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Summarz

Filtering of a diffusjon with nonlinear
drifts of a type defined by Bene§ is studied.
Explicit, finite dimensional, recurisve filters
are shown to exist for moments and polynomial
functionals of the diffusion, and a smoothing
formula is given. These results are related to
current, geometric approaches to filtering.

1. Introduction

Let f£(x) be a solution to the Riccati equa-
tion
' 2 2
£ (x) + £ (x) = ax + bx +¢C (1)
and assume f£(x) 1is defined for all
has no singularities.
tering problem

x € R and
This paper studies the fil-

dx = f(x)dt + &b (2)

x(0) = X, € R

dy = xdt + dw (3)
in which b(-) and w(-) are independent Wiener
processes, x(-) 1is the signal, and y(-) the
observation of x(.). For this problem, Beneg [1]
recently derived an explicit formula for the con-
ditional density of x(t) given F(t): =0 -
algebra generated by {y(s), O<s<t}. This result
generated considerable interest because the class
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of drifts satisfying (1) includes nonlinear
examples, but conditional densities had been
computed previously in (2)-(3) only for linear
drifts. Aside from conditional densities, how-
ever, one also desires to compute explicit filters
for various conditional statistics of the signal.
Here we shall interpret 'explicit' in terms of
finite dimensional computability; given a random
process ¢(t), we say that é(t): = E{w (&) |F(t)}
is finite dimensionally computable (or FDC) if it
can be expressed as the output of a finite dimen-
sional system of stochastic differential equations
driven by y(-).

In this paper, we extend the analysis of 1)~
(3) by finding for it conditional statistics that
are FDC. The main result, theorem 1 in section 2,
lists a number of important FDC statistics. Fin-
jte dimensional computability is well known for
these statistics when £ is linear, and hence
theorem 1 generalizes the linear theory to the
full Bene$ class (1)-(3). Section 2 of the paper
motivates theorem 1 and sets it in the context of
current geometric/algebraic theories of filtering.
Sections 3 and 4 are devoted to the proof. Sec-
tion 3 computes expressions for the conditional
joint density of (x(t),x(sl),...,x(sn)),

F(t)
(x(sl),...

and the condition-

F(t)

t>s, > ... > 8., given

1

al joint density of ,x(sn)) given

and x(t). (These results are of some interest in
their own right.) Section 4 formulates the proof
of theorem 1 on the basis of the conditional den-
sities and also presents a smoothing formula. We
will omit or only sketch some arguments; details
may be found in Ocone, Baras and Marcus [11].

2. Estimation Algebras
and Finite Dimensional Computability
The FDC statistics listed in theorem 1 were

suggested by a study of the linear case (£ (x)=hx)
and its connection to (1)-(3) in the Lie algebraic
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approach to filtering. (We assume some familiar-
ity with geometric/algebraic filtering theory in
the discussion below; an account of the theory
may be found in Brockett [2]. However, the proof
of theorem 1 does not require geometric ideas.)
When £ 1is linear the Kalman-Bucy equations com-
pute the conditional mean %(t) = E{x(t)|F(t)}
and conditional covariance

E{x(t)-ﬁ(t))le(t)} thus proving that

£(t) and K(t) are FDC. All moments x° (t)
are also FDC, because the conditional density
p(x,t|F(t)) of x(t) given F(t) is normal and

nence E{ (x(t)-x(t))Z|F(0)} = K (t)

K(t) =

and

E{(x(0)-2 N ?* [ F(t)} = 0 for all n.
Remark
Because p(x,t]FZ) is normal, it is speci-

and K(t),
qx(t),K(t)) (x)

fied by %(t) that is, we can write

p(x,t[Fz) = Let ¢ be a function

such that c{a,B) = f ¢v{x)g(a,B) {x)dx makes sense
for all o and B. Then @(t) = E{e(x(t))|F(t)}
= c(X(t),K(t)) and hencg‘ ¢ is FDC. This is

another way of showing x"(t) is FDC for all n.

These results may be derived from the Lie
algebraic structure of the linear problem. The
estimation algebra, which is the Lie algebra gen-
erated by the operators in Zakai's equation for the
unnormalized conditional density, is the finite
dimensional algebra (id = identity

L0 = Span{1l/2 32/8x2—l/2 x2,x,3/3x,id} ,

p(x,t[Fz) and its parameterization in terms of

R(t) and K(t) can be found from Zakai'sequation
and the structure of LO by a Wei-Norman technigque
(see Ocone [9]).

Let A denote the class of polynomial func-
tionals of x(:) of the form

n(t)

t Spa1 5 ke
= é ...6 y(sl,...,sr)x (sl)...x (sr)dsr...ds1
where r is any integer, k .,kr are non-neg-

1o
ative integers, and vy is a bounded, separable
function. Marcus and Willsky [7]} showed that if

f is linear and n(-) e A, then n(t) is FDC.
Again this result is suggested by a Lie algebraic
analysis. 1In the geometric approach, an FDC sta-
tistic is associated with a homomorphism from the
estimation algebra to the vector field Lie algebra
of the system computing the statistic. Given an
ideal I in the estimation algebra, one may then
try to find an FDC statistic inducing a homomor-
phism with kernel I; one methodology for this pro-
cedure is suggested in Ocone [10]. As an example,
consider the system

4)’
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dy = db x(0) = 0
2
dz = x"dt z(0) =0 (5)
dy = xdt + dw y(0) =0
The estimation algebra L, = {-x2 3/ 3z

2
+ 1/2(32/3x2—x ),x}LA has an infinite sequence of

ideals
at/szt, 8t sezt 155},

I, = span{id,x 3/3z",3/3x

and it can be shown that zn(t) for n < j are
likely candidates for FDC statistics associated to

I, (rwoD). 27 (t)

Willsky theorem, since zn(') eA for all n.

Indeed, are FDC by the Marcus-

h .
Finite dimensjonal systems for =z (t)_ and associ-

ated Lie algebra homomorphisms from LO to Ij'

3 > n, have been constructed by Liu and Marcus
[5] for low order j and n.

This analysis has important implications for
the case in which f can be any, possibly non-
linear, solution of (1), because then the estima-~

tion algebra of (2)-(3), defined as L1 = Lie

2 2
algebra generated by 1/2(32/3x -x") - 3/9%x £(x)
and x, is isomorphic to the linear estimation
algebra L at (4) by the mapping

F(x)Ae-F(x)

X
d(n) = e : L1 +~ L, F(x) =/ f(s)ds.

The filtering problem (1)-(3) is therefore equi-
valent in structure to the linear problem
(Brockett [3], Mitter ([8]). Likewise, consider
the analogue of (5):

dx = f(x)dt + db
dz = xzdt
(6)

dy = xdt + dw

x(0) = x, y(0) = 2(0) =0
and let il denote its estimation algebra.
Again, if f solves (1) ¢ establishes an iso-
morphism between Ll and Ll of (5), thus imply-
ing that il is identical in structure to Ll,

and, in particular, possesses the sequence of
ideals {E5=¢_l(1j)|j>0} which should function
like {Ij|j>0}. For the problem (1)-(3) one then

expects, just as in the linear case, that a) the
conditional density p(x,t|F(t)) can be computed
explicitly in terms of a finite number of recur-

sively generated statistics; and b) x (t), 2" (b)),
(in (6)), and, more generally, nl(t), n €A, are
all FDC. Statement a) is just the previously
mentioned result of Benes [l1] and can be recovered
easily from the Gaussian, linear solution by using
$® in Zakai'sequation (Mitter [8]). Statement

b) has not yet been treated. We will show here
that is is in fact true and so restate it as



Theorem 1

If the drift f in (2)-(3) satisfies (1)

~
i) x7(t) 1is FDC for every positive integer n
ii) n(t) is FDC for every n{-) eA.

Theorem 1 thus generalizes linear filtering
results and shows that the Lie algebraic interpre-
tation of linear filtering extends successfully
to (1)-(3). However, because of the generality
of (ii), convenience and rigor dictate a proof
based not upon geometric techniques but upon cal-
culating joint conditional densities. This is
sketched in sections 3 and 4.

3. Conditional Joint Densities

We assume given the filtering problem (1)-(3).

t = > > i.. > >
s0 sl sn >0, T

s = (so,sl,...,sn), and z = (zo,zl,...,zn) .

Let

Further, let p(z,s|F(t)) denote the conditional
joint density of (x(t),s(sl),...,x(sn)) condi-

tioned on F() for any bounded, Borel
v ]Rn+1_> R,

E{w(x(t),...,x(sn))IF(t)} =/ y(Dplz,s|F(t))dz .
Our object is to compute p(ElEWF(t)).

The formula is stated in terms of an auxi-

liary process £&(t), evolving in R3 and defin-
ed by
dg = A(y)Edt + [1 y(t) 0]7dB
£0) = (x,0,07
where
-k 0 0
A(y) () = 0
ky(t)-1/2b 0 0O
k = (a.+l)l/2
and B is a Brownian motion independent of the

signal and observation noises b(-) and w(-).

Let

Il
]

(gT(t),...,gT(sn))T

Il

(E(t),El(s),...,El(sn))T

We need the following statistics:

m(t): = E{g(t)|F(t)}
R(t,s): = Cov(E(t),E(s)|F(t))
R(t): = R(t,t)
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]

M(t,sl,...,sn): E{Z|F(t)}

1]

Qt,sy,.00ps8 ) var (Z|F(t))

P(t,s

VERE COV(L,LO|F(t))

l,

= = = T
EH—MHW)EJF&HIFwH

(To simplify later expressions, we often drop the
(t,sl,...,sn) dependence and write only M,Q or

p.) These statistics are properly viewed as non-
anticipating functionals on C[0,=) evaluated at
y{(*). As final pieces of notation, set

v = (0,1,-1,0,...,0% ¢ @
z
Flzg) = / 0 £(s)ds.

and

Theorem 2

For (1)-(3),

p(Z,5|F®)) = (I/Mexplr(z )4z y(E)+k/2 z_°}
o0 ° ™
x expl-1/2AZ-M+pv,0  (Z-M+pV)) }
where N = N(t,s,,...,S_,X.) 1is a normalization
1 n O

factor not depending on z.

The demonstration of this result is analogous
to Benes's calculation in [1] of p(zo,tIF(t)).

One performs a series of Girsanov transformations
in the Kallianpur-Striebel formula of conditional
estimation and obtains thereby an expression for
p(z,s|F(t)) as the conditional (on F(t)) expec-
tation of a function of Z. Since &(s), s < t,
is a Gaussian process when conditioned on F(t),
this expectation is easy to evaluate. For a full
proof, see [11].

From theorem 2, we see that the joint condi-
tional density consists of a Gaussian factor multi-
plied by exp P(zo). If we further condition on

x(t) we remove the exp F(zo) and arrive at a

normal density. To this end, let

_(2) T
S = (El(sl),...,in(sn))
rp 22
Q=
21 92
PV = [(Pv)l (Pv)(Z)T]T
w=tm 0 @®HhT

Note that Q,, = Var(E(Z)!F(t)).

Corollary 3

The conditional law of (x(sl),...,x(sn))



F(t)
(2)
v

given and is normal with mean

M(2)

x(t)

-1
- P + rll(t)Qzl(x(t)-ml(t)+(Pv)l) and

. -1
variance Q22 - rll(t)Q21Q12.

The conditional normality revealed in corol-
lary 3 is of key importance in our proof of
theorem 1.

4. Proof of Theorem 1

i) From theorem 2 one can recover the formu-
la of Benes [1]:

Pz, £[F(6) = rr—exp{F (2) - (z-u(£) 220 (£) )

N(t

in which N(t,x) is a normalization factor, and
- 22
og=1-%"¢g c(0) =0 (8)
2
duy = [~k ou-1/2bgldt + ody pu(0) = x (9)
(0 denotes the time derivative of ¢.) It can be
~

shown that xn(t) is well defined for all n.

The finite dimensionally computable u and o
characterize p(z,t]F(t)), and a repetition of
the argument in the remark of section 2 then esta-

blishes that x (t) is FDC for every n.
Let us give a second proof that yields the

filtering equations explicitly.

Lemma 4
For n >0
A A N~
0 -a)d™? = 5420072+ (or ((2n41) ) o LD
P
+ 2uc lxn_l - n(n--l)/}l--2
Proof
Integrate
2
d
/ dz exp F(z)——iiz"exp[-(z-u)z/zo])
dz

by parts and use (1).

It may be shown from (8) that c—l(t) -a>0
for all t. Thus from lemma 4 it is sufficient to

is FDC
satisfies the stochastic

show that x is FDC in order to show x
for any n. However, x
differential equation

~ - -
ag = f(x)dat + (;}-xz)(dy-xdt) (10)
(Fujisaki, Kallianpur, Kunita [4]).

gration by parts argument shows that

Another inte-
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o A -1
£(x) = (uy-x)o (11)
By using lemma 4 for n = 0, and (11), the right

hand side of (10) may be written solely in terms
u, o, and ;. Call such a version of (10), (10) .

8), (99,
mensional

1
and (10) then constitute a finite di-
system with state (R,p,0).

ii) For simplicity we consider only the case

s
n-~1
y(sl,...,sn)x(sl)...x(sn)dsn...ds

t
nle)=s ...f .
0 ¢} 1

The following identity, stated here in the form it
appears in Marcus and Willsky [7], is fundamental.

Lemma 5
Let (ul,...,um) be a normal random vector
with e, = Eu and V,, = cov(u ,u,). Then
J ij L

. LV, . e, ...e,
J 3132 33 ]

+ IV, . V, .e, ...e,
313 3334 JS Jm
The sums are taken over all possible combinations

of pairs of indices.

Lemma 6
Let t>s. >3 >...>5 . There exist
- "1 2 n
functions aj(t,sl,...,sn;y(')), 0 <3j <n, such
that

E{x(s)) ... x(s )|F(t),x(t)}
n

.3
_jiox (t)aj(t,sl,...,sn)
and each aj has the form
i
aj(t,sl,...,sn) = E Bj,l(t)"'sn,n(sn)

in which each 8; n 0 <m <n is either deter-

’
ministic or a non~anticipating FDC functional of

y().
Proof

The conditional distribution of

(x(sl),...,x(sn)) given x(t) and F(t) is normal

by corollary 3. Let (21,...,2j)T be the condi-

tional mean given in corollary 3 and é the con-
ditional variance. Then from lemma 5



E{x(sl)...x(sn)IF(t),x(t)} = feee

+ RS A (12)
J132 33 Iy
+ 3120, . Q. .. oo
33573534 357 3,
Since (Zl,...,kj) is a linear function of x(t),

(12) is a polynomial in =x(t) of order n. More-

over, it is clear that the coefficient a, of

I (£) will be separable if Q(t,sl,...,sn) and
But for each

hence é are separable. i,]

Qij = Var(El(si_l),Sl(sj_l)) '

which is separable since solves a linear

&

equation. Note also that Qij is deterministic

for all i,j. Thus the y- dependent contribu-
tions in a, come from the y-dependent terms

2
(PV( ))j and (Pv)l in 2, 1 <i<n. Nowa

typical element of Pv is of the form

cov(El(s),Ez(t)—E3(t))

cov(El(s),Ez(s)-EB(s))

t
-k
sinh ks [ e ug(u)du
0

- k°l

- S .
-k 1 sinh ks [ e kug(u)du
o]

in which s <t and g(u) = ky(u) = (1/2)b. Since
the individual terms in this expression are FDC,
we may conclude, after piecing everything together,

that the y-dependent components B; are non-
’
anticipating, FDC functionals of y{(-).
We are now ready to prove that n(t) is FDC.

By using lemma 6

Aty = E{(E{n(t) |F(£),x(t) }[F(B)}
n ™
=1 x @)
3=0
X ft fsn_l (s s Ja, (t,s s )ds_..ds; (13)
0“0 Y 1'%, i SRR n” 951
Since {xj(t)}§=l are FDC by part i), the proof

willﬁfe complete if we show that the coefficients

of xj(t) in (13) are FDC . However, from
lemma 6, each coefficient is a sum of terms of the
form
s
t n
a (B)YS ...S

un+l(t) = al(sl)...an(sn)dsn...ds1
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for which ai(s) is either deterministic on a

deterministic function times a y-dependent B; o'
’
Thus each a, may be assumed to be FDC. Since

un+1(t) is computed by the system
ul(t) = un(t)
uz(t) = an_l(t)ul(t)
un+l(t) = uo(t)un(t)
un+1(t) is FDC also. This completes the proof.

This proof is similar in its use of Gaussian
moment identities to the one undertaken by Marcus
and Willsky [7] to treat the £ = linear function
case. When £ is linear, conditional normality
obtains without the further conditioning on x(t),
i.e. (x(sl),...,x(sn)) is conditicnally normal

given F(t) alone. For this reason, Marcus and
and Willsky are able to use the filtering equation

dan = E{x(t)n (£) |F(e))at + [MR-nx] [dy-xdt]
nl(t) =

)ds .

n-l .ds

t Sn-l
= é ..é Y(t,sl,..sn_l)x(sl)..x(s 1

n-1

and a simpler moment identity to construct a proof
by induction on the order of the integral in n(t)
Marcus, Mitter, and Ocone [6] give a second proof
of the linear case using homogeneous chaos theory.
Such a proof might be possible in the general case
by first conditioning on x(t), but this appears
to be more complicated and has not been tried.

smoothing formulae for (1)-(3) may also be
derived using the results of section 3.

Theorem 7

Let s < t. Then
_ sinh ks ~ .\ -kt
E{x(s) [F(t)} = i elx(t)-xp " +(P(€,5)v),]
+ &p—ks - (P(t,s)v)2

Proof

This is an immediate consequence of corollary
R -1 . :
3 since rll(t)QZI = sinh ks/sinh kt and

-kt
ml(t)— x,e .
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