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ABSTRACT 

In this  paper  we  discuss  the  ansatz:  nonlinear 
observer = limit  of  nonlinear  filter.  The  results  of 
Vent-tsel'  and  Freidlin on large  deviations  are  use- 
ful in interpreting  observer  trajectories  as 
'most-likely'  paths. 

SUMMARY 

We consider  the  problem  of  constructing  dynamic 
state  observers  for  certain  classes  of  dynamical 
systems,  including  nonlinear  ones.  To  illustrate  the 
basic  ideas  and  the  requisite  technical  steps  let us 
begin  with a different  solution  to  the  well  known 
linear  Gaussian case. 

In  the  linear  case  we  are  given  the  dynamical 
system 

i(t) = Ax(t) + Bu(t) 

x(0) = x. 

where x(t)URn,  u(t)URm and y(t)€Ep. We  wish to 
construct  a  new  linear  dynamical  system  called  a  state 
observer 

I(t) = Fz(t) + Gu(t) + Hy(t) 

;(t) = Kz(t) + Lu(t) + My(t) 

z ( 0 )  = zo 

such  that  the  error x(t) - x(t) decays  exponentially 
fast  to  zero  at  a rate controlled  by  the  designer. 
The problem  of  course  is  that  the  true  initial  con- 
dition x. is  not  known.  Therefore  the  exponential 

decay  should  hold  for  every  choice  of xo, z0. 

This  is  a  well  known  problem  and  well  known  solutions 
exist [ I ]  [ 2 ] .  

a  filtering  problem 
We propose  a new one.  First  we  associate  with (1) 

dxEB6(t) = Ax"*(t)dt + Bu(t)dt + aNdw(t) 

( 3 )  
dSEs6(t) = C  xEY6(t) + &Mv(t) 

where w(t),  v(t) are  standard  n-dimensional  and 
p-dimensional  Brownian  motions.  The  initial 
values  for ( 3 )  are: ~"~(0) is Gaussian  independent  of 
w(*),  v(') with 

E{xEB6(0)} = z : ' ~  ( 4 )  

E{(xC"(O) - 2"y6)(x"'6(o)-z'y~)T~ 0 = P d  E 8  

The  reasons  for  associating  the  particular  stochastic 
system ( 3 )  to  (1) will  become  apparent  only  after  the 
construction  of  the  observer.  The  idea is to  get  an 
estimate  x (t) for xBa6(t), using ( 3 1 ,  which is 
computed  recursively  and  then  obtain  an  observer  by 
taking  the  limit  as € , b o +  in a  certain way. Thus 
we  can  construct  observers  as  asymptotic  limits  of 
certain  associated  filtering  problems.  Since ( 3 )  
is  a  linear  problem  the  minimum  variance (and maximum 
likelihood)  estimate  of x(t) is iven by the 
corresponding  Kalman  filter [ 31 841  : 

da'"((t) = LES6(t)dt + Bu(t)dt 

A €  ,6 

and 

We have  emphasized  the  dependence  of  certain  matrix 
valued  functions on ~ , 6  by explicit  notation. 

The  plan is to  compute  the  asymptotic  limit  as 
~ , 6 + 0 +  of (6) (8) and  show  that  under  appropriate 
conditions  and  interpretations an observer  results. 

The  dynamical  equation  for  the  Kalman  filter  error 
equation is 

eEs6(t) - x(t) - 2's6(t) 

deEs6(t) = Ae"'(t)dt - KEY6(t)CeEy6dt 
+ dT Ndw(t) - & KEY6(t)Rdv(t). (9) 

If we choose  the  matrices  N  and R so that 

[ A , N ]  is stabilizable 

and 

[A,(RRT)-1'2C] is  detectable 

we know that  for  all E ,670, PE' 6(t) will  converge  as 
t+- to  the  unique  positive  definite  solution of 
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(10) 

has  all  eigenvalues  in  the  open  left  half  plane.  These 
well known facts  suggest  the  following  construction. 
Let 

(11) 

Then QE(') satisfies 

= AQE(t) + QE(t)AT dt 

- QE(t)CT(RRT)-lCQE(t) + NNT 

Let us choose 

PE'E(o) = Po 

an (independent  of E )  positive  semidefinite  matrix. 
Then it  follows  that  for  every E 7 0  

lim QE(t) = Q 
t'm 

- 

where 7 is the  unique  positive  definite  solution  of 
A 7 + T A* - 7 c~(RR~)-' cz + N N ~  = o (15a) 

A - Q  C (RRT)-' C is asymptotically  stable  (15b) - T  

It is important to  note  that is independent  of E .  
Using  Q we define  as  a  candidate  observer,  the  system 

x = k(t) + Bu(t) + TC (RR ) (y(t)-Cz(t)) dz T  T  -1 

(16) 
z ( 0 )  = zo.  

Then the  error  equation  for  the  observer (16) is 

eo = x(t) - z(t) 

The  underlying  theory  that  suggests  this  construc- 
tion, is the  large  deviation  theory of  Vent-sel'  and 
Freidlin [ 51. Briefly  one  compares  the  observer  error 
equation (17) with  the  Kalman  filter  error  equation 
(9) when E = & .  The  result  is  that  as ~ = 6 + 0  the  sup- 
port  of  the  measure  of  the  process  eE " ( * )  , converges 
to  the  deterministic  path  defined  by (17). We can now 
explain  the  choice of observations in ( 3 ) .  Basically 

y(t) and  not  by  the  differentiated output dy(t). 
it allows  the  observer  (16)  to  be driven by the  output 

Details of the  proofs  can  be  found in [ 61. 

+ 

We  note  that  the  speed  of  convergence  of  the 
observer  error  equation  is  controlled by-the design 
matrices  R,N  via (15a) which  determines Q. The  study 
of  this  dependence  is  an  interesting  algebraic 
problem.  One  can  associate  to  (1)  more  sophisticated 
parametric  filters  like (3), in the  sense  that  in 
general  the  noise  amplification  matrices  could  be 
chosen  as  N(bl,  61,...,6k)  and R(E~, ..., E ~ ) ;  i.e. a 
multiparameter  asymptotic  limit  can  be  considered. 
This  latter  generalization  will  permit  better  control 
of  the  spectral  properties of  the  closed  loop "A" 
matrix in the  observer (16). Further  note  that  the 
only  assumption  needed on the  system  parameters  was 
that  [A,C]  is  detectable  (since  then  ;A,(RRT) 1'2C] is 
also  detectable),  which is the  same  as  for 
Luenberger's  construction [ 11. 

in designing  observers  for  nonlinear  system.  The 
point  of  view  explained  above  for  linear  systems 
extends to certain  classes  of  nonlinear  systems  as 
well.  A  gain  the  work  of  Vent-tsel'  and  Freidlin  for 
non-Gaussian  processes [ 71 is  fundamental.  Large 
deviation  properties  for  nonlinear  filtering  problems 
have  been  studied  by  Hijab i n  [ 8 ] .  In cases  where 
finite  dimensional  filters  can  be  constructed  for  the 
associated  nonlinear  filtering  problems,  explicit 
finite  dimensional  nonlinear  observers  result. 
However, in the  general  case  the  nonlinear  observer 
is infinite  dimensional.  The  characterization  of  the 
observer  path i n  the  general  case  involves  the 
limiting p.d.e. resulting  from  the  Zakai  equation  for 
the  parameterized  nonlinear  filtering  problem. 
Explicit  results  have  been  obtained in the  case  of 
Benes  and  for  linear  analytic  systems.  We  refer 
again  for  details  to [ 61. 

Our main  goal  is  to  develop  constructive  methods 
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