually using a
Gram-Schmidt procedure (and in practice using
Householder reflections) we assume that we have

e pair of matrices Q. ¢ C"*P with QﬁQN = Im and

M
* =
Gy = 1

Theorem 3.7:
Given QM and QN such that image (QM) =M

and image (QN) = N each a subspace of Cn.

Compute the singular vulue decomposition (SVD)
of

* Y oy (3.10)

QN QN ul N 3.

* * * (3.11)
where Yh YH = YM YM = YN YN Ip 3.
and C = cosb = diag(o1,...,op)

o = diug(OI,...,Op)
end o, > ... 2> 0. are the

Then 6, < ... < &
1 - 1 - - p

principul ungles between Jend N the columns of
and U = QY v QNYN are the principal

%]
vectors. bk
Proof: (ct. [13]).

Coroltlury J.0:
EASEC S LN A

Let PM

Then compute the SVD of

*
= QMQM be un orthogonnl projector

on M.

*
(1 - PM)QN =W, 5 Y (5.12)

where S = sine. Here WM gives the principal

vectors in the complement M = imege(QM)
associated with the pair of subspaces M, N.

Theorem 3.9:

As sbove let PM and PN be orthogonal

projectors on M and N respectively. Then the
nongzero eigenvalues of PM—PN are * gin 6 for
i=1,400,p. 1

Finally we can state as s corollery to
theorem 3.9

Corollary 3.10:
With the sbove notation

6(_!1_1!) = I!PM - PN”Z = gin ep (3-13)

1

v(,N) = ||, - PN)'1||; = sin 0, (3.14)

Proof: OSee Theorem 3.2 und corollary 3.5.

4.0 Stability of Decentralized Feedback

The case of decentralized feedback can be
expressed in terms of the feedback equations
(2.1) as the case for which F hus some known
eparsity associated with the allowed information
pattern for feedback. Fror exemple we consider
the usual case where

F = block diag{F,,...,F,] (4.1)
with respect to some partitioning of F. The
partition of F is induced by a partitioning of
the space of inputs and outputs. Conformally a
partition of G(s) is obtained. Clearly if the
resulting G(s) is also block diagonal then the
decentralized control problem is completely
decoupled and we can proceed to design the Fi

for i=1,...k 1local feedback compensators
pepurately without further consideration for
interactions.

Let GD(s) be the pxm rational transfer
function matrix formed from G(s) as

lG(a)]li

0, for ifj

CROTNEE (4.2)

for i,j = 1,...,k where [c(s)]ij is the 1ixj
block submatrix (of dimension p; x mi) of the



purtitioned form of Glu). We nexl show thut
G(s) can be considered wewskly coupled with
respect to the partitloning of F if GD(s) and
G(s) ure close in technicesl sense to be mude
specific in the sequel. .

From the point of view of stability it is
natural to comsider G(s) = ker[G(s),-Ip] and
gb(s) = ker[GD(s), -Ip] as "close" if the
orthogonal projectors PGD and PG onto gn(a) and
g(s) respectively satisfy

D
(e - e = e (e), (o)) <elo)
sy ) :
for HKes = 0. How small must €¢(s) be for F'=
block diug{F1...,Fk} to be a stabilizing

compenpator will be established by the main

reoult which follows.

Let D be the usual closed contour

constructed of a relatively large portion of the
jw axis and a semicircular segment in the closed

right half-plane (CRHP).
Theorem 4.1 (Main Result):

Let FG be defined as the imsge of the

closed contour D under the map ker[G(e), —Ip].
With respect to the induced partition of G(s)
let ri be defined similarly as

Qi(s) = kerLGii(a), -Ipi]: D o+ T,

As in theorem 2.1 let p be the number of
encirclements of Iy (& curve in Grass(p,m+p))

about the Schubert hypersurface o(F) where ¥ =
ker[lm, F) and F being a block diagonal

(dUCUntrulizcd) feedback compensator. Similurly
let oy be the winding number of Fi (a curve in

Grhﬂﬁ(p&, mi*pi)) associated with O(Ei) where F,
= kerlI ., Fi] for each 1 = 1,...,k. Then if

min

Y, (0), ¥ O e(ele), €(8)) (4.)

i=1,...,k
for all s on D then
k
p= L b (4.5)
i=1

Proof’:
First consider ihe following lemma.

Lumna:
n
lLet _l_11 R 1_12 (=

¢ Grass(p,n), and §3 ¢ Grass(n-p, n). If

subspuces of dimension p,

Yo By

v ) > 8Ny, ) (4.6)

=3

Lhen

N, N Ny s ol

Proot of Lemmu:

From (3.5) 1(21' N,) gives a measure of
the distance {in the metric 6(¢,*)) between N, e
Grass(p,n) and the Schubert hypersurface o(y})E

Grass(p,n). The result of the lemma is then
obvious by the é-metric topology of Grass(p,n).
End proof of lemma . . .

Next define the matrix

6, (s) = ¢ ) + cla(e) - "(8)]  (4.7)
for 0 < e < 1. The associated subspaces

Qe(s) = ket[Gc(s), —Ip]
will satisfy

s(a(s), &°(s)) 2 6 (s), G"(s))  (4.8)

for 0 ¢ ¢ < 1 by the §-metric topology of
Grass(p, m*p). Also note that

min
i=1, .00
D D
where G (s) = ker G (s), -Ip]. Thus c¢learly
(4.4) guarantees under the assumptions given

that if QD(s) F = {0} for s on D then G(s) ¥ =
{0} for Bll s om D.

RO RERCAONY

Let
G (s) ~-I
Ale,8) = € P
¥
m
and
G..(s) -1
Ai(s) - ii pi .
Imi Fi
Then let
det A(C,s)
B(e,s) =~ ————

k
1 det Ai(s)
i=1

map D into PB a closed curve in the complex

plane. Now I does not encircle the origin

8

plnce otherwise there must exist some b on U and
0 ¢ € < 1 with 8(e,8) = O. However this means
that Gc(s) intersects ¥ in some nontrivial way

—- & situation which is precluded by (4.4) using
the lemma and (4.8). Finally application of
the principle of the argument to B(e¢,s) gives
the result.

End proof of theorem . . .



Theorem 4.1 provides an appropriate
gencrulization ot the fuzuny Nyquist loct
employed by Rosenbrock in Inverse Nyquist Array
Aupoctated with the k  wseparate

devipn.
loct by Lruus(pi, mi+p;)

gencrulized Nyquist
where 91(3) :Doe Ty attach for each point on Ty

e é-neighborhood of radius 6(G(s), QD(B))-
These é-neighborhoods then sweep out for all s
on D broud sbstract Nyquist loci about the ri
for each i = 1,...,k.

Theorem 4.1 is merely one of several
theorems along these lines that can be deduced.

The particular notion of GD(s) (the block
diagonal portion of G(s)) representing the case
of complete decoupling is of course not
nescessary for decoupling to be evident.
Indeed, if G(s) is block upper triangular then
the system is decoupled with respect to the
partitioning of F.

Let

611(3) G12(s) e e . G, (8)

Gi-1,1(8) Gi_1,2(s) e

ri
G “(8) =
0 0. .. cii(a) 0...0

(4.9)

Gi+1,‘(8) 01'1'2(5) . s e

Gki(s) « e Gkk(s)

where the ™ block row of G(s) retains its

disgonal block -- all others being set to zero.
Associated with this define

6"H(s) = ker[c"X(s), —IP]. (4.10)
as in theorem 4.1. If

s(a(s), 6"H(s)) (4.11)

i r
With G

v(&,(s), k) >

Theorem 4.2:

for each i = 1,...,k and for all s on D then

k
P 151 oy -
Proof: Follows along lines of theorem 4.1.
Cleurly this gives distinct fuzzy
generalized Nyquist loci for each of the

subsystem MIMO feedbacks.

4.2 Compututional Considerations for the Weak
Coupling lMeasure

If we assume that frequency response data
G(jw) is wavailable on a significant portion of
the imupinary axis then the stability of a
decentralized control system can be determined
using cither theorem 4.1 or theorem 4.2 if the

incquatitice (cither
Indeed, in this

nppropriate wonk  coupling
(4.4) or (4.11)) ure vatisried.
case if the individual subsysteus
”1(“) Gii(s) L 1+ Fiuii(s)J !

are stable for each i = 1,...,k then the ovcrall
stability of the decentralized control system
follows. Thus computational considerations
focus on evaluation of either (4.4) or (4.11).
Now computation of the quatities 8(.,.) and
v(.,.) can be done in a numerically stable
manner following the procedure suggested in
section 3.

For example to compute the quantity

8(G(s), gD(a)) for some s on D we perform the
following simple procedure:

step 1: Obtain a unitary basis for G(s). This is
done by obtaining a QR factorization as

i )|

. R
o) L% %o

the columns of Q. are an orthonormal basis for
G(s). ¢

Remark: The QR factorization outlined here can
be performed wusing a numerically stable
algorithm involving the use of Householder
reflections to compute the transformations Qi’

This has been implemented efficiently in LINPACK
routine CQRDC [14].
to 1ind a basis for QD(S)

step 2: Repeat step !

= ker[GD(a), —Ip] as range(QGD).

step 3: Following corollary 3%.8 compute the
meximum singular value of

*
[ 1 - %8¢ ) oy
Remark: The product of unitary matrices can be
obtained in a numericslly stable way. Then
application of a standard algorithm can provide
the required singular value. The routine CSVDC
is available in LINPACK for computing these
quantities [14].

5.0 Conclusions

In this paper we have provided a basic
method for testing the weak coupling hypothesis
for large scale systems in terms of a frequency
dependent gap-metric. Other rescurchers have
employed weak coupling notions for the stabilaty
analysis of decentralized control systems,
[1]- 3] but our methods concentrate on providing
frequency dependent shaping requirementa for
linear, time-invariant systems.



the connection between the pgup-metric and

the wminimum frequency dependent singular volue
ol the wmalrix relurn diftfercnce o nol yet
cleur, however the computational procedures

suggested in section 3 and the connection
between the gesp-metric and the principal angles
between subspaces allows more information about
robustness to be obtained in this procedure. In
particular "sensitive directions” in the space
of transfer function matrices with respect to
stability can be expressed in terms of the
principal vectors for certain principal angles.
Computational procedures and applications of
these ideas will be discussed in some forth
coming work.

Of significance to the current problem is
that one cun extend the notion of acnsitive
directions in the analysis of robustness of MINO
feedback to the case of F = block
diag{F1,...,Fk ; i.e., decentralized control.

Depending on the notion of weak coupling
employed we can as in theorem 4.2 investigate
robustness with respect to variations of the

local controllers F1 for 1 = 1,...k. We feel

this aspect will be most significant in a
computer-aided design environment for control of
large scale systems.

Clearly the implementation of these ideus
require intensive computer computations.
In this regard the use of unitary bases
representing the subspaces 1is of course
significant since the indicated computations can
be done without significant loss of precission.
Of course the computation indicated in (4.4) or
(4.11) for determining weak coupling may be
indeed costly by comparison with for instance
the BLD methods employed in [5] however we
believe the wdditional information available
from principal vector analysis for design.
Current research efforts along the 1lines ‘of
providing connections with the gap-metric and
other approximate methods for determining weak
coupling (such as BDD methods) will be reported
elsewhere. .

will
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