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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Recently the problem of filtering a diffusion process x(t) from non-
linear observations y(t) in additive Gaussian noise has been studied by
analyzing an unnormalized version of the conditional distribution of
x(t) given the past of y(.). If this conditional distribution is abso-
lutely continuous with respect to Lebesgue measure, then;it has a
density which satisfies a linear stochastic partial differewtial equa-
tion known as the Duncan-Mortensen-Zakai (DMZ)>equation [M}.  Background
info;;;}ion on this equétion aﬁd other aspects of the nonlinear filter-
ing problem may be found in [2]. 1In the present paper we focus on
existence-uniqueness results for the DMZ equation and on tail estimates
of the resulting solutions. Our motivation for these problems stems
primarily from the following areas: (a) numerical algorithms for the
solution of DMZ equation and their subsequent implementation By special
purpose array processors; (b) numerical evaluation of the Kallianpur-
Striebel path integral representation of the solution; (¢) accuracy and

convergence analysis in asymptotic expansions of the solution.

In cases where the process x(t) erlQes in a bounded domain in'mn, or
when the state space is unbounded but the coefficients of the DMZ equa-
tion are bounded, a satisfactory existence-uniqueness theory is
available [3]-[5)]. More recently, existence-uniqueness of solutions
has been established for filtering problems having "strongly" unbounded
coefficients. In [6] polynomial observations are studied via a
related optimal control problem. "In [7] classical results for funda-
mental solutions of parabolic equations with unbounded coefficients

are applied to the "robust" version of the DMZ equation {11, [2}, for
scalar diffusions. In [8], [9], the method of [7] is extended to
multidimensional problems. Furthermore in [71-19] tight estimates of
the tail behavior of solutions are obtained. 1In the present paper we

review and summarize the method and main results of [7]-[9].

To set the problem, consider the pair of Ito stochastic differential

equations

dx(t)

1
k]

£(x,t)dt + g(x,t)dw(t), x(0) )
T (1

dy(t) 0

h(x,t)dt + dv(t) » y(0)

where x(t), w(t)ﬂRn, y(t), ﬁ(t)emm, w(-) and Q(-) are mutually independ-
ent Wiener?processes independent of Xg» and Xq has a density
po(.)ELlGRn)nCOGRn). The coefficients f,g,h are assumed to satisfy

fieHcl’O(Q), hisHCZ’l(&),'Where o =iRFx(O,TT»and HCc*’J denotes the
foc foc foc . ’



space of functions having locally HSlder continuous derivatives of

order i in x and j in t. Furthermore the generator L of the diffusion
process x(*) is assumed to be uniformly elliptic; that is, there exist
continuous functions Gl(x t) i=1,2, and a constant 80>O such that for
all £eR" and (x,t)es, 6 |g| <6, (x, e)]e]|? <z ot (x,0)E, 15558, (x, £)]el?
where (a J)A ;ggT. The fllterlng problem %or (1) is to estlmate
statistics of x(t) given the c-algebra wz = c{y(s)10<s<t} ~.Equivalently
we;can cémpﬁte the conditional distribution of x(t) glven>¢¥.

o

Formally, the conditional density of x(t) given JZ is given by

p(x,t) = U(x,t)/S U(x,t)dx

]Rn

where U(x,t) is a solution of the DMZ equation

* 1 2 :
du = (L - 7[ht YJUdt + <h,dy(t)>U, (x,t)ew
. (2)
U(x,0) = pO(X) , XeR"

* .
Here L is the adjoint of L and (2) is writtem using Stratonovich

calculus.

It is well known, particularly in recent studies, that if one introduces

the transformation
V(x,t) = U(x,t) exp (~<h(x,t), y(t)>) (3)

then V satisfies a classical, linear, parabolic partial differential
equation, parametrized by the observation paths y(-), which is called

the "robust" version of the DMZ equation [1l], [2]:

3V u i oy
— (x,t) = ¢ A Y (x,t)V (x,t) + I B (x,t)V_ (x,t) +
ot .. X.X, X,
i,j=1 i%j i=1 i
C(x,t)V(x,t), (X,t)ews . (4)

V(x,0) = Xb(x)v, xeR".

The functions Bi(x,t) are pointwise linear functions of y(t), while
C(x,t) is pointwise a quadratic function of y(t). Since the paths of
y(+) are Holder continuous, (4) is a classical p.d.e. and classical
results on existence-uniqueness of fundamental solutions for linear
parabolic equations due to Besala [10] can be fruitfully applied to the
robust DMZ equation. Direct analysis of the DMZ equation is rather
complicated. However, since the transformation (3) is in?ertible,
positivity preserving, and (2), (4) are linear, existence, uniqueness,

and tail behaviour of solutions of the DMZ equation may be obtained by



analyzing (4) instead.
2. OQUTLINE OF THE METHOD

Our method can be applied to a variety of problems with unbounded
coefficients. We outline briefly here the main steps. We shall refer
to the zeroth order coefficient of a parabolic equation like (4) as the
potential (i.e. C(x,t) in (4)). We use a result of Beséla‘Lip] which
asseéts that if we can find a "weight" of the form @(x,t%ﬁgh‘
ex%(¢£§qt)) such that _the function'6=V®, satisfies a parabolic p.d.e.
where the potential term and the potential term of the adjoint are
nonpositive for (x,t)ed, then there exist a classical fundamental

solution for (4). Furthermore integral growth estimates for the

.fundamental solution are gi?en in [10].

To apply this idea to (4) we must consider stopping time partitions

of the interval [0,T]; there are special cases where stopping times

are not needed. These partitions are defined as follows. Given a
small positive number >0, we define 0 = t0<tl<...<tN = T via

tp = 0 | .

' inf (t:ly(t)—y(tk)l =g}, whenever inf exists

tk+1 = tk<t<T ; o - _ (5)

T, otherwise

N = min {k:tk—T}.

Here ¢ will be fixed by other considerations. Then on each set

Bkémnx(tk,tk_l], O<k<N-1 we introduce the transformations

uFlx,t) = Ulx,t) exp(65(x,t) - <h(x,t), y(£)>). (6)

Then uk satisfies

u% = £kUk, (x,t)eb 0<k<N-1

k,
ﬁO(X)exp(¢0(x,O)) , k=0

k
u (x,t, ) = 7
k k-1

k, k-1 '
u (x,tk)exp(¢ (X’tk) - ¢ (X,tk)),likiN-l
where
n ) n ,
£kuk = 3 atdu 4+ I blku + cu
X.,X, X,
i,j=1 i3 i=1 i
ik e o1, 0 4 T g k
pik g1 4 o2s 2t o+ 21 atd(<n L,y> - 80 ) (8)
. ' . ' X,
j=1 73 j=1 - 73 h|
ck . - I alJ(Ji - <h sy>) -



n i1k n 13 n .
- 2% a t(os - <h ,y>) + 2 ad - % £Y - <n_,y>
.. X, X, X, X.X, . X, t
i,j=1 "1 3j j i,j=1 i7" j i=1 71
k
Ce'ss B |gV¢ - (<h y>) =1 +
-1.T_2 1 2 1 T.12 k
+ (g7 )] - 5in] 2]( £l° + o . | |
Thus uk satisfy linear .parabolic equations of the same type~as (4).' We

then choose ¢ on each sublnterval soas to render the potential term
! . o
ck of 25 as well as the potentlal term of (£ ) nonpositive, and apply

Besala's results.

The guidelines . for this construction are relatively simple to understand.

The actual computations and resulting conditions depend on the case at

hand. First one poses appropriate assumptions on f,g,h so that ck and
. . . k : .
the adjoint potential are dominated by Cougg 28 lxl+w. Then one fixes
. k . . k . '
the parameters in ¢ (in particular ¢t) so that Cogsg 18 <0. To construct

¢k one first constructs the piece of ¢k corresponding to the Fokker-

Planck equation for x(*). This is natural since the diffusion itself
must be well-behaved: no explosions, nice solutions of the Fokker-
Planck equation, etc. Indeed if we set h=0 in (4) we get the Fokker-.
Planck equation. The construction of this first part of ¢ (here we
mean that typically ¢=¢l + ¢2) brings us naturally into contact with
Khas'minskii's test for nonexplosions and generalizationsthereof.

To construct ¢2, after obtaining ¢1, one returns to the full expressions
for Cy and the adjoint potential and appropriately balances growth
conditions on h with those of f,g, so as to make both potentials <0.
For uniqueness we use classical weak maximum principles. The procedure
gives us upper bounds on the tails by means of the uniqueness class
identified. To obtain lower bounds on the tails we choose ¢k such

that the potential ck of £k is positive; i.e. using classical
comparison theorems for linear parabolic‘equations. We refer to the
references cited above [7]-[9] for the details of these constructions.
In the remainder of the paper we summarize the results in particular

cases.

3. THE SCALAR CASE n=1, m=1

In this section we describe our results for the scalar case including
polynomial nonlinearities. Our assumptions on the coefficients in
(1.6) are stated in terms of the original functions f,g,h. To state
these succinctly, we will use the relative order notation:

Definition. Let F,G,:R+*R and




L = lim sup |F(x)/G(x)|e[0,=]
| x| +e |
Then F = 0(G) if L<e and F = o(G) if L = 0.

The coefficients of the diffusion X are assumed to satisfy
(A1) fECl(R), gGCZ(R), fx’gxx are locally Holder continuous;
(A2) g(x)iA>O,VxeR and somel; ’

: a3) —fx(f/gz)(g)dgiM,VxeR and some M; B .
;o 0 .
Vosasy ergh, = oe2/g"), £ = o(£7/g%); and

(A5) the martingale problem for (f,g) is well-posed.

The last condition implies that the stochastic differential equation

for x has a unique weak solution for all t>0. A sufficient condition
for this is the existence of a Lyapunov function for the backwards
Kolmogorov equation associated with the process x[11]. 1If the integral
in (A3) diverges to +x as |x|+w, then it could serve as the Lyapunov
function. If theimartingale problem is not well posed, then the process
x may have "explosions" (escape times which are finite with probability
one). In this case the conditiomnal distribution of x(t) given Jz may

have singular components which are not computed by the DMZ-equation.

The observation function h is assumed to satisfy:
(B1) hECz(R),_hXX is locally Hlder continuous;
. 2 2 _ 2
(B2) either g hxx’ (g hx)X = o(h"), or

2 2 2.2
8 hxx’ (g"h )x = o(g hx)
(B3) either ghx = 0(h) or ghx = o(f/g);
2

(ﬁé}‘ elther (g ) = o(hz) or (gz)XX = O(legz);

(B5) one of the two mutually exclusive cases holds:
(i) either h 0(f/g) or h = O(ghx); or
(ii) ©both f/g o(h) and ghX = o(h); in addition,
2 i .
ghx, gxh = o(h")
(B6) in case (B5) (i),

[

lim  max{|h G|, /X (£/g%) (£)dE} = 4o
le+oo 0

and in case (B5) (ii),:

lim  |ST(h/g) (E)dE] = + =

[ |t

Remarks. (1) the growth conditions are relatively easy to understand

in the case when f,g,h are polynomials, especially fF(x) = foxJ, g(x) =



gy (1+x )5, h(x) = hox”.
(2) The conditions (Al)~(B6) are not necessary; different choices
of the weight functions used in the proofs would lead to different

growth restrictions. In fact, one could consider optimizing the thoice

of the weight functions. ‘Here the weights are chosen as
¢k(x,t) = wk(x> - th , o (9)
where i
* k _ K 2 1 )
X 2 . .
-S7(£f/g")(E)dE in case (B5) (i)
(bl(x) = O
0 in case (B5)(ii) (9a)
h(x) in case (B5) (i)
¢, (x) =

f?(h/g)(i)d& in case (B5)(ii)
0

k " ,}oo
>k k=0
t>0; for their explicit definition see [7].

The parameters a,Bz,{Bi,Y will be functionals of the path vy (t),

Assumptions (A3) and (B6) together with the constraints a>0, 82>O,
82>|8§|, imply that the weight functions wk(x) diverge to + © as |x|+w.
The remaining growth conditions serve to identify the dominant terms
(as lx|+m) in the potential ck(t,x) in (7) and in the potential of the
adjointvof (7). Assumption (B3) permits us to select the functions wk
and the consténts Yk so that these potentials are nonpositive. This

in turn permits the use of a maximum principle.

Under these assumptions we show that the robust equation (4) has a
fundamental solution which may be used to construct a unique solution
to the DMZ-equation within a certain class of functions. To describe

this class, we define the constants

n, = lim sup |g(¢,) |/[n+£%/g%1% (10)
!x‘—roo
v, = lim dinf Ig(¢i)xl/[h2+f2/g2]%, i=1,2

le->oo

The assumptions imply nl,”le[O,l] and UP VZE[O,w) when (B5) (i) holds,
while ny =”0 = Vys M, = 1 = Vo when (B5)(ii) holds. The assumption
that either (B5)(i) or (ii) holds implies (v1 + v2)>0.

R



Theorem 1. Suppose (Al) - (A5), (Bl) - (B6) hold. Let po(x) be

continuous, po(x)lO, and assume that there exist constants Si>0, i=1,2,

such that O<Glnl + Gznz

<l, and

po(x)exp[61¢l(x) + 62|¢2(x)|]iM, VxeR (11)

and some M<w, Then for any constants ei,0<6i<6dj?l,2,}there'exists a
and some . i

unique solution to the DMZ-equation (2) within the class of functions

satisfying £
: i l -~ - ~
1im sup U(x,t) exp[el¢1(x) + 62|¢2(x)|] = 0, Vt>0 ‘(12)
‘ X l >
. . e .k
This solution satlsflest(t,x) = U (t,x), ts(tk’tk+l)
W,y = P OOTE T (e, YU T (e L 2) 2 (13)

- GO

Uo(x,O) = po(X)) k = 1,2,...

where Fk is the fundamental solution of (7).

Theorem 2. Suppose (Al) - (A5), (B1) - (B6) hold, and assume
when case (B5)(i) holds with v

l>0’ v2>0, that -f(x) sgn(x) and hx(x)

sgn(xh(x)) are non-negative for |x| sufficiently large. Let po(x)

satisfy the conditions in Theorem 1, and suppose further that there

exist M0>0,KO

>0 such that
AMO exp[—K0¢(x)]ipo(xLVxeR ) (14)

where

p(x) = ¢1(x) +|¢2(X)| - (15)

Then for aanT<w, there exist positiﬁe constants Ml’ MZ’ Kl’ K2’ which

may dépehd on the path {y(t);OitiT} such that the solution of the DMZ-

equation given by (13) satisfies

M, exp [—Kl¢(x)]:U(x,t)iﬁ2‘exp [—Ké¢(x)] (16)

V(&x,t)eRx[0,T]

To illustrate our results and make contact with other recent work on

nonlinear filtering (e.g., [6],[12]), we consider a class of systems

with polynomial f,h.

So let f,p, be polynomials with f odd and stable, i.e.,

2q-1

£(x) = 2 £.xt, -f, >0 f (17)
i=0 * 2a-1



s .
h(x) = = h.xJ, h #0 :
j=0 7 >

where q,s are ﬁositive integers. Suppose

g (x) =go(1+x2)r/2 18,20 (18)

where r€{0,«). Our conditions for existence and uniquéness and
estimates of the asymptotic behavior of the density dependrbn whether
or not g(x) is globally Lipschitz and on the degree of h(x) relative

to the degree (or stability) of f(x). There are two cases covered'by

Theorems 1-2.
Case 1: r€[0,1}, g>r, s>1, q>1.

The restrictions (Al)-(A5),(B1)-(B6), applied here require g(x) to satisfy
a linear growth constraint r&[0,1], that f be at least a cubic poly-
nomial, q>2, where g(x) is of linear growth, r=1, and that h(x) be non-

constant.

Then from Theorem 2Z2for any Oitlitz’ there exist constants Mi’Ki
depending on the observation path such that .

Ml exp [—Kl[xlp]iU(x,t)iMz exp [—Kzlx]p] . (19)

where

s-r+1 , r<l and r+s>2q-1 ,
p = : (20)

max [s,2(q-r)], otherwise - -

We refer to [7] for details. Although it is not covered in the present
case, the situation r=0, f and its first two derivatives are bounded,
and h is asymptotic to a non-constant polynomial, can be easily treated
by adapting the arguments in fheorems 1-2. In particular, the
inequalities (19) hold with p¥s+1, and this result overlaps [6] [12].

For example, if f=0, g=1, h(x) = h_ x>, h_#0, then

0<K2<|hs|/(s+1), p = s+l. (21)

This was obtained by Sussmann for s=3 in [12].

Case 2: r>1, q>r+%s, s>1, q>2.

Here g(x) is of super linear growth, f(x) is at least a cubic polynomial,
and h(x) ig dominated, as‘indicated, by the dynamics of the state
process. In this case the asymptotic behavior of the conditional

density is the same as that” of the a priori density (of x(t)).



4. THE SCALAR BILINEAR FILTERING PROBLEM
The example presented here illustrates a different grouping of terms and

different growth conditions, necessary for this class of problems. It

is presented here as another application of the method described earlier.

Consider the system

: utdz(t) = f(z(t))dt + z(t)dw(t) '
ﬁa_;(t) = h(z(t))dt + dV(t): : (22)

z(0) = Zyo y(0) = 0, 0<t<T<=»

with z having density P, (z), and z s w,Vv mutually independent as
before. Since z(t) will eventually be trapped in either the positive
or negative half space, we shall arrange that z(t)€[0,=) by taking
fGCl(O,w) satiéfying

f(z) < K(1+z) for some K>0
(c1) | (23)
£(0)>0 |

and by taking P, (z) defined on (0 ») and continuous and integrable
there. We also assume that h€C (0,») with h . hzz locally Hblder

continuous (and so, bounded at Zzero) .

We impdse the following growth conditions on f,h.
(c1'") fz(z) is bounded‘and locally Holder continuous
(€C2) 1lim [£f(2)/z] = >0

2zl
(C3) 1lim |h(z)|/log z = + =

Z >

1l
o

(c4) 1im [h (2)/h2(2)]

Z >

(C5) for some constants Ki’ Mi’ i=1,2

Ml + Kllzhz(z)lilh(z)|iM2 + Kzlzhz(z)|

Note that these conditions are satisfied when f(z) ié affine and h(z)
is a non-constant polynomial; we do not consider the case h(z) constant.
The assumptions that f,h and their derivatives are bounded at the
origin are*made for convenience only. They can be relaxed by intro-
ducing more complex growth restrictions. The other assumptions (C2)-

(C5) are essential (to our-method).



-The DMZ-equation associated with (22) is

dau(z,t) = [3(z°0), - (fU), - Ihuydae + b U ay(e)
(24)

U(z,0) = p_(2) , (5, 0)€[0,=) x [0,T]

Because the generator for the diffusion x in (22) is not uniformly

elliptic our theorems are not directly applicable. TIf we make the

logarithmic change of coordinates x=logz and let W(X;t) = Ufﬁf,t), x€R,
5 ) ; :

( 4)ﬁ£ﬁ£0mes

e

dW(x,t) = {5 W __ + [3/2 - e "f(e™)]u_

+I1-f_(F) - %hz(ex)]w}dt + h(eX)wdy (t) (25)
W(x,0) = p_(e™)

The methods of Besala [10] as used in the proofs of Theorems 1 and 2
can be directly applied to the robust version of this equation. The
proofs of Theorems 1-2 go through when the weight functions wk(x) are

defined by (9) with x=log 2z and

2
¢,(2) = -rP£(8)/e%de
, 1 . (26)
¢,(z) = h(z)
Similarly as before define
L
vy = ny = lim]f/z|/[h2 + fz/gz]2
z+ 0 (27)
= 1 by (C2)
2. i
v, = lim inf zlhz(z)l/[h2 + £2/g°17%€(0,=)
z—rjé- oo
(28)
, 2 2, 2.%
n, = lim sup z[hz(z)l/[h + £7/g"17°€ (0,®)
Zr4+ o . )
Then we have obtained [7] the following result.
Theorem 3. Suppose (Cl)-(C5) hold. Let ei>o, 0<61 + n262<1, and
‘suppose po(z) satisfies
' 2
p (z)<M. exp [68,/%(£(E)/E7)dE~8,|h(2)]] (29)
0 1 1, 2 |

for all z€(0,») and some M,>0., Then for any 6i<ei'the DMZ;equation

1
(24) has a unique solution in the class of functions satisfying, for

all t>0

Pld

lin sup U(z,t) exp [~6,/%(£(£)/E%)dE + 8,|h(z)]] = 0 (30)
. "1

~

Moreover, if there exist constants, MZ’ ei, O<Gi<ei; such that for all




2€(0, =)

M, exp [élfi(f(i)/iz)di—ézlh(z)I]ipo(z) (31)

then for all t>0 the solution U(z,t) is asymptotic to

exp [S2(£e)/e2)de-|n(2)]] | | (32)
1 | e

in the sense of (16) in Theorem 2.

[ vl
preeri-anity

H ‘ _;—;;
For %éample, when f(z) = az + b, assumption (C2) implies either b>0 or

i ¥

a>0 and b = 0. Then
¢l(z) = bz_leb-a"log z
and, whenever (29) (30) are satisfied, U(z,t) is asymptotic to

exp [-]h(z)| - b/z] , if b>0
- (33)
z2 exp [—lh(z)l] , if b=0 and a>0 ,

5. THE MULTIVARIABLE CASE

In [8] [9] the previous results have been generalized to multivariable
diffusions. We shall briefly describe one of the cases here and refer
the reader to [8], [9] for other cases and further details. The

assumpﬁions on the functions f,g,h are of two types basically: relative

order relations implying the potentials of £k and its adjoint are

. . . | . s : g
dominated by certain terms in Cogg 25 le+w, and inequalities providing
for control of these dominant terms. These assumptions may be stated

succintly using the following definitions.

Definition. Let f,g,ECGRnx[O,T]) with g>0. Then f“= ob(g) if for

every €>0 there exists a constant K(e) such that for all (x,t)ew

| £(x,t)|ceg(x,t) + K(e)

P . . 2 n . ,
Definition. A nonnegative function reHl CC]R ) is said to be a scale

o)
function if
1

(i) there exist positive constantslel,R such that lVr(x)lzie
for all |x|>R
(ii) lim min r(x) = +
R+w !xl:R
We shall use on occas ion the notation

n . .

A (x,t)A2 L atd(x,t)r (x)r (x) = lg(x,t)Vr(x)|2>0.

r == T X, X . —
i,j=1 i j :

Definition’ Let ¢ denote the collection of pairs of functions (F(z,t),

r(x)) satisfying



2

2,1
FGHClOCGRx[O,T]), reHlO

@®"™) and
c

#(1) F,(2,8) = o, (F (z,t))

r(x) r(x) 9 .
/ F(z,t)dz,/ F_(z,t)dz = o (F A )
t b r
0 0
n 1 n i4- )
#(ii) F I atdr , F I atd r = o (F°A.)
. . X,X. . . X, X b T .
i,j=1 i%j i, j=1 "1 h e

o

.

{ . .
Defigition. Two time-varying vector fields fl(x,t), fz(x,t) are said

to be compatible if there exists a constant R>0 such that for all
IXIZR, te[0,T],
n

T alj(x,t)fl(x,t)fl(x,t)>0.
. . v 1 2 —
i,j=1

If we now let (213) denote the inverse of (alJ) we can state the

assumptions on the coefficients f,g of the diffusion as follows.

Hypothesis F. There exist a scale function r(x), nonnegative functions
F, geHC};iGRx[O,T]) satisfying O<F<F, and constants F >0, F,;>0, R>0
si¢h that (F,r), (E,r)e@, and for all lxliR, te[0,T],
i '
(1) F(r(x),0)<(Fy- £ (x,e)r  (x))/A (x,¢t)
— . X T
i=1 i
O
(ii) E(e(x),t)>(-F - 7 (x,t)r (x))/A_(x,t)
- — . X, r
i=1 i
. ) 62 n Cid
(1ii) A (x,E)Fo(r(x),t)>2F [-F.+(z= 1 a J£fd)(x,0)]
r -1 0 °®6 ..
1 ij=1
n 1 9 -
(iv): div(f), T ' a x.x.(x’t) = ob(F Ar)
i,j=1 i ]

Hypothesis G. There exist constants O<u<v<2 and positive constants

K. such that for all lxliR, te{0,T],

R, K

0’ 1
2-v
[all(x,t)‘f_Kolxlz_u
ij 1-v
Iax?(x,t)IiKolxl
i
la;? .(x’t)‘iKo
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If hypothesis G is not satisfied, it will be assumed that
, r(x) . .
Hypothesi¢ L. lim ;o F(x,t)dx = + = )unlformly in [0,T].
|x|+m 0

One sees easily that F(i) is a generalization of Khas'minskii's test:

for explosions. 1In fact we have the following result [8] [9].



Theorem 4. If either F(i), (iii) and G hold, or F(i) and L hold, then

the martingale problem for the pair (f,g) is well-posed.

Next the observation nonlinearity is assumed to satisfy the following

conditions. Let
+ 7 k L om
h(x,t) = ([1 + h¥(x,t)]17?)
k=1

where 1 = (1,1,...,1) €eR". £

ST : : . _ ‘
Hypothesis H. There exists a scale function s(x), nonnegative functions
= 2 _
H, EEHClgiGRX[O,T]) satisfying O<H<H, and constants R>0, HOiO such that

(H,s), (H,s)e? and for all |x|>R, te[0,T],
(1) H(s(),)<(nGL) | + 5D /A (x,0)

(1) B (s 0,02 (h Gy | 2-m ) /A (e, t)

L. 2 =2
_(111) {ht[ = ob(lhl ) Ihtl = ob(H AS)
n . n . n (i 7
L a*?|n |, = adn |, = a’d<n™, 1> ,
.. X,X, .. X, X, . , X,.X,
i,j=1 i™j i,j=1 "1 73 i,j=1 i)
n cioo4 7 n . .
% ard<n,1> = ° (% a*3|n_ |0, D).
. . X, X, b, . X, X,
i,j=1 "1 i i,j=1 i i
. n i] _ =2 =2
(iv) = la~?|lh_ ||h. | = o, (H°A_ + F°A_)
.. X, X, b s r
i,j=1 i 3
s(x)
(v) |n(x,t)] = ob(f H(z,t)dz)
0

Finally we need the following hypothesis which help control the growth
of the potentials.

Hypothesis I.

_ =2
(i) xi‘h il ob(H As),
o =2, =2
(ii) © fY'ln | = o (H°A_ + F A)
. b s ; T
i=1 i
o i -~ B ij =2 =2
(iii) F I a*dr_ |h_ |, ®H z ads |nh | = o, (H°A_ + F°A)
. X, X X X . X b s r
i,j=1 i | i,j=1 i j
n i ' n ij 2 2
F I a*dr_ |h_ |, B 2 atds |h | = o A+ F7A)
- . X, X -, X, X b — s - r
i,j=1 i h) i,j=1 i h|

To compute lower bounds on the density we shall use

Hypothesis K. (i) Vr and Vs are compatible

(ii) x is compatible with both Vr and Vs.

We can now state the following existence result. For a proof see [9].



Theorem 5. (Existence of fundamental solutions). Suppose hypotheses F,

H, I (ii) and I (iii) hold. Then for each Hlder continuous path
{y(t), OitiT} of the observation process, there exists a classical

fundamental solution of the robust DMZ equation (4).

To describe our results for uniqueness and tail behavior we need the

definition of certain function classes, given below.

Definition. Let feC@®™x[0,t]) and¢=C(3). Then fes (¢) if‘;;Eénstant K

*=t. | £]<K exp (¢) for all (x,t)es, and

feﬂo(¢) if 1lim ‘fl exp(-¢) = 0, uniformly in te[0,T].

X | >
Let
log|x| if u=0
70 (x,t) = , for |x|>R
|x|¥/u, 1f ue(0,2]
any ¢”-time invariant extension for IinR
-1 r(x)
vo(x,t) = [ F(z,t)dz
0
—2 s (x)
v (x,t) = J H(z,t)dz
’ 0
Theorem 6. [9] (Existence and uniqueness of solutions). Suppose F,
G,H,I hold and that po is continuous, nonnegative and integrable. Then
there exist positive constants a;s %o Ei’ i = 1,2 such that
whenever
b (e & (a3 - a ¥ (x,0) - a, B (x,0))
o 0 1 ’ 2 ’
for some constants aos(O,aO), als(gl,al), aze(O,az) ] , the

DMZ equation has a unique solution in

o
0 —0 -1 —2
&O(T:;I;w (x) - a9 (x,t) + (l-e)a,¥ (x,t))
for all e€€(0,1). If instead of hypothesis G, hypothesis L holds the

result remains valid with ay = a. = 0 and [

0 chosen arbitrarily small.

1

Theorem 7. [9] (Lower bounds). Suppose the same hypotheses hold as
in theorem 6, including the growth assumption on P, Suppose in

addition #hat u>0 and hypothesis K holds.

(a) 1f supp(po(x))a(lxliR), where R is the maximum of the radii

R in F,G,H,K, then there €xist constants M,_ai, i=0,1,2,'depending on



.the path of the observation process y(-), such that
2 .
U(x,t)>M exp[-2(l + T a9 (x,t))].
z PL=T o i

(b) If there exist constants Mo,ag>0, i = 0,1,2; such that for
all den

' 0 2 0,1
po(x)iM exp [-Z a.y (x,0)] .
i=0_l o o
then there exist constants M,‘ai, i=0,1,2, with M depending;gq the
observation path such that -5
e~ 2 0 i :
U(x,t)>Mexp[~L aii (x,t)].
i=0 ~

There are several other cases where the method described here has been

successfully applied. We refer to [9] for the details.

We close this section with a class of relatively simple but interesting
examples. Consider the problem of a scalar observation of a two

dimensional Wiener process,

dx (t)

dw(t)

dy (t) = hlx,>x,)dt + dv(t), y(t)er®.

Then with F = F = 0, the natural upper and lower bounds of Theorems

6, 7 are of the form
exp(—A(xi + xg) - Bs(x)).

Examples of pairs of functions (h,s) for which Theorems 5-% hold
. : . _ 2p 2qy% / 2p+2
include the following: h = (x + X, )%, s =¢ (VY1 + X +

1
2q+2 .
‘ Y. h o= axP P - 2 1-p - = (2 2.5
1 + X, Y; h axy +va2, s c (h"p + p) where p = (x1 + XZ) .
Here p,q are positive integers, a,b,c real numbers. Note in particular
‘ .3 3 _ 4 2.4
that the cases h(xl,xz) = %] * X, or h(xl’XZ) = (xl + XZ) are covered.
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