JB 79-09
TR 79-19

Paper Entitled

"Block Diagonal Dominance and Design
of Decentralized Compensators”

From the Proceedings of

1979 Conference on Information
Sciences and Systems

pp. 343-351

Johns Hopkins University
Baltimore, Maryland
March 1979



BLOCK DIAGONAL DOMINANCE AND
DESIGN OF DECENTRALIZED COMPENSATORS

William H. Benmett
Naval Surface Weapons Center
White Oak, Md. 20K04

Abstract

An extension of Rosenbrock's design methad
for linear multivariable systems is presented,
based on the concept of block diagonal domi-
nance for rational transfer function matrices.
The technique allows independent design of com-
pensators for low-interacting subsystems. The
flexibility of the method with respect to parti-
tioning and measures of gain leads to improved
cstimates for overall system stability under
decentralized compensator desipgn,  Various new
directions and extensions suggested by our meth-
ods are discussed and examples illustrate the
theory.

1. Introduction

The current literature on control of large
scale systems is dominated by technqiues for
model simplification and order reduction [6]. A
natural trend in this arca is the decentralized
control philosophy. Our approach here is to
study the natural pa rtitioning of a system into
subsystems with''low" interaction; and to develop
sufficient conditions fur stability of the closed
loop system using decentralized control for lin-
ear, time-invariant systems. We describe here
the systems by matrix transfer functions.

During the present decade transfer function
(or frequency domain) design methods have been
developed [1]-[5], that offer to the designer some
substantial advantages over state space methods.
Primarily, these methods have been developed
for centralized compensator design, The mcthod
proposed here is frequency domain design method
for decentralized compensator design. As such
(and primarily due to its intrinsic flexibility)
the method leads to a natural, frequency de-
pendent, treatment of interacting subsystems
and suggests natural partitions (provided such
exist) of large systems.
The general multivariable ¢ontrol system is
sh‘(‘)wn in\figu re | below, N
wuis) é(;) (&
Q) I

:

K{s) L(s) f—ar

| F (3 <

Fig. 1. The general closed-loop system.
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Here Q(s) is the plant transfer function matrix
and is assumed pxm, K(s) is the input compen-
sator mxn, L(s) the output compensator nxpand
F(s) the feedback compensator nxn. Letting,

G(s) = L{s)Q(s)K(s)

for the forward loop transfer function, the
closed loop transfer function is

(1. 1)

H(s) = [, 1 G(s)F(8)]" 1 Q(s)

= G(s)[I + F(s)G(s)]-1. (1.2)

Defining the inverse matrices
E}é c!

Ham-! (1.3)

(provided they exist) we have the inverse rela-
tionship

is) - F(s)+ G (s). (1.4)
For obvious practical reasons Rosenbrock in
[1.2] scarched for ways to design fecdback com-
pensators of the simple form F(s)= diag{fi] . In
[1.2] Rosenbrock and his coworkers developed a
practical technique for compensator design call-
ed Inverse Nyquist Array method. This well
known method can be effectively supported by
interactive computer codes and has been rather
extensively used to design compensators for
industrial processes[2].

Of primary importance in this method is
the concept of a diagonal dominant matrix on a
contour D of the complex plane. A rational nxn
matrix Z(s) is diagonally dominant on the contour
D if z;5(8) has no pole on D, i=1,2, ...,k and for
each s on D

k .
lzmsn-,zl!zij<s>|>x.x=1,z. ...n
,:

‘ia‘i (1.5)

or

|
|7.ii(a)| -,;i'llzii(s)‘>0' i=zl, 2, .. .n
l.‘

A
The technique consists then in designing first
the input compensator K(s) (L(s) = 1, usually) so
that G(s) is diagonally dominant on a relatively
large part (with respect to the poles and zeros -



of G(s) of the imaginarty axis (Ewsw,,,.). This
then allows by use of Gerschgorin estimates [2]
for eigenvalues, the design of feedback gains f;
for each loop independently, guaranteeing stabil-
ity of the overall system when all loops are
closed. Furthermore, after selecting the gains,
using the Ostrowski refinement of Gerschgorin's
theorem, 'fuzzy" inverse Nyquist plots for each
loop (in the sense of an approximation) are
derived and thus the stability of the design eval-
uated. The technique is extremely useful since
most of the work can be effectively performed
by interactive computer code: and graphics.

Our method concerns decentralized compen-
sator design and is reminiscent of Rosenbrock's
Inverse Nyquist Array method., By decentral-
ized compensation we understand that the feed-
back compensator transfer matrix has the
partitioned form.

F(s):diag[Fl(s),FZ(s), .. .,Fm(s)] (1.6)

m .
where Fi(s) is kjxki, T ki= n. Thus the n vectors
i=1

;,(s),;.(s),;(s) are pa;titioned conformally into
m subvectors each, Similarly, the open loop
matrix transfer function G(s) is partitioned
in m?-, kixlc- blocks Gi<(s). As a result the
inverse closed loop maﬂrix transfer function is
also partitioned

G, . +F.(s), i=]
Bae = {7 (1.7
) Gijle) . i#]

We are thus lead to m separate compensator
design problems and we want to develop condi-
tions that guarantee desired performance of the
overall system, The latter is equivaleot to
assuring '"low' subsystem interaction, There
are two main reasons that render decentralized
compensation desirable in large scale systems:
(a) the performance requirements on each of the
m subsystems may be of completely different
nature and, therefore, may require different
design approaches; (b) the reduction in the di-
mension of the overall problem leads to signif-
icant reduction in the computational complexity
of the design procedure.

We utilize here results on block diagonal
dominance and the related "hlock Gerschgorin
Theorems' [7]-{8], to guarantee '"low" subusys-
tem interaction. The resulting design approach
is a three step process. First, a test is per-
formed on the open loop plant transfer function
matrix. If the test is satisfied a decoupled
design approach is pursued where the ''diagonal’
subsystems are assumed to be non-interacting.
Complete freedom is available here as to design
technique for the parallel decoupled subsystems
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designs. Finally, a test similar to that per-
formed in the first step is performed on a ma-
trix constructed of the plant and feedback matri-
ces in a farniliar way. If this test is satisfied
then the closed loop system stability perform- .
ance is satisfactory.

It is worth emphasizing that in this paper
we have utilized only the results of Feingold and
Varga [7]. The results in [8]-[11] lead to
several alternative methods for decentralized
compensator design which will be reported else-
where. Finally, (as we shall see) the flexibility
of our method has not been fully utilized here in
order to provide cptimal estimates of overall
syatum performance, Work is in progress on
this and related numerical aspects and will be
reported ‘elsewhere.

2. Block Diagonal Dominance and
its Consequences

The work of Gerschgorin (which plays a
fundamental role in the Inverse Nyquist Array
method) on estimates for the eigenvalues of a
square complex matrix has been generalized by
Feingold and Varga [7] and in a slightly different
way by Fiedler and Ptak [8] to partitioned
matrices, These results not only provide a
variety of alternative estimates but actually can
lead to tighter estimates than the traditional
Gerschgorin circles [7]. Following [7] let A be
an nxn complex matrix partitioned into m?2
submatrices, so that Aij is kixk~, I<i, €m,

Eq ki =n, We introduce vector norms on the
i=1 ~
aubspaces Xy, i-l,, .., m of c" implied by
this decomposition, where (and this is very
important) different subspaces are allowed
different norms, We denote all vector norms
by |*| for simplicity of notation, letting the
vector indicate which one of the norms is applied
(by the subspace where the vector belongs). We
also consider the induced matrix norms
A . x

I A= sup M5!

xeX. [ %]

x# 0J

and infimum or reciprocal norms

LA ] -ing |44
Y xeXJ. x

x#0

(2.1)

(2.2)

Clearly if A;; is nonsingular

-1, -1
faul =11 ay ™
We then have as in [7]

(2.3)



Definition 2.1: The partitioned matrix A is
block diagonally dominant with respect to this
partition if

(i) the diagonal submatrices, Aj;, are non-
singular and (ii) either

|| A 'llrl>§1 |1a,]].i=1,2
ii I_]=1 ij 1=k, 4, 00 oM
J#i (2.4)
m
1[|A ||A]|,1-1£,...m.)
J..
j#i
Clearly, when ki= 1,i=1, .. .m this
~definition reduces to the usual dominance condi-
tion [1, p. 142]. It is not difficult to show that
if the partitioned matrix A is block diagonally
dominant it is nonsingular {7, Th. 1], which
then leads to the [ollowing generalization of
Gerschgorin's theorem |7, Th, 2]

Theorem 2.2: For a matrix A partitioned
as above, each eigenvalue )\ satis{ics

m
fag -agol=z Ayl
i#) (2.5)
(ors 3 IIA Ay
j=1
143

for at least one l<i<m.

Thus Theorem 22 describes inclusion re-
gions for the spectrum of A analogous to the well
known Gerschgorin circles., Further details ard
examples on the regions provided by (2.5) can
be found in [7]. It is important to emphasize
the flexibility provided by this ""Block
Gerschgorin Theorem'': a) the inclusion re-
gions depend on the vector norms used on the
subspaces;b) the inclusion regions depend on
the partitioning of the matrix. Both facts sug-
gest considering various alternative combina-
tions in order to provide optimum estimates
(i. e., tight regions). This important charac-
teristic of the '""Block Gerschgorin Theorem!
(the classical Gerschgorin Theorem does not
provide such flexibility) has been exploited
successfully in [7]-[9].

Let (g. (or ) be the ith ""Gerschgorin
set!" of complex numbers ) satisfying (2. 5).

gi = [M'Aii '}‘Iki'sz: ll Ai}l

or j#i
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b% B {)"‘Au M1-:1|-~ _|1[ '
1#_1

Clearly these sets are closed and bounded and
thus compact. Then all eLgenvalues of A are in

S=Ug (o~ %=-1%E)

Furthermore the eigenvalues of Aj;are in
C@ . A useful result towards charactemzmg
how many eigenvalues of A are included in a
subsct of G is given by the following reLsult [7].

Theorem 2.3. If the union J% = S\__{%P

— 3
l<p:<m, of £ Gerschgorin sets is disjoint
from the remaining m - 4 Gerschgorin sets for
a partitioged matrix A, then J€ contains pre-

cisely Z k eigenvalues of A,
=1 B

We proceed now to derive the main result
of this paper, on which aeveral design proce-
dures can bo based, First we need:

Definition 2.4: Let A(s) be an nxn rational
matrix partitioned as above, and D a closed
elementary contour in C. Then A(s) is said to
be block diagonally dominant on D if: (i) Aj;{s)
has no pole on D, i=1, ... m and (ii) A(s) is
block diagonally dominant for all s on D
(Definition 2.1).

We then have the following generalization
of Rosenbrock's result [1, Th. 1.9.4].

Theorem 2.4: Let A(s) be an nxn rational
matrix partitioned as above, which is block
diagonally dominant on a closed elementary
contour D in the complex plane. As s traces
D once clockwise, let det A(s) map D into the
curve I', which encircles the origin Ny times
clockwise, det Ajj(s) map D into I'; which
encircles the origin N; times clockwise
i=1,2,...,m. Then
m
NA =; Ni (2.6)

i=1

Proof: The proof generalizes appropriately
the proof in [1]. Since by assumption (Defini-
tion 2.4 (i)) Ay(s) has no pole on D, it is finite
on D, and so 1s det A;i(s). By block diagonal
dominance (Definition 2.1 (i)} det A;;(s) has no
zero on D so||A;I¥s}f -1 is finite on D. There-
fore, from (2.4)ln Ajj(s)| must be finite on D
1<i,j<m, i#j. So there are no poles of
Ag (s) on D, 1si, jSm. Moreover, by block
dxagonal dominance A(s) is nonsingular on D
so there is no zero of det A(s) on D, Let
A(a, s) be the partitioned matrix.



A

i@ ) =A45(8)

(2.7)

A (a, s) =§

where O<g< 1.
Then every element of A(w, s) is finite on D and
therefore, det A(w, s) is also finite on D. Let

Bla,s)= dct Ala, s)

TT det A;.(s)
i=1

and note that §(0,s)=1, Let f(1, s)map D into [,.
For each s on D, B(«, s) defines a continuous
curve joining 8(0, s)=1 and the point of T; corre-
sponding to s, We will be done if we show that
T, does not encircle the origin. Assume the
contrary, Then there exists some g, O<a<l,
such that for some s on D, B (,8)=.0.Then
from (2.8) det A(w,s)=0. However, since A(s)
is block diagonally dominant on D and 0<g<1,
Ala, s) is also block diagonally dominanton D ard
therefore, nonsingular, thus contradiction. Then
from (2. 8) the number of encirclements of the
origin by 1‘6 is
N-T
i=1
and this concludes the proof.

Aij(a. s)= (s), i#]

(2.8)

0 N

i

Clearly, we can test graphically whether or
not a given rational matrix is block diagonally
dominant on a curve D. From (4-5) it [ollows
that the graphical test consists of plotting for
every s on D the Gerschgorin sets (&, ,i=t,..-,m
(or’ "y i=1, .. .m) and testing if the resulting
generahzed Gerschgorin bands include the ori-
gin. If the origin is not included the given trans-
fer function matrix is block dominant on D. The
significant implications of our previous remarks
on the flexibility of trying various partitions or
various norms become apparent, In particular,
we single out the foilowing conclusions: a)
tighter cstimates on dominance may be obtained;
b) decompositions "natural” Lo the frequency
characteristics of a given system may be
achieved; c)improved stability estimates may
be given even for the standard case [1]. Of
course, the computational complexity of the pro-
cedure is also influenced by these choices.

, Since the computation of the sets@i(s) (or

i(s) for each s on D may be 2 cumbersome
computational task, simpler tests for block
diagonal dominance can be quite useful. To test
for dominance we only need to know for each s
the quantities

p(s)=min Al Li=1,...m
Al Xe(g(S)
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(n):mm I)\,' , izl (2.9

Ad )‘e(g

where obvxously we use min instead of inf. since
(.3 HE )’Gﬂ (s), i=1, .,m are compact, It
is then clear that block diagonal dominance is
equivalentto A (s), i=1, .m, having no poles
on D and being nonsingular on D and

=Mmin min min

5 )] ¢ >0.(2.10)
Al) seD {mdx Lefl, m]P( )Lf[lm]Ps]g ¢

'I'hus, (2.10) is a proper generalization of
Rosenbrock's result [1, p. 143, eg. (5.4)]. It is
worth emphasizing here that the generalized
Gerschgorin bands resulting from block diagonal
dominance considerations are not graphically as
useful as the Gerschgorin bands appearing in
standard diagonal dominance considerations [1],
because they do not convey directly usable
information for the choice of compensators,
Consequently, the important quantities are p 1( )
PA,L() Pa, p Which allow (or not) (2.6) to be valid
and furthermore, as we shall see later, provide
some guidance for compensator selection,

» o M

It is easy to see that for any square matrix

I+ 2]l =1al >iB1-1B-A11 2.1
and therefore if we consider the tori in the com-
plex plane

T ={reCila ol- ZHA NslalIAN+L IAG
i 1N

(2.12)
(s)={reC i +S1A
Tio={reC:la ol SIS Alsiapir ZIAel

for each s on D we have the inclusions (from
(2.5))

@i(smﬁ(s).%;(s)ﬂ';(s),n 1

Clearly then A(s) is diagonally dominant on D iff

(2.13)

» o » o IN.

max [min d () 'mmrl e >0,
AD ;nilg i x[LﬁU mJAl LE[' m] ]}
where (z_m.)
L 1 of-E I
;
(2.15)
(o=la, (s)l T Al

J#m

Various con51derat1.ons indicate that the quanti-~
ties dy p,d (s) dA 1(5) are rather tight esti-
mates of PA, D PA i s) PA i(8). In particular if
Aij(s),i=1, .m,are normal the two sets of
parameters measuring dominance coincide since



in this case cach@i(s) (‘“@'i(s)) i8 a union of a
finite number of disks.

3. Application to Decentralized
Feedback Compensation

In this section we develop our design method
based primarily on the result of Theorem 2. 4.
In discussing stability we follow the conventions
of Rosenbrock [1, pp. 1-27]. Thus the zeros
(resp. poles) of a matrix trausfer function G
are the zeros of all numerator (resp. denomi-
nator) polynomials in the McMillan form of G.
The poles of the system are the zeros of detT(s)
in any given polynomial matrix representation of
the system with transfer function G(s).

T(s)%(s) = U(s)a(s) )
¥(s) = V(s)x(s) + W(s)a(s)

G(s) = V()T Y (s)U(s)+ W(s).

(3.1)

When T(s) = (sI-A) the poles of the system are
the eigenvalues of A, The system (3.1) is as-
ymptotically stable if all poles of the system are
in the open left half plane (OLH).

From (1. 2)
r
det I+ G(s)r(s)} det[ln+ F(s)G(s)] =

_det G(s) _det H(s)
" det H(s) det G(s)

, (3.2)

a well known relationship which makes trans-
parent the role played by the determinant of the
return difference matrix [+ Ci{8)F(s8) in multi-
variable stability considerations, We further
assume that GF is strictly proper. Then [1,

p . 135], [12], if G is proper H is also proper.
In the sequel we assume that the given factori-
zations of G, F are

G(s):N(s)D-l(s)
-1
F(s)=I\LF(s)D (s

without making any explicit assumptions about
coprimeness [12] or least order [1]. Then fol-
lowing [1, p. 141] to test stability of the closed
loop system we choose a contour D consisting of
the part of imaginary axis {-iR, iR] together with
a semicircle of radius R in the right half plane.
R is chosen large enough to insure that D
includes all zeros of det (In+G F) .det D . detznF
in the closed right half plane (CRH), with the
familiar left-half plane indentations for imagi-
nary zeros . Suppose the open loop system

hag py poles in CRH (i.e., zercs of detD .
detDy there). Let d,gt(ItG F), det G, det H map
D into curves I D’ TG’ EH vihich encircle the
origin clockwise Ngp., Ng., Nyy times. Then we
have the well known [1, p. 141, Th. 4. 1, Coroll}

(3.3)
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Theorem 3.1 The closed loop system
shown in IFig, 1 and described by (3.2) is
asymnptotically stable if and only if

(@) Npp=-p,

or equivalently

(b) N

G~ NH Py

We can now give a series of results (using
Theorems 2.4 and 3.1) which are generalizations
of Rosenbrock's results in [1, 3.5, 3.6]. In the
sequel the curve D and p, are as above, the
open loop system poles in CRH,

Theorem 3.2: Suppose H and G are both
block diagonally dominant on D. Let det Gi;»
det Hﬁ map D into FG. i rH,i which encircle the
origin N i NH jtimes i=1, ..., m clockwise,
Then the c¢losed loop system is asymptotically

stable if and only if

by T N
o MR Ne, it R

Proof: Let det G, det H map D into g T
which encircle the origin Ng, Ny times
clockwise. Then the closed loop system is
asymptotically stable iff - pgo=N
from (3.2).
2. 4.

D= Ng-Ny
The result follows from Theorem

Theorem 3. 3: Suppose that F(s) represents

an asymptotically stable compensator (i.e.,
det DF has no zeros in CRH, and that (}.«"'1 + Q)
is block diagonally dominant on D. Let
det (Fi'l-l- G..) map D into T; which encircles the
origin Ni times clockwise i=1, , .., m. Then
the closed loop system is asymptotically stable
if and only if

m

iz= 1 Ni ) 'Po
Proof: From (3.2) det [I_+GF] =det[F-1 G]det F,
The result follows from eorems 3.1 and 2. 4.

We note that computation of the closed
loop transfer function is not needed. To test
block dominance in Theorem 3. 3, our remarks
in section 2 apply. A sufficient condition is
given by the following corollary. Work on
establishing more efficient methods is in
progress,

Corollary 3.4: If

-1 m

; 1G(l)
I F () >0G,( )H+3[%u G, (sl (0\’3{1 i,
ov -1 © | (3.4)
IEol <JG®] '.;L NG o (or_ZJlG.“’H
m $ 3#I 3

. i
i=t1,...,



for all s on D then F-1+G is block diagonally
dominant on D.

Corollary 3.6: If

Proof: Follows trom JA | Blx JAL-IRN (or 2 [BI-IAI) § ¥ (s)l>|lc. mllﬂ HG1 (9] (o" ZNG“("H)

This simple covollury leads to the tollowing
useful graphical test, In fig, 2 bulow we plotthe
curves

lo, M+E [l G ol

j=1 M
j#m

m
IG..(S)' - Z "G ~(S)u ) for s=iyw,
11 P JJ
§=1
#m
we[O.wb], where w_ is chosen according to
our knowledge about the system and other
practical considerations {1, 6,2],

\-e.%ion i

G| + = Ul Gl
1 S#L 3

veg jom I

1G, (w\l leu (w)“ |

Fig. 2. Graphical interpretation of a test for
block dominance of F-! + G.

Thenequation (3. 4) states that Il F(m))H =1 must
be in Il or lF'(uun- I . Itis
noted however, that the constraints on F obtain-
ed by Corollary 3. 4 may be conservative.

For reasons that are well explained in [1]
it is convenient to investigate stability of the
decentralized controller using the inverse
relationships (1.3), We thus have the following
results;

Theorem 3. 5: Suppose G B are block
diagonally dominant on D, A Let det Gn,
det H;; map D into l"G ir H ; Which encircle the
origin NG i times clockwise i=1,...,m.
Then the closefioop system is asymptotically
stable if and only if

Proof: Follows from (3.2), Theorem 3.1 (b) ard
Theorem 2.4.
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J#i
~ _ m ~ or A‘_(S
IE@I<IGEL - ZIG @l G Z101)
j#i

i:.-d,.,.,m,'
for all s on D,
dominant on D.

then H is block diagonally

Proof: From (1.7) and the fact that
MasBlzJal-lB|(or 21BF -lIAl)

Thia corollary leads to a graphical test
similar to that of corollary 3. 4.

Recall that in the standard application of
diagonal dominance techniques [1] in compen-
sator design, it is the inverse form that is
more useful primarily because an application
of Ostrowski's theorem [1, p. 27], provides a
reduction on the size of the Gerschgorin bands
and thus improved estimates on gain and phase
margin of the compensated system [1, 3,6], We
now give similar results in our framework.
The {first two theorems below are a generali-
zation of Ostrowski's results, to partitioned
matrices, First notice that the block diagonal
dominance condition (2.4) can be written alsoas

m
da B ag i1
j#i (3.5)
, m -
(or @, 'Aii'-jz l” Aj%l' i=l,...,m
J#L
{for some O$8i<l (or OSBi,<1).
Theorem 3.7: If the partitioned matrix A
satisfies (3.5), then A has an inverse AzA-l

which satisfies

13, J1=ol &,

(or || Ai}[se'ﬁ Al

Ij=1P2I

(3.6)

fori=1,...,m LLi-1, i+, ..., m

Proof: Since A is dominant it is nonsingular,
So A exists and

8 A A

k=1 K ki EAd

or

- -1m -
A_+A . TA_ A =0,
BT ey KL



Now taking norms we have

“A \<mz\x "A n2_ ||f\ " lIA ll— '}’(\MHA
k#§ £ (E.7)

due to (3.5). Since (3.7) holds fur

j=1,2, . ..,i-1,1+1,

..,m and 0 \1 x]ngx”l\kl

”Aud and the result follows.

Theorem 3. 8: Let the partitioned matrix A

satisfy (3.5), Define
$. =max 6 (or tb,’
k i

= max 8/)
L ok#i k#i K

1

-~ -1 ’ /
Then] A1 - A Jcoula f<or 031 ] (3.8)
for eachi=1,...,m.
Proof: Again A is nonsingular; so
Zlekk I, i=1,...,m.
* AlA A .=f ALA
TR LS TR
Taking norms we have
-1
AL -2 4] <r agdi Al (3.9)

However, it is easﬂ.y seen that|[AB|=[B]| A}
and therefore (3. 9) implies

IA -A L Il A A /1A )
< Z# i”Aqu (max KA P
k=1
by (3.5) and the definition of @i.

We now apply theorem 3.8 to the closed loop
transfer function matrix H of the system with -
the decentralized compensator F(s)=diag{E(9],
as above. We work with inverse relations and
assume that H=F + G is block diagonally domi-
nant on a curve D. Then the quantities §., 8,
$:, ;' become functions of s. We can now give
the very useful |

Theorem 3.9: Let I:I(s) = F(s)+ G(s) be block
diagonally dominant on ID. T'hen for each s on D
we have

15 1s) - (T + G <8 (900, (0] &, (] < BOIG,
(3.10
(or < e(s>@(s)|c; o] < G(S)IG ol

for each i= 1,...,m. Here§. i(s), ’(s), 3, (s),
g (s), are computed from (3. 5), (3.8) w1thA H.

Proof: Apply theorem 3.8 to A= A
We alsoe have the immediatle

(})l
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Corollary 3.10: With the notation of
Theorem 3.9

i u.‘.‘(s)-1-‘_(3)|<||31.(s)u+5.(s)fb.(s)lé..(uﬂ
O‘ )

I Hu(S) Esll> lG o8- e(s)@(s)l(} (>J]

for each i=1,...,m.

Now éii is the inverse of the open loop
transfer function of the ith subsystem. Suppose
that the ith feedback compensator is removed,
i.e., consider the compensated system with
compensator F(s)=diag{F.(s), ..., F (s),0,

1=
Fii1(8), .. ., F8)}. Let us call the transfer
function l)ctwcen block input i and block output

i, under these circumstances, H;(s). Now
clearly -1
Hi(s)+Fi(S)=Hii(s) (3.12)

2
]

and, therefore, theorem 2.9 and corollary 3,10
provide via generalized Ostrowski bands esti-
mates on the deviation of the ith subsystem in-
verse transfer function from Gu’ due to the
feedback compensators imposed on the other
subsystems. That is if we wish to design a
compensator for the ith subsystem while the
other compensators are fixed we must design it
for Hj(s) being the open loop transfer function
for that subsystem.

It is this type of considerations that render
our results most significant for decentralized
compensator design. Space limitation does not
allow further discussion on this, Further re-
sults on these ideas will be reported elsewhere,

4. An Example
Given the unstable plant

(18 #5119 5
5-6 S+3 ¢ S+
7_ 175 .5 0
Gey= LSt . S5.stR 0 T | (41)
o 5 '18 -45
S+2 's-6 5+3
S5 v7_ 115
5+2 0 s s-
L .

it is desired to stabilize the plant with a si le
feedback compensator. The standard
Gerschgorin bdnds are showy in F\'g. 3 for rows
1 and 2 of G(s). G is not diagonally dominant.
The design procedure of Rosenbrock would
require at this point the design of series
compensators L,K so that LGK is dominant,
This step is ad hoc at best, Here we have

block diagonal dominance, however, Indeed, in



Fig. 4 we plot the dominance ratio
Gy el

Ic, &l

91(5)=92(s)=

where we use 4 norms, and s=iw,wef0,wy]
Wy =25 rad/s. The margin of dominance (recall
corollary 3.4 and Fig. 2) is

5 = inf (IG (s)] -llG el =0.372 .
seD

In Fig. 5 we plot the Gerschgorin bands for
Gll(s) and we see it is diagonally dominant, A
constant diagonal compensator for Gy and
hence for Gy can be designeld, where
F)=Fp=diag(f],f,} with ;"' <1, 61,7151, 8,
But in order to guarantee block diagonal domi-
nance of F-1 + G we aslell'l = lel'l s3

(corollary 3.4). This results to min(fy D)=z 2,688,

Thus the choice of F= diag{3.0,3,0,3.0 ,3.0} is
guaranteed to stabilize the plant (4, 1) (theorem
3.3).

Acknowledgement

The authors would like to thank Profcssor
G. W. Stewart of the Computer Sciences De-
partment of the University of Maryland for
bringing references [7-11] to their attention,

References
Selerences

[1] H.H. Rosenbrock, Computer-Aided Control

(7]

[9]

fo]

D. G. Feingold and R. S. Varga,'" Block
Diagonally Dominant Matrices and General-
izations of the Gerschgorin Circle Theorem,"
Pnac, J. Math,, Vol, 12, (1962), pp. 1241-
1250

R. L. Johnston, "Gerschgorin Theorems for
Partitioned Matrices', Linear Algebra and
its Applications, Vol. 4, (1971), pp. 205-
220,

R. L. Johnston and B.T. Smith, "Calculation
of best isolated Gerschgorin Disks', Numer.
Math. 16, (1970), pp. 22-31,

M. Fiedler and V. Ptak, ""Generalized Norms

of Matrices and the Location of the Spectrum>
» Czech. Math. J., 87, (1962),

pp. 558-570,

J.L. Brenner, "Gerschgorin Theorems,
Regularity Theorems, and Bounds for
Determinants of Partitioned Matrices',
SIAM J. Appl. Math., Vol. 19, No. 2,
Sept. 1970, pp. 443-450,

C.A. Desoer and M. Vidyasagar, Feedback
Systems: Input-Qutput Properties, Academic

Press, 1975,

System Design, Academic Press, Inc. ,
London, 1974,

[2] H.H. Rosenbrock, "Design of Multivariable
Control Systems Using the Inverse Nyquist
Array'' Proc, IEEE, Vol. 116, No. 11,

Nov. 1969, pp. 1929-1936.

A.G.J. MacFarlane and J.J. Belletrutti,
"The characteristic locus design method',
Automatica, Vol. 9, No. 5, September,
1973, pp. 575-588.

(3]

[4] A.G.J. MacFarlane, "A Survey of Some
Recent Results in Linear Multivariable
Feedback Theory", Automatica, Vol. 8,

No. 4, July 1972, pp. 455-492,

M.K.Sain, T L.Peczkowski, T L. Melsa
(Edts.), Alternatives for Linear Multi-
variable Control, National Engineering
Consortium, Inc., Chicago, 1978,

(5]

[6] N.R. Sandell, P. Varaiya, M. Atha. s and
M. G. Safonov, ""Survey of Decentralized
Control Methods for Large Scale Systems',
IEEE Trans. on Automatic Control, Vol.

AC-23, No. 2, pp. 108-128, 1978,

350

- Fio. 3
P, A e
0 . —
s MARGIN = 0.372
T ®|
[while
—
—
@
x
o
&s
z
T
=z
=
-3 T Y T
:O—O. 2] 5_._09 10.9@ 15.098 26,79 25.08
g FREQUENCY (RAD) gy
i ) ] o = .
K
-3




