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Abstract

The basic problem addressed in this paper is
the development of better software for the comput-
er control of urban traffic. Previous research
indicates that the computer software, and espe-
cially the filtering and prediction algorithm, is the
limiting factor in computerized traffic control.
Recently developed techniques for the filtering,
prediction and control of point processes, the type
of statistics that occur in traffic flow, are used to
develop filtering and prediction algorithms to
facilitate the development of traffic responsive
urban traffic control systems.

I, Introduction:

At present, it is estimated that ''.... more
than 200 cities around the world are either oper-
ating computer traffic control systems or are
planning to install them' [1]. Of these, more
than 100 are in the United States [2]. One of
these, the Urban Traffic Control System in Wash-
ington, D.C., was developed under the auspices of
the Office of Research of the Federal Highway Ad-
ministration '"for the purpose of advancing the state
of the art of computerized urban traffic control"
[2]. One of the issues that was specifically ad-
ressed by the UTCS was the amount of improve-
ment that could be achieved by using a traffic
responsive control system instead of a so-called
Time of Day (open-loop) system. It was a source
of some surprise and disappointment that only
marginal improvements were found [2]. The pur-
pose of this paper is to describe some research on
improvements to the UTCS software that, the
authors believe, can significantly improve the
performance of traffic responsive systems.

A basic component of computer controlled,
traffic responsive, urban traffic control systems
is an algorithm for estimating and predicting the
traffic flow based on the data from traffic sensors,
There is evidence [2] that the filtering and pre-
diction algorithms are the major cause of the fail-
ure of the traffic responsive systems to perform up

1‘This research has been supported in part by
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to expectations. In the early versions of UTCS,
the traffic signed timing pattern could only be
changed every 10-15 minutes and so the data was
aggregated for 10-15 minutes. For this type of
aggregated data, diffusion approximations with
Gaussian statistics are probably valid and were
used in the design of the UTCS filters and pre-
dictors [3]. However, it must be remembered
that the system was operating open-loop for 10-15
minutes at a time. In later versions of UTCS,
where signal timing patterns were updated every
3-6 minutes and where critical intersections were
controlled in real time, these approximations
were no longer valid and the filter/predictors were
ineffective [2].

The authors of this paper believe that the
difficulty is that the data from traffic sensors
(normally loop detectors) are either:

i) a sequence of times tityees (ti<ti+1)

representing the activation times of the
detector or,

ii) the data in (i) together with some auxiliary
observations, such as the characteristics
of each pulse (e.g. duration).

In ahy case, the data is a point process that, in the
urban traffic case, is not Poisson.

Thus, the purpose of the research reported
herein is to use point process techniques to devel-
oped improved filter/predictors for use in traffic
responsive (nearly real time) computer control of
urban traffic. Two such filter/predictors have
been developed. The first is aimed primarily at
critical intersection control and is based on a
time-varying Markov chain model that represents
a linearization and discretization of the nonlinear
traffic dynamics., The second is based on a pla-
toon motion model that utilizes an exponential
distribution for headways between platoon leaders
and a log-normal distribution for headways within
a platoon. These are described in detail in the
next two sections of the paper. The paper con-
cludes with a description of current research on
this problem.

II. Markov Chain Model:

II. 1. An example of model description

The Markov Chain model described below can,
with minor modifications, be applied to a wide
variety of practical traffic situations. In the in-
terest of clarity of exposition, the model is der:}ved
for only one of them. The extension of thisderiva-
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tion to the other cases is discussed later.

The simplest practical traffic flow estimation
problem occurs in the case of the single, isolated,
intersection of two one-way, single lane streets.
In order to adjust the traffic light to, in some
sense, optimize (or even improve) the flow of
traffic it is necessary to obtain fairly good esti-
mates of the traffic queues upstream from the
intersection. In practical systems, the estimate
needs to be based on a minimal amount of histor-
ical data and on the signals from one, or more,
detectors positioned as shown in Fig. 1.

direction of flow
D ———EaE

D <« detector O = traffic light

Figure 1. Detector Location

Assume, for simplicity, that the light operates
on a simple, known, red-green cycle (no amber),
that there is only one detector and that the de-
tector is located n car lengths from the stop line.

The observed signal from the detector will be
denoted by y(t),

if no vehicle is over the detector
y(t) = { 1 if a vehicle is over the detector

In practice, time is discretized with a small
enough discretization interval (1/32 second in
UTCS) for each vehicle to be over the detector for
several samples. For simplicity, it is assumed
here that the data are sampled so that each vehicle
produces exactly one pulse (one 1).

Let z(t) denote the number of vehicles in the
queue at time t. It is well known that the velocity
with which vehicles cross the detector, and hence
the rate at which 1l's appear in y(t), is related to
z(t) [4]. One way to model this dependence is to
let

rate at which vehicles arrive at the
detector given that the queue length is k

Ak, t) =

Equivalently,

Alk, t) = Pry(t)=1]|z(t)=k, t]

A(n, t) =Pr[y(t)=1|z(t)=n, t] = 0

Also

A
M, ¢ = { Xkr
k

when upstream traffic light is red

when upstream traffic light is
green.

Similarly, let
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iu(k, t) = rate at which vehicles depart from the
queue given that the queue length is k.

So,
u(k,t) = Pr[1 departure |z(t)=k, t]

M(0,t)=0 forall t

and
Pr{more than 1 departure] =0

My, When downstream traffic light is
ulk, t) = { red
My when downstream traffic light is
g green.

Furthermore, assume that arrivals and depar-
tures, conditioned on z(t), are independent.

Examination of real traffic data shows that
the assumption of conditionally inhomogeneous
Poisson arrivals and departures is not strictly
correct. It is also obvious that the coarse time
discretization is throwing away useful information
about the velocity with which vehicles cross the
detector. There are three very good reasons for
making these assumptions despite the inaccuracies
they introduce. First, it will be seen that the
filter/predictor based on these assumptions tends
to ignore the extra randomness inherent in the
conditionally Poisson assumption. Second, exam-
ination of real traffic data shows that the time
dependence of vehicle arrivals caused by upstream
traffic signals is a dominant effect and this is
accurately modelled. Finally, the filter/predictor
based on these assumptions is extremely easy to
implement in a micro-processor, and can easily
be made adaptive.

It should also be noted that both the assump-
tion of a single lane street and the assumption
that the departure rate (u) is independent of the
downstream queue are inessential. They have
been made to simplify the development and can be

‘removed.

In any case, one now has an inhomogeneous
queueing problem with queue dependent arrivals
and departures. Define

m(t) = Pr[z(t) =k]
and
_ T
n(t) = [TTo(t) ™, (t) ....nn(t)]

Obviously,

m (t+1) Pr(l arrival, 0 departures|z(t) k-1]
Pr(z(t) =k-1]

+Pr[0 arrivals, 1 departure |z(t)=k+1]
Pr[z(t) = k+1]
+{Pr[0 arrivals, 0 departure|z(t)=k]

+Pr[1l arrlval 1 departure|z(t)=k]}
Prlz(t)=

or,
Trk(t+l)=)\(k-1)(l—p,(k-l))rrk_l(t) + (1-)\(k+l))u(k+l)1'l:k+l(t)
+ [(l-x(k))(l-u(k))+)\(k)u(k)]ﬂk(t)



Thus,

n(t+1) =@ (0w ()
(M)
and Prly(t)=1] = \Tt)me)

where

Q] {(6) = (L-A() (L-(i) +AGIuti),

Q] ;10 =A(i-1) (1-p(i-1)) .
1 1+1(t) u(i+1) (1-2(i+1)) , i=0,1,...,n
Qi,j = 0 elsewhere.

Where the argument, t, has been suppressed in
both )\ and y.
AT ®=120,8 M1, ... An-Lb) 0]

The problem is now formulated in such a way
that the filter/predictor derived by Segall [5] or,
equivalently, by Smallwood and Sondik [6] can be
applied directly. First, it will be shown, follow-
ing Segall, that this is a problem with linear
dynamics so that the Kalman filter as well as the
minimum variance filter, can be given.

Define

x (8 = { 1

§T(t)= [xo(t) xl(t) e xn(t)]

if z(t)# k
if z(t) =

Segall then shows that

x(t+1) = Q7 (E)x(t) +u(t)

y(t) = AT (£)x(t) + w(t)

where u(t) and w(t) are '"noise'' processes which
only take on values 0 or 1. Itis an important
technicality that both u(t) and w(t) are martingale
difference sequences with respect to the o-algebra
generated by the sequences {y(0), y(1), . y(t-1)} and
{x )y x(1), .ot Et)} One consequence of this
techmcality is that u(t) and w(t) are "white' noise.

II. 2. Optimal filter and predictor

Define: _}'_E_(t+1 It) least squares estimate of
x(t+1) given the observation

sequence {y(0), y(1), ..., y(t)}

Then, the one-step predictor, from Segall, is

Tz k-n-Tmz(t t)]
x(t+l{t)=Q (t)xtlt 1)+ T
DIezcek-1) - 0T )R cei-1)2]
(7 (&)-AT (DR (t ] £-1)) (2. 1)
%(1]0) =1 (0) (2.2)
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()= K(t[t-1)ER (¢ [t-1) (2. 3)

and S(t) is defined by
Sij(t)=Pr[xj(t+1)=l, y(t)=1 Ixi(t)=1 ]

It is easily shown that
S;5(6) = A(d, thu(i, &

(t) = ML, )(1-p(i, t)) (2. 4)

1 i+l

S;;0=0 J#L, jAIHL
And, the filter [7] is
[d1ag(x(tlt 1)) -Z(t)]x(t)

R(t]t)=x(t|t-1)+
[T e -1 - e)Eee-10)2]

(y(0)-A(0)%(¢ |¢-1)) (2.5)

where diag(X(tft-1)) = dia.g()'io (tjt-1), ... WX (tle-1)).

II. 3, Realization of optimal filter and

predictor

A straightforward calculation shows that
Eq. (2.5) reduces to:

(1-X(, £, (t]t-1)

- if y(t) =
T (LA, £)%;(te-1)
k()= { 10 (2.6)
A, t)x(tfe-1)
_— if y(ty=1

n
Z MG t)%, (tfe-1)

-

where use has been made of the easily demonstra-
ted fact that

n A
T (t[t-1)=1
i=0 !

Pre-multiplying Eq. (2.5) by Q (t) and comparing
with Eq. (2.1) shows that

[sToRiek-1)- Qe [diagh(tle-1)]x0]
D cek-1-a Tekek-1)2)
)X(tlt-1))

Fie4l)=QT(e)R(tt) +

(y(t)- )\ (2.7)

Next, by factoring § (t), it is possible to re-
write ST (t)X(t|t-1) as



[0 0 0
1ul) o 0 0
0 (1~p(1)) u(2) 0 0
§T(t)g(t|t-1) =(00 (1-u(2)) u(3) .
o . . .
Y. . ul-l) oo
00 - - Ce . lepn-l 0
(diag R(tle-1))A(t) (2.8)
=M (t)(diag K(t|t-1))A () (2.9)

Substituting Eq. (2.9) into Eé. (2. 7) and doing a
calculation similar to that which leads to Eq. (2.6)
gives

M () &t o) if y(t) =1
x(t+l]t) = T Tipy1 2 (2.10)
= Q(t)-M"{t)] x(tl-1)

I\_/—lr(t)g(t[tH[;( A OlEee-n y(t) =0

I (=X, £)%, (t-1)

i=0

It should be apparent that Eqs. (2.6) and
(2.10), coupled with Eq. (2.2) for initialization,
represent an algorithm for the minimum variance
filter /predictor which can be easily realized in a
micro-processor, see figure 2. This is especially
so since \(t), (_)_T(t) and M*(t) are all piecewise
constant and periodic. Even more importantly,
since the filter/predictor depends in a simple way
on )\ and y, it is easy to make the filter/predictor
adaptive. It will be shown in Section IV that an
adaptive filter/predictor is most desirable in this
application.

II. 4. Optimal linear predictor

The optimal linear one step predictor (Kalman)
is given by

gz(ti-llt):(_l'r(t)éz(t]t-lHk(t)(y(t)-LT(t)y_'Z_L(tlt-l)) (2.11)

At first glance, this appears to be substantially
simpler than the optimal nonlinear filter. How-
ever, the gain, k(t), presents a serious problem.

If k(t) is pre-computed off-line one has the prob-
lem of storing a genuinely time-varying (not piece-
wise constant) quantity. Worse, if one attempts
to make the filter/predictor adaptive pre-comput-
ing k(t) is impossible. The on-line calculation of
k(t) is a very tedious business at best.

II. 5. Simulation results

The simulations that have been performed thus
far have had two purposes., First, to provide a
qualitative comparison between the minimum
variance filter and the linear minimum variance
(Kalman) filter., Second, to provide a qualitative
verification for the time-varying model for the
traffic queues.

Comparison of the two filters is complicated
by the statistical nature of the result, Thus, the
best method is to compute the two conditional
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error covariance matrices directly and compare
them. A less attractive alternative is to estimate
the conditional error covariance matrices from a
Monte-Carlo simulation. The better method was
used here. However, to facilitate the calculation,
two simplifications were made:

1) QT(t) = Q_T a constant matrix

2) Sij(t) = qij(t))\(i, t) '_'qij)‘(i)

The second simplification is equivalent to assuming
y(t) and x(t+1) are independent given x(t). This is
not true in the traffic case. However, the purpose
here is only to show that there exist situations
where the nonlinear filter unequivocally outperforms
the linear one,

Once the above simplifications were made,
equations for the conditional error covariance of
both filters were found. These equations were
solved on the computer for several choices of Q
and \ with data, y(t), generated by Eqs. (M). The
results of these calculations are shown in Figs., 3
and 4 in the abbreviated form of the trace of the
error covariance. The values of Q, ) and 1(0)
used to obtain these Figs. are: - -

.998 .001 ,001 .2 0
Q=1.002 .996 .002 sAS L5 MmO
.003 ,001 .,996 .8 0

It should be noted that there is a substantial per-
formance difference in favor of the nonlinear
filter. It should be noted that, for other choices
of the parameters, the difference in performance
of the two filters is not as large. Of course, the
nonlinear filter always outperforms the linear one.

In order to obtain some verification of the
time-varying model for the queue formation it is
necessary to compare the y(t) generated by the
model with the y(t) measured on an urban street.
This has been done in the following rather crude
manner. Examination of detector data obtained
from FHWA Fairbank Research Center shows that
the detector signal is roughly periodic with period
equal to the cycle time of the traffic light. This
variation has been approximately duplicated, using
the time-varying model proposed above, in
A. Keogh's thesis [ 7 ]. Obviously, this does not
verify the model. It does suggest that the model
is reasonable,

Ultimately, the significant question is: Does
the filter/predictor based on this model perform
adquately? Plans for research to answer this
question are described in Section IV.

III. Queue - Platoon Model

III. 1. Headway distributions

It has long been recognized that one of the
most important parameters in the description of
traffic flow is the distribution of headways [8] [9].
The subject has been studied extensively since
the early days of traffic control and its importance
is primarily due to two reasons: first, it is rel-



atively easy to collect headway data and several
data bases exists, and second a successful des-
cription of the headway distribution is essential
for the modeling of traffic patterns and thus for
traffic signal setting, The statistical description
of headways (interarrival times in the point pro-
cess jargon) is the essential part in modelling the
underlying point process and the point of departure
of the modern theory [10] [11].

Basically two types of distribution models
have been proposed and tested for the description
of headway distribution: simple models and mixed
models. Of the simple models proposed, the
most successful fit to actual data, as various
studies indicate [ 9] [12] [13] was the lognorm-
al distribution, shifted to provide a fixed minimum
headway. The lognormal density function is given
by

2
P(h)=—l—exP(- Gnh-w) "y pso (3.1)
L oh/2m 20
while the shifted lognormal density is
2
p, (h)= 1 exp(- (nh-a)-p) ), h>a=0.
Ls o(h-a)/2m 20 (3.2)

There are various justifications of this fact.

The primary reason given is that multiplicative,
independent, identically distributed errors by
various drivers attempting to follow each other
combine to give a lognormal distribution. It should
be noted that the simple lognormal distribution
provides a very good fit for data from following
(or queueing) traffic. The mixed distribution
models are basically of the form

nf’ (3.3)

F (8)= YFy (§) + (1-§)F,
where F, . is the headway distribution of following
traffic and F; is the headway distribution for
free flowing traffic. The assumption of two sub-
populationsis clearly more realistic and several
studies have indicated a superior fit to real data
by distributions of mixed type [8 ]. The most
successful model has been recently described by
Branston [ 9 ] and utilizes a lognormal density for
following headways. Then, utilizing the assump-
tion of ''random bunches' originally due to
Miller [14] (i.e., that the gaps between platoon
leaders follow an exponential distribution) Branston
derives the density for nonfollowing headways.
The resulting model has the form

h
p(h)=hg(h)+(1-y)rexp -\b] | glx)expixiax  (3.4)
0

Here | is the percentage of following cars in the
overall traffic flow and 1/) is the mean interbunch
(or interplatoon) gap, two parameters that can be
rather easily estimated as will be discussed later.
This model provided excellent fit to data from
various traffic flow situations and is the one adopt-
ed here.

There are several reasons for choosing this
model: a) the parameters introduced by the model
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are natural and are important parameters for
filtering/prediction and (or) control, b) the model
can accomodate all traffic conditions (light, mod-
erate, heavy) and is valid for practically all
ranges of traffic flow and speed (a property that
has been verified from real data and which is not
true for simple models), c¢) the distributions
involved imply underlying stochastic processes
that can be completely described by a finite number
of moments (at most two), an important fact for
the development of simple but effective filter/
predictors.

In addition to the parameters ¥, )\, the model
requires two parameters |j,g for the lognormal
density of the following headways, where i is the
mean and ¢ the standard deviation of the natural
logarithm of headway (a Gaussian random variable).
To completely specify the model for a particular
link or section of a link in a traffic network, it
is important to understand the variation of the
parameters with respect to traffic flow and speed.
It was observed from real data [ 9 ] that |y and o
both decrease as traffic flow increases, although
often the variation is small enough to allow a very
good fit with constant |y and g, The dependence on
speed is more drastic. Both |y and ¢ tend to in-
crease with speed, but real data indicate that M
can vary widely for the same speed for different
traffic locations and or times, while g did not
show a similar wide variation. These established
facts are encouraging, and actually imply that a
periodic estimation of |y and ¢ is likely to be an
effective way of obtaining values of U and ¢ from
on-line data. Moreover this adaptation of the para-
meters can be done at a much slower pace than the
actual filter/predictor. This means that the re-
sulting filter /predictor can be made adaptive.

Finally for the determination of § and ) and
their relation to traffic flow rate the following
models were found to be in good agreement with
real data [9 ]. Let p denote the traffic intensity

_ mean following headway _ exp(u +é02) (3.5)
- mean headway - h ’

and )\* the flow rate. Then
# %3
A=A - /2

¥ =p -é(o-l)x*yz. (3.7)

(3.6)

Although, the above formulas are the results of
curve fitting real data from specific traffic loca-
tions, they can be used as a first approximation to
the relations between these parameters, because
experimental evidence indicates low sensitivity to
traffic location. In conclusion the model proposed
above provides an acceptable model for headway
distribution with many desirable properties.

III. 2. A queue-platoon model for urban

traffic flow

The model developed in this section for urban
traffic flows is based on the headway distribution

model adopted in the previous section. Each link
will be divided in sections in accordance with the



detectorization of the link. For each section of
the link the input and output traffic flows will have
headway distributions as described in III. 1. Notice
that the headway distribution model can vary (and
it should) from lane to lane. The required para-
meters of the model will be estimated at appropri-
ate intervals from actual data, or from historical
data as required. The effect of the link will be to
alter the parameter values as traffic moves down
stream.

The versatility of the proposed model is now
briefly indicated along with the ability to incorpor-
ate all desired situations. If the next downstream
section provides greater congestion than the cur-
rent section of the roadway, this will appear as
an increase in § for the next section, followed by
a decrease in y and o. Often, this change in
and ¢ will not be necessary. In case the current
section is in front of a traffic light which just turned
red, then the incoming flow parameters will be
adjusted to that § will increase and 4 and ¢ will
decrease gradually (according to time required to
form the queue). In addition, for properly located
detectors, the number of cars in this particular
section can serve as a measure of the queue in
front of the red traffic light. Similarly when the -
light turns green the § will decrease and |y and ¢
will increase accordingly to reflect the transition
from stopped queue to the level of traffic flow.

By appropriate variation of §, one can thus create
platoons or disperse platoons and thus realistically
emulate traffic flow.

To complete the model, a distribution for the
mark of the underlying point process, that is pulse
length, is also needed. As a first approximation
however, this is omitted here, although it will be
incorporated in the final point process model.

To summarize, the model requires the deter-
mination of 4 parameters for each section, namely
¥,As 4, 0, which will depend on traffic flow, speed,
time and location in general. This provides a
"local description'' of the underlying point process
which is realistic and allows the use of the modern
theory [11] to obtain filter/predictors.

IV, Current Research

The most important item among the current
research on this project is aimed at making the
filter /predictors adaptive. There are two rea-
sons for this., First, it is generally very diffi-
cult and expensive to collect, store and process
data on vehicular traffic flows. Thus, a filter/
predictor whose parameters are determined via
processing of off-line data is a very expensive
filter /predictor. Second, superimposed on the
variation in traffic flow with signal settings and
the high frequency stochastic fluctuations, there
is a significant slow (half hour or slower) varia-
tion. It is thus feasible to let a filter/predictor
estimate its own parameters, based on the datait
receives, over a period of 15-30 minutes while,
at the same time, it estimates the current traffic
flow parameters.

Another question of some interest is the de-
velopment of more effective control (signal timing)
algorithms. This is a problem that had been
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regarded as solved provided good estimates of
traffic flow were provided [2]. This conclusion
was based on the results for UTCS with a 10-15
minute up-date period for changing signal settings.
Once the control system is made more nearly real
time (3-6 minute up-date or less) the fact that one
is controlling a point process becomes significant
and the signal timing algorithms need to be opti-
mized for this.
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