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Abstract

Using techniques from the theory of operators and
the Hardy spaces of analytic functions we extend to
certain classes of linear distributed systems a well
known design technique for lumped parameter systems:
dynamic-pole~relocation.

1. Introduction
— __-ntroduction

In the last decade we have witnessed a resurgence
of interest in frequency domain design methods for lin-
ear multivariable systems. These methods based on prop-
erties of polynomials and polynomial matrices not only
complement the state space methods, but on several occa-
sions have been shown to be superior
This subject has been treated exteunsively and still new
interesting problems are generatedl-3,

During the same period, the theory of linear multi-
variable distributed systems has been developed in par~
allel lines. Representative papers are [4-9) and I
hope the forthcoming monograph [10} will make these
developments more widely known. In thig theory, which
applies to a specific class of distributed systems all
the fundamental ingredients of the finite dimensional
theory have been captured, and there exists to date a
complete theory that provides the analog of the trans-
fer function theory of the lumped case. Unfortunately
these developments have not been applied to design prob-
lems todate, and this may explain the fact that they
are not widely known. I have indicated elsewhere that
because of the uniformity of this theory and the finite
dimensional theory, the setting for approximation in
design is very well set up. It is the purpose of the
present paper to indicate how a well known frequency
domain design technique for linear multivariable lumped
systems extends to this class of linear multivariable
distributed systenms. Furthermore we indicate that other
techniques can be extended using these methods, again
due to the uniformity that exists between the two theo-
ries. Finally by isolating the basic results from the
theory that are seen to be fundamental in design appli~
cations we suggest what new theories need to be devel-
oped and what basic results they should contain, in
order to be useful in design. The reader can find the
fundamental results and the needed mathematical back-
ground in the references quoted. These results will be
assumed known here and we will give only the necessary
notation to carry out our calculations. We note that a
similar effort has been undertaken by Callier and

Desoer16 using different techniques (which result in a
different class of distributed systems) but very much
akin to our spirit.

2. A Simple Design Problem

Let us briefly describe the design method we want
to investigate. We start with the well known lumped

case2-3, and we treat the scalar input-scalar output

case. Consider a gjiven open loop proper transfer func-
tion factored as a ratio of two coprime polynomials:

*A preliminary version of this paper was Presented at
the 4th International Symposium on the Mathematical
Theory of Networks and Systems, Delft, The Netherlands,
July 3-6, 1979, )

+Research partially supported by the Joint Services
Electronics Program under grant NO0014~75-C~0648 while
visiting Harvard University, Spring 1980.

for design purposes.

nO(S)
Tols) = 3, (2.1

where deg d0=n, deg nOSn. The objective is to design

input and output compensator transfer functions H

i’
Ho, proper and stable, connected as in figure 1 below,
so that the closed loop transfer function is
T (5= 208
c dc(s)

where deg dc=n, but dc is otherwise arbitrary.

Illustrating dynamic pole~relocation
design method.

Fig. 1.

This is the well known dynamic pole-relocation de-
sign method and its state space equivalent is a compen-
sator consisting from an observer (where the dynamics
come from) and linear memoryless feedback from the ob-
server output. The transfer function (or frequency do-
main) solution is brief and simple. It can actually be

done with
ki ko
Hi=q_ ,H0=q— (2.2)
i.e. with the same denominator. From the diagram
1
e(s)= ETET[ki(S)“(S)+ko(S)Y(S)] (2.3)
u(s)= e(s) + r(s) (2.4)
n, (s)
y(s)= EETET u(s). (2.5)
From these by elementary calculations we get
n,(s) q(s)
y(s)= (2.6)

OO N O NS EN AT OMOL

A degree counting shows that the transfer function is

proper and if we want it to look like nO/dc we have to
solve the polynomial Diofantive equation (PDE)

q(S)(do(S)—dc(S))=ki(S)d0(S)+k0(s)n0(5) s 2.7)

given do,n0 (coprime and nO/dO proper), do,dc (of degree

n) for ki’kO’q so that q is stable and ki/q, ko/q are

proper. It is well known that this can be done quite
straightforwardly if (as they are assumed) n ,d0 are co-

prime and that the minimum feasible degree of q 1s n-1
(which represents the needed augmentation of the dynam-
ies). Central to these constructions is the polynomial
Bezout identity (PBI) which states that given any two
coprime polynomials no,d0 as above there exist polynom-
ials x,y such that
xno + yd0

=1 (2.8)
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A strengthened version states that if deg ny=m and
deg d0=n, n2m then this can be done satisfying the de-
gree constraints deg x<n, deg y<m, in which case x,y

. 1-3
are unique . The actual construction employs the
Sylvester resultant or Bezout resultant test for co-

. 1-3
primeness . These results are valid verbatum for dis-
crete time systems by replacing s with z.

We want to motivate a little the approach that has
been taken in [4-10] for the class of distributed sys-
tems we want to analyze. It is much easier to work
first in discrete time. We take a completely frequency
domain point of view. Now the transfer function of a
lumped discrete time system is given as a Laurent series

~ -1, -2
T(z)—TO+le +Tzz £ N (2.9)

since we are discussing only proper transfer functioms.
Strictly proper transfer functions have T0=0 in (2.9).

Now the power series (2.9) will converge uniformly for
|zl>p for some p. Since we are given the information
that it represents a rational function we can analyti-
cally continue it inside the disk Dp={zed:, [z]<o} and

represent it there as the ratio of two polynomials

n(z)

iy (2.10)
Now suppose we do not have the information that we have
a rational T, but nevertheless we try to write the ratio
(2.10) by formally using power series (think of them as
infinite degree polynomials). The notion to abstract is
this: we were given a function analytic outside a disk
and we represented it in (2.10) as the ratio of two
functions analytic inside the disk.

T(z) =

Now then we have

T(z) = TO + le
T i
I n.z
i=0 1
- (2.11)
Tod t
i=0 Ci?
Clearly we are not going to make much progress unless
we put some growth constraint on the coefficients ni’di'

L

Where does this constraint come from? (You see in the
finite dimensional case this question does not arise
since you have a finite series only). It is coming

from growth constraints on the input and output spaces
in the definition of the systems. This and continuity
or growth conditions on the input-output map will induce
growth conditions on the coefficients {ni}, {di}. Here

we first take the case that input and output spaces are
22(Z+) and all maps are continuous. This naturally in-

duces that TsKw(D), and similarly for the functions

® i
n(z) =i£0 n,z -
- 5 ‘} eH (D) (2.12)
d(z) =i£0 diz,
Here Hw(D) is the Banach algebra of uniformly bounded
analytic functions on the unit disk D={zs€;[z[<l}13-15.
We will frequently identify Hw(D) with the boundary

value algebra HwCT) as usual, whereT = {zem;lz[=l}. It
seems thus, that other similar theories can be developed
by defining an input function spacel , an output func-
tion spacey and some restriction on the singularities
of T and then analyzing the properties of the Laplace
transforms of the algebra of convoluteurs between and
% that satisfy the singularity constraints. We shall
return to this point later.

So the theory we have aluded t:o['-]'0 treats transfer

functions that belong to the following algebra
H@©)={£eK"©) ;3 n,ded ()

and lim f(z) = lim SEZ;
|z]~1+ |z]»1-%%

(2.13)

Here KwGD) is the algebra of functions which are ana-
lytic and uniformly bounded on the exterior of the unit
disk. A complete list of the notation can be found in
(6]. The condition in (2.13) specifies that f has a
meromorphic pseudocontinuation of bounded type inside D.
Note this is a weakening of (2.11). These are the so
called noncyclic, strictly noncyclic, roomy functions of

the ney theoryA_lO.

singularity constraint we discussed earlier.

This .condition is an example of the
It turns

out that the algebras Hm, Km, H: have a rich structure

which has been developed in full detail by mathemati-

ciansl3—15, and the forthcoming monographlo. The point

we want to make is that the transfer functions in the

algebra H (D) are appropriate genmeralizations of proper

Let us denote K; the subset of K

which consists of functions that vanish at infinity.

rational functions.

= m
Then strictly proper corresponds to feHmGD)ﬂ KOGD).

What other features should the algebra have, useful
for design purposes? First we should be able to pull
zeroes out of these functions. It turns out that this

can be done here very nicely. Indeed every feHw(D) has

a factorization

f =fin . fout (2.14)

where fi is the inner part and has the property that

|f(e19)l=l a.e, while fout is the outer part and has no
zeroes in D. So fin carries all the "zeroes" of f via

its Blaschke product part and via its singular measure

on T 13715 1pig is identical to the "all pass”, "mini-

mum phase' factorization of network theory. Moreover
since the inner part fin is uniquely specified, once the

zeroes are given, it provides a global parametrization
of the zeroces of f.

Next we would like to have a coprimeness condition
and its consequences. Here we have two coprimeness

notionslo. First we can define coprimeness in terms of
no common zeroes which in view of (2.14) means no common
inner divisor. Second we can define strong coprimeness
as implying

inf (J£(2) |+[g(2)[)26>0 .
zeD

(2.15)

Notice that if f,g have a common zero (2.15) is violated.
But (2.15) is stronger because it does not allow for a
common zeroing sequence i.e. Z sequence of znsD converg-

ing to a point inT s.t.

lim f(z ) = 1lim g(z_)=0, (see16 for a similar
n n
|z, |+1- 2, |+1-
n n
notion). It turns out that strong coprimeness is strong-

ly related to the famous Carleson corona theorem17 which

implies that (2.15) holds for f,geH () iff 3 x,yeH (D)
such that

x(z)£(z)+y(z)g(z)=1, zeD . (2.16)
We call this the strong scalar Bezout identity (SSBI)

for H (compare with (2.8)). On the other hand f,g have
no common inner divisors if and only if 3 sequences of
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functions {xi}{yi} in H® such that6’7

lim (x f+y_ g) = 1, (2.17)
oo i i

. 2
where convergence is in L° sense on T or uniformly on

compact subsets of D.
It is worth emphasizing that the state space theory
of transfer functions in H:(D) has been worked out in

full detail and completeness. So there exist state
space isomorphism theorem, explicit realizations, degree
theory, McMillan Smith form, pole-zero theory etc. (see
[4]1-[9] and in particular [10] for details).

Now let us pose the analog of the dynamic pole~re-
location design method in this setting, Referring again
to figure 1 we are given the open loop transfer function

T EH”(D) .

0 'm 0 (z)
dO( y » 2€
NE

where do is inner and no,d

To(z) = a.e , (2.18)

0 strongly coprime. It turns

out that if we have a representation for T0 inside D as

a ratio of two functions in H~ we can always choose the
"denominator" to be inner. This is a convenient normal-

ization of the singularities of TO. Now we have two

o0
distinct cases: 0 in an H fraction where

we can write T

the two functions are either coprime or strongly coprime.
Here we start with the strongly coprime case because its
similarity with the lumped case (and thus polynomials)
is more striking. We then want to choose Ho, Hi in
H:GD) so that the closed loop transfer function
@
TceHmGD)
n,(2)

TC(Z) = dcTz) s sta-e s (2.19)
where dc is in H®(D) and is arbitrary modulo the con-
straint?

d (z)

E;?;y = gc(z), zeqra-e, for some gcsKw(D) (2.20)

That is we assume dc/d0 is the pseudocontinuation in D
of some transfer function in H:GD). We note that we

shall write freely equations like (2.18)(2.19) (2.20) and
we always interpret them in the nontangential limit
sense specified in (2.13). We shall show as in the
polynomial case that thig can be done actually with
H0=ko/q, Hi=ki/q and q such that

d,(2) - o
;E?;T = f(2), zel a-e, for some feK (D) (2.21)
The tricky part is to be careful interpreting the vari-
ous transfer function relationships.

is the- analog of the requirement deg d _=deg d0 which is

[

equivalent to saying that dc/dO is proper in the poly-

Indeed (2.20) means according to the
tablished earlier (see (2.13) and com-

This is a

nomial setting.
correspondence es

ments) that (dc/do)sH:, i.e. it is proper!

good point to emphasize again the intuitive meaning of
HQ
m
dealing with irrational functions we cannot count
"degree" as in the rational case: all systems here are
infinite dimensional.
"degree" differences. For example (2.20) means equal
"degree", while (2.21) means q has "degree" one less
than that of d.. We thus use the generalized notion of
proper embodieg in the definition of H; (i.e. (2.13)) as

and the way it is used in this paper. Since we are

We note that (2.20)

However we can easily count finite

a4 means to generalize finite degree differences
We represent signals by their z-transforms so

u(z)=izouizi. Since {ui}slz(z+) then u(z)EKz(D). Sim-

ilarly for y(z).
e(z)=Hi(z)u(Z)+H0(Z)Y(Z)
u(z)=e(z)+v(z)

y(z)=T0(z)u(Z)

Then from the diagram

(2.22)
(2.23)
(2.24)
In view of the well known (see [13]-[15]) one~to-one

relationship between functions in the Hardy spaces of
the disk D and their nontangential limits, we can re-

write (2.22)-(2.24) with z=eie. In
also use the fact that all transfer

doing so we can
o
functions are in Hm

’

each system,which is
emphasized by Rosen-

to give a fractional description of
akin to the polynomial descriptions

brockl. Thus we shall see that it is advantageous to
describe the open loop system by (instead of (2.24))

dy ™)z (e®) = u(elf) (2.25)
y(ele) - no(ele);(ele)
Here d,, noeH"’ while, Z,u,yeK%. Indeed (2.25) 1is an

appropriate generalization of the well known polynomial
description. In the time domain the first of (2.25) de-
fines the "generalized state" 7 as the solution of a
convolution equation. Note that since do is inner
ze'®) - dy(ei®) u(e™®)

and therefore CEKZ for any uus; i.e.
well posed. We then rewrite all syste
(2.22)-(2.24) in the fractional descri

(2.25) is always
ms appearing in
ption introduced

in (2.25). Thus (2.22)-(2.24) are completely equivalent
to

do(ele)c (eie) = u(e’®)

7(e®) = 0 @) (et?) (2.26)

3Ee(e™) = i (€®)u(el®) 41 (e 1y et
u(ele) - V(ele)_ke(eie)

Solving the fourth of (2.26) for e, substituting for u
and y from the first and second in the third there re-
sults

.

fq dO_ki dy-kyngle = q v (2.27)

We emphasize again that (2.27) is viewed as an equality
of functions onT . Suppose we could solve the follow-
ing factorization problem on T : Given no, dO’ dc as

10 ko such that (2.20)(2.21)

i/q, kO/q have pseudocontinuations in KQGD)

above, find functions q, k

hold and k
and

0tk M

is satisfied a‘e on T . Then in view of (2.28), (2.27)
can be rewritten ag

q(do—dc) =k d (2.28)

q dc L =qv
which since q # 0 implies
4, (e)z(e™) « v(el?)
But (2.29) together with

fractional description of
which we can associate the

(2.29)

the second of (2.26) provide a
the closed loop system, to _
tranfer function (nO/dc)eHm.

Clearly then to solve the d
lem in this setting, is e
ization problem (2.28).
following theorem.

ynamic pole relocation prob-
quivalent to solving the factor-
The solution is provided by the

Theorem 2.1: ﬁwn%,%sfwhsnmﬂymmmeﬁw
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4 inner :nd (nO/do) =T05Hm(0); d, in 2 (D) such that
(dc/do)eHmGD). There exist ki’ ko qeH (D) such that

-]
ki/q, kO/q, do/zqumGD) and

a(dy-d) = kid0+k0n0 . (2.30)

Proof: Strong coprimeness of no,do imply

3 x,yus(D) s.t.
X d0
and therefore
q (do-dc) = Q(do‘dc)xdo +q (do'dc)y n, -
Now let

+yn0=l,

(2.3D

[

P

r =

q(do—dc) X

q(do—dc) v . (2.32)
Then p,reHm(D). To proceed further in a manner identi-
cal to the polynomial case we need a device to reduce
"degree". This is done in the polynomial case via the
Euclidean division algorithm. For the kind of ring H"
is, there does not exist a Euclidean division algorithm.
We can prove though a property which is the appropriate
generalization in our setting. We restate first the
Euclidean division algorithm as follows. Given two
polynomials o,8 with B8/a strictly proper there exist
polynomials k and p such that p/8 is strictly proper and

B +p (2.33.

Employing the notion of proper (transfer) functions im-

a =

plied by the definition of H;(D) and discussed earlier,
it can be shown that the following "alternative" to the

18

Euclidean division algorithm holds for Hm (see for

details). Given two functions ueHm(D), BeHNGD) and
inner there exist k, peHmOD) such that p/BeH:(D)nK;(D)
(i.e. it is strictly proper) and
KB + p (2.34)
Now r, as introduced in the second of (2.32) is in ﬁYD),

d

a =

OEHN(D) is inner and by (2.34) we can write r as

= 1
r'dy+k, (2.35)
ko o o
where (d—)EH (D) _nKO(D) . (2.36)
0 m
Then (2.31) gives
- = '
a(d, dc) (p+r' ny) dytkgng (2.37
ko(z) zko(z) do(z) )36
Now ") do(z) . 2D and therefore from (2.36)

itd 20 = '
and the condition (2.21) . eHm(D). Let ki p+r'ng.
Then from (2.37)
N S i)
4 a do

In view of the hypotheses and what we already proved,

n loF

ki/qeﬂ;(o). The only point that remains is to show that
d(2)
0

o) = 2(z) for some 2eK (D)} is

nonempty, which is obvious.

the set Q= {qeﬂm;

According to our previous discussion then we have
Corollary 2.2: Under the hypothesis of theorem 2.1 the
dynamic pole-relocation problem is solvable for the

class of transfer functions H:GD).

There are several interesting questioms that can be
addressed now with respect to the "size" of the augmented
dynamics, state space interpretations and interpretation
of the conditions in terms of spectra. These will be

addressed elsewherels.

3. Extensions and Modifications

As in the finite dimensional case the theory of
linear distributed systems developed in {41-[10] extends
easily from single variable to multivariable systems and
from discrete time to continuous time systems. We just
state the corresponding results here; details will be
given in [18].

For continuous time the appropriate algebra that
has been analyzed is
Hm(ﬂ+) ={feH (1r+) ; there exist n,deH (m_)

n(s)
d(s)

lim f(s) = (3.1)

Res > 0+

s.t. lim a‘e
Res -~ 0-

That is, here we work with the right half plane 7, and
left half plane m_ instead of the disks. Then we have
Theorem 3.1: Under hypotheses identical to theorem 3.1,
i.e. exchange D with n+,K?(D) with Hw(ﬂ_), the factor=
ization problem (2.26) is solvable in H:(w+) and there-

fore the dynamic-pole-relocation design problem is also
solvable.

Similarly, for the multivariable case, suppose we
are given the open loop matrix transfer function for a

discrete time system as its right-coprime fraction .

Ty =N(@z) DM@ , ae. on T, (3.2)
where T, is pxm and is originally given in prmGD) and
DEH:xm(D) and is inner. Again in the diagram in figure 1
we have to find compensators Hi’HO to change the "denom-
inator matrix" of the closed loop system. The appropri-
ate algebra here is

5 (D) = {AcK.__ (D) ; there exists a
m pxm pxm
meromorphic pseudocontinuation
of bounded type in D}. (3.3)
Then there is an extension of the coprimeness conditions
from the scalar case10 two pxm matrix functions in
mem(D),A,B are left (right) coprime if they do mnot have

any left pxp (right mxm) matrix inner divisor. This is
again equivalent to the existence (for right coprlmeness)
of sequences of matrices {Xi},{Yi} s.t. (matrix weak

Bezout identity on Hw)
1im (X. A+Y_, B) =1
i i

i

(3.4)

For A,BeH;xm(D) we say they are strongly right (left)

coprime if

inf llay x| + B x> 8> o. (3.5)
zeD
lxli=1

10
By the matrix version of the Carleson Corona Theorem
this is equivalent to (matrix strong Bezout identity

on H): X,YEHmXP(D)

X(z)A(z) + Y(z)B(z) = 1 (3.6)

Then in a fashion similar to the scalar case we can show
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. B -1, .=
Given To--NODO in mprm(D), where D0

. : s s 3 o
inaer, NO’DO strongly right coprime, Dc inner in Hmméo)

Theorem 3.2:

s.t. DcDo'l has a meromorphic pseudo continuation out-

. . -] - 0
side DD. E?ere efiSt K;»Ky,Q in B (D), mep(D), H_ (D)
so that Q Ki’ Q Ko z‘lQ"lD0 have meromorphic pseudo

continuations outside D, and such that

Q(2) (D5 (2) = D (2)) =K, (2)Dy(2) +Ky ()N () . (3.7)
Moreover the dynamic-pole-relocation design problem is
solvable.

Going from the disk to the plane we obtain also

o«
for mexm("+)
Theorem 3.3: Under conditions similar to Theorem 3.2
(exchange D with ﬂ+) the dynamic-pole-relocation prob-

).

lem is solvable for H~ (w
m  pxm  +

Finally we would like to note that there are weak
versions of all of these results which ascertain approx-
imate changes in the denominators. These will appear
. 18
in .

A more substantial extension which is particularly
important for design considerations, is to consider (say
for the scalar case, continuous time) transfer functions
in

T o= {f , £ analytic and bounded in some half-
plane Res > n, with a meromorphic pseudo
continuation of bounded type to the

corresponding left half planel. (3.7)

Much of the theory can be lifted to these algebras which
contain unstable elements. Then the compensators should
still be stable. This introduces some complications in

the design procedure. These will appear elsewhere18

4. Conclusions

We have seen that using the methods developed in
[4]-[10] for transfer function and state space analysis
of linear distributed systems in specific classes,
progress can be achieved in some design problems. More
analysis is needed to clarify some of the constructions.
Coming back to an earlier point it appears that one can
analyze by similar methods, problems where singularities
are restricted in parts of €. This may be of particu-
lar importance for systems say with analytic semigroups
(then a wedge in T is appropriate), or hyperbolic
systems (a strip in T is appropriate). These promise
to be interesting and useful extensions of similar con~

. 19
structs in lumped systems
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