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Abstract

Numerical methods for the solution of the
robust version of the Duncan-Mortensen-Zdkai
partial differential equation are considered.

Both semidiscretization and complete discreti-~
zation schemes are included. Direct implementa-
tion ¢f such schemes via array processors is
proposed as a design method for nonlinear filters.
The importance of existence, uniqueness and

tail behavior of solutions is related to pro-
perties of such implementations.

" Summary

Recent studies of the nonlinear filtering
problem have emphasized a pair of linear partial
differential equations as central to this problem

[1]. Briefly for a diffusion signal model

dx(t) = £(x(t))dt + g(x(t))aw(t) (1)
with observation

dy(t) = h(x(t))dt+dv () (2)

the "unnormalized" conditional probability density
of x(t) given y(s), s<t, satisfies the linear
stochastic partial differential equation

du(t,x) = [a(x)UXX(t,x) + b(X)Ux(t,x)+C(X)U(t,X)]dt

+ h(x)U(c,x)dy(t) (3)

U(o,x) = po(x) > 0<t<T;
If we normalize U to 1 we obtain the conditional
density. In (3)

1

a(x) = Qg?(X)

b(x) ='2g(X)gX(X) - £(x) (4)

cfx) gi(X) + g(x)gxx(x) - f ) - %hz(x)

It is easier to analyze (3)'indirectly via the
transformation [2]
V(t,x) = exp[~-h(x)y(t)]U(t,x) (5)

which implies that V solves the linear parabolic
p.d.e., for each path vy, :

309

é!%%iﬁi = X(X)Vxx(t,x)+B(t,x)VX(t,x) +

C(t,x)V(t,x) (6)
V(o,x) = po(x), O<t<t

usually called the robust version of (3). ‘in (6)
Alx) = a(x)
B(t,x) = b(x) + Za(x)hxy(t)
(7)

Clt,x) = c(x) + b(h (x)y(t) +

2 2
+al)h )y(e) + h )y (e)]
Since almost all paths of y are Hélder
continuous (6) can be readily analyzed for exis-
tence, uniqueness and regularity by classical
p.d.e. methods for each path. Such an approach,
leading to several useful resultscan be ‘ound in

[31.

Similarly well known efficient numerical
methods for p.d.e.'s can be used to compute
solutions to (6) with high accuracy. The fact that
(6) is linear facilitates numerical treatment
considerably. The program initiated here, is
being largely motivated by the desire to develop
systematic, efficient approximate solutions to
nonlinear filtering problems. Recent work on
analytical solutions has produced important results
but most in a negative direction (see in particular
the articles by Brockett, Ocone and Sussmann in
F1D.

Our purpose here is not to analyze numerical
schemes for (6). Rather we are interested in
direct implementations of established numerical
methods for p.d.e.'s of the type (6) via special
purpose array processors. With the advent of
VLSI technology, computer aided design of such
array processors on a sifigle chip is now a reality
[4]. The development of such a design method
appears as a powerfull alternative in nonlinear
filtering studies. Siich a study rests on the
following circle of ideas; efficient stablé schemes
for linear parabolic p.d.e.'s, fast algorithms for
the solution of the discretized or semidiscretized
equations, existence-uniqueness-regularity results,
theory and design of VLSI processor arrays.

The end result of such a method is a high-
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performance,. VLSI implementable algorithm (with
curpent standards a rather low-cost device) which
computes recursively accurate approximations of
the conditional density.

We assume that existence and uniqueness
questions about
For some recent
more, we assume

results we refer to [3]. Further-
that .a uniform bound of the form
V(E,x) <M exp(-K$(x)) (8)
has been established for the solution of (6). In-
(8) we assume M,K to be constants independent of
the observation path and ¢ to be a non-negative
function, such that lim ¢(x) = + =.

| |-o
We then proceed as follows. First we choose an
>0, small, induced by the accuracy requirements
desired. Using (8) we define .the bounded region
Q in which (6) will be solved via

Q' = {x;V(t,x)<e} (9
where ' indicates set complementation. Let T
denote the smooth boundary of Q.. We next use a
discretization or semidiscretization scheme to
solve the following "Dirichlet perturbation" of

(6); :

(6) together with the boundary
condition V(t,x) = O on T (10)
If we use a space semidiscretization scheme
on (10) we obtain the system of ordinary
differential equatioms [5] [6]:

chN(t) = AV (D) + By (0)V (8 + cN(t)vN(t)

with initial conditions (11)
V(@ =pg y
Here
BN(t) = BN,O + BN,ly(t)
.0 , . a»
CN(t) = CN;O + CN,ly(t) + CN,Zy (t)

Furthermore GN’ AN’ BN,O’ BN,l’_CN,O’ cN,l’ CN,2
are finite bandwidth, band matrices. This is
exploited in an electronic implementation of (11)
using VLSI processor arrays in a pipeline arrange-
ment to compute the requisite matrix-vector
.multiplications (see [4, pp. 274~275]). The
result is an approximate nonlinear filter.

solutions of (6) have been settled.

Similar results are obtained via full discretizations

"of (6), leading to digital approximate nonlinear
filters.

Results on efficiency, stability, operational

delay will be reported for such approximate filters.
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