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STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
IN OPTICAL COMMUNICA TION PROBLEMS

John S. Baras
Electrical Engineering Department
University of Maryland
College Park, Maryland 20742

ABSTRACT

In.this paper we present examples of stochastic partial differential equations
of the "multiplicative noise type " arising from laser communication problems.
The basic origins and generic structure of these equations are described and their
relation to general quantumn estimation and filtering theory explained. The major
part of the paper is devoted to explicitly analyze certain examples arising from
practical applications and to provide exact or approximate solutions with the help
of the underlying physical theories. Directions for future theoretical work are
discussed.

1. INTRODUCTION
In this relatively tutorial paper I want to discuss a variety of examples, most

arising from practical optical communication problems, which ledd to stochastic
partial differential equations (s.p.d.e.) with stochastic inputs multiplying a partial
differential operator applied on the state of the system. That is the resulting
p.d.e's are parametrically stochastic. Systems of this type are the natural ex-
tensions of linear finite dimensional systemns with multiplicative stochastic inputs.
What is more exciting is that the examples I am going to describe come from
quanturn optics and involve a considerable amount of physics in their understanding
This provides a link between stochastic variable structure systems in infinite
dimensions with a large and lately very active body of theoretical physics research
1 believe both fields can profit from this crossfertilization. On one hand the px-'e-
cise theory of stochastic variable structure systems can help in better understand-
ing some of the questions of quantum optics and on the other hand a large body
of techniques from quantum optics, which aims at approximate solutions of these
extremely difficult problems, can provide inspiration for the development of sim-
{lar techniques for variable structure stochastic systems.

Since this connection is my focal point, I will be deliberately informal and

often speculative, and I will rather emphasise the physical concepts than the math-

This work was partially supported by the National Science Foundation under grant
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ematical rigor. The references, especially in quantum optics, are by no means
complete and they basically reflect my own bias and limited knowledge of the sub-
ject.

Although it is not my main topic, I want to mention briefly optical waveguide

(1]

above. Popularly known as optical fibers, they provide us with the capabilities

problems as a source of stochastic p.d. e. problems of the type mentioned

to generate, guide, modulate and detect light. They are thin films of dielectric
material with a thickness comparable to the wavelength., They have been studied
heavily, understood well and are currently used in a great variety of applications
in medical instrumentation,communication systems, integrated optics. The simp-

lest example is a planar optical waveguide (figure 1)
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Figure 1. Planar Optical Waveguide
where T'l, i 2 n 3 are the indices of refraction of the three regions. The middle
"guiding'' layer can support modes when ﬂ2> nl, n 3 Approximately one has to
solve the wave equations
2 2
c(r) 3 Ezi(r) = AE(r) 1)
at

with appropriate boundary conditions, where r = (x,y, z) and 4 the 3-dimensional
Laplace operator. Due to impurities or deliberate variation the index of refrac-
tion varies with r. Realistically it is a stochastic process with r as the para-
meter variable. In corrugated wave guides [1],the boundary is a stochastic sur-
face (figure 2).
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Figure 2. Boundaries of a Corrugated Waveguide
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So we have two examples of stochastic p.d.e.'s with multiplicative inputs. Prob-
‘lems in this area include: a) properties of corrugated waveguides, b) distributed
feedback lasers (where bulk properties of the medium are perturbed periodically
or the boundary is perturbed periodically), c) electrooptic mode coupling e. t. c.
There are still interesting mathematical problems here but working devices have
been developed |

The non classical characteristics of laser communication systems are due to
the non-classical (quantum mechanical) character of noise at light frequencies. At
the low frequency part of the electromagnetic spectrum we have large quantum
densities of nonergetic quanta while at high frequencies we have very small quan-
tum densities of highly energetic quanta [2]. Accordingly we have to go to fre-
quencies corresponding to wavelengths of 0.1 mm before we get quantum energies
which are comparable even with rather low thermal energies {2]. Thus quantum
phenomena are masked by thermal noise and are not visible in the low frequency
end ef spectrum. Atradiofrequencies {low frequency end of spectrum used for tele-
communication) we have thermal noise with power per transverse radiation mode and

per bandwidth Af
P = kTAf 2)

where k is the Boltzmann constant [ 3] and T the absolute temperature in °K. At
very high frequencies approaching the infrared region of the spectrum equation (2)
is no longer true. The thermal noise power drops off very rapidly. 'Naive" think-
ing suggests optical communication systems for better performance due to low
noise., However, if you experiment, you will find a new type of noise appearingas
soon as the thermal noise begins to decrease. This is the so called '"quantum
noise'”, The most common manifestations of quantum noise are: a) spontaneous
emission by a laser amplifier and b) detection of light by a photodector., Noise in
a) and b) is ultimately determined by the measuring process of quantised radiation
and is, as such, a quanturn phenomenon. Plank's theory (quanturmn) gives the power
for one mode of the radiation field in thermal equilibrium with material bodies at

temperature T (i.e. the thermal noise power) as

- — 1 . 1
1""““{31:/1("1‘_I + z}' 3

where h is Plank's constant [3]. The term § hf is commonly known as the "sero-

point energy' (or vacuum fluctuations) of the mode {3]. The term
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is the Bose-Einstein factor and gives the average number of photons in one radia-
tion mode at temperature T [3]. In the low frequency end of the spectrum hf << kT
and omitting the zero-point power we get back equation (2) from (3). For T=300°K
and Af = 1cps the two parts of (3) are shown in figure 3 [3].
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Figure 3. "Thermal" versus 'quantum' noise power as function of

frequency from [3].

This is meant only as a brief review of the fundamental difference between noisein
communication svstems at low and optical frequencies. For details I refer the
reader to [ 3].

Optical communication in addition to & description of noise sources, requires
the existence of devices that can produce wtv.'e- with very controllable character-
istics. One-qualitative distinction between low frequency and high frequency rad-
iation is the degree of control we have over it. For a very nice discussion of this
and related issues see [2]. The point is, briefly stated, that while at low fre-
quencies we have almost complete spatial and temporal control of the waveforms
we generate, at high (optical) frequencies we loose this possibility rather quickly
(for example we can have spatial control of the field but the amplitudes tend to
fluctuate uncontrollably). The invention of the laser provided a source of very
controllable light fields, since it is an extremely intense source of essentially
identical photons. This changed the situation for optics and lead to new experi-
ments that required more than classical physics for their explanation (4).[5].
The use of quantum electrodynamics allowed a fairly complete treatment of the
laser which has been verified by experiments [4],{5],({6]. A typical gas laser
(figure 4) works as follows: a gas discharge excites the electrons of the atoms to

higher energy levels resulting in an inverted population between some atomic
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Flgure 4. A typical gas laser
levels, which amplifies electromagnetic radiation at a frequency corrssponding to
the atomic energy level difference. Aitoms of the 7ain medium can absord photons
or smit photons, The smission can be spontaneous, or stimulated due o activation
by the discharge {pump mechanism). The spontanecusly emitted power appears in
all radiation modes regardless of whether they are already occupied by photons or
not. Cn the other hand stimulated emission produces additional power for modes
already occupied by photons. This increase of power by stimulated emission is a
coherent procsss since it simply increases the existing 2xcitation of the radiation
mode at a rate that is proportional to the snergy already stored in that mode.
Spontaneous 2mission, on the other hand, is in no way related to the 2xisting sx-
citation of 3 mode and occurs at a rate independent of the energy stored in that
mode, Spontanecus emission is therefore incoherent and is exampie 2) of quantum
noise ncted earlier. In the iaser 7ia the pump mechanism {and the resulting ia-
vertad population) stimulated emission is =nhanced while photon absorption is jar
less probable. The result is a2 low noise amplifier. For details about lasers I re-
fer the reader to [1],{3]. In view of this discussion it should not be surprising
that quantum mechanical concepts and formalisms play a fundamental role in the

analysis of laser communication systems.

2. QUANTIZATICN OF THE ELECTRCMAGNETIC FIELD,
COHERENT STATES, FOCX SPACE

The need for the quantum mechanical treatment in optics, and therefore in op-
tical communication systeme,arises primarily {from the way light is detected, i.s.
the photoelectric effect. Photon counters are the inevitable device in a2 very large
class of optical communication receivers. Classical optics theory is squivalent to
one-photon quantum mechanical optics theory. That is you make the approximation
that there is one photon in the EM fleld and calculate the probability that it will de
somewhers in thescreen{on which you observe the diffraction pattern). This s
squivalent to classical intensity calculation, The Hanbury-Brown-Twiss sxperi-
ment [2] is the first one to detect correlations between pairs of photons. It 1s this

kind of statistics that became important since the invention of laser. This point is

]
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exemplified in [ 2] where I refer for an enlightening discussion. As Gla uber| 2]
states "The laser is intrinsically a non-linear device; it only works when the field
intensities become so high that the photons know a great deal about each other's
presence'. So classical (or one-photon type) arguments are clearly ata disadvan-
tage.

[ would like now to give a brief description of the quantization of the EM field
in an effort to make this paper as self-sustained as possible. I refer the inter-
ested reader to [ 4] [ 5] [ 7] for further details.

Let E(r,t), H(r,t), A(r,t) be the electric field,magnetic fleld,and magnetic
potential for the classical Maxwell theory, where r = (x,v, z) indicates the spatial
variables. Solving the wave equation, that A satisfies, with boundary conditions

obtained from a box-normalization we obtain

A(r,t) = };'; an(t)un(r) (5)
where 2
d qn(t) 2
+ e q (t)=0. (6)
n'n
dt

Then we usually think of q_as the '"position" variables and {ntroducing the ‘mo-

mentum " variables via

dqn(t) .
pn(t) = qt (7

we obtain the Hamiltonian for the electromagnetic field

H=T 3l wrarqwl. ®)
That is the EM field is equivalent to a set of harmonic oscillators. To quantize
the EM field [ B} we replace all ‘physical variables with operators. Thus we now
have position and momentum operators q , p which satisfy the commutation re-
lation

la.p 1=1* 8 9

*
Furthermore one introduces creation 2 and annihilation 2 operators for each

mode
o 1 '
n T Tﬁ—"—: (”nqn- il"n) (10)
a2 - ——ie— (8 q_+ip )
n JoEs n'n n
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to obtain for the magnetic potential operator the expression

A

2w
n

] RL * - joyt
Air,t)=c L { Je Kk 4+ k3.
r c n( ) ‘k“k(r e a u.k(r)e ] m)

The electric and magnetic field operators are

Etr,n= - 2AHEL Heo=L VxAw, 12)
and the hamiltonian operator becomes
E
=T A
H 3;' © (a_a +#) a3)

where the % ﬁmn term is usually omitted since it represents the zero point fluc-
*

tuations, The operators a8 are adjoints of each other [ 9] and satisfy the can-

onical commutation relation (C.C.R.) for a Boson field:

[a

*

* *
o’ am] = 6nm, [an,am] =0, [an,am] =0, (14)

In standard quantum mechanics one works with a complex Hilbert space X
which represents the states of the system [ 9], and utilizes selfadjoint operators
V (called observables) on X to represent measurable variables, If <., .> is the
inner product on X and v the outcome (a classical random variable) of the meas-
urement represented by V, the expected value of the outcome when the system is
in state y is

E{vl=<y Vvy. 15)

This formalism is inadequate however,whenever we do not have exact knowledge of
the state. So one introduces probabilities P that the state is y,. Then the ex-

pected value formula becomes

E{v]= E<ypVyP Rt (I Py >yl V= Tr(pV] a6)
where p is the selfadjoint, trace class (Tr p=1) [ 9] operator on X defined via

px = {. Py <Y X> Vg - 17)

This operator p is called the density operator or the state of the quantum system.

In a standard notation [7]-[9] we denote by the dyad |nk> < nkl the pure
state of the EM field, where the kth mode has n.k photons. The ground state of a
mode has no photons, energy equal to the sero point fluctuations and is denoted by
|0k> < ()k | . The name of the operators .n' a: comes from their action on such
states

7
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(18)
¥ lo> = (o lna>
k'K "k i S
The vacuum (ground state) has the property
ak|0k> = 0. . (19)

These states (so called energy eigenstates) are useful in the analysis of problems
involving few photons. However they are not convenient in situations with many
photons (e.g. lasers). A different set of states are very appropriate for the latter.

These are the so called coherent states introduced originally by Schrodinger and

emphasized by Glauber [10]. They are the eigenvectors of the annjhilation oper-
ator a (for simplicity we discuss a single mode here), and are usually denoted by
la>:

ala>=ala> . (20)

Note that (20) can be interpreted as: substraction of a photon from the state leaves
it unaltered! So indeed we do not have a specified number of photons in a coherent
state. Rather,the probability that a coherent state la> hasn photons is given by

the Poisson probability

2
lalZne-Ial .

n!
These states form an overcomplete set in the sense that their inner product gives

<tla>-exp (Ba-21815-21al®) (22)

while

~

—;— |a><a‘d2a=l. (23)
The extension of this model to a multimode field gives rise to the so called Fock
space of quantum mechanics [11]. If you like to see concrete objects, the Fock
space for a single mode is isomorphic to the following function analytic model due
to Bargmann[12]. The Hilbert space consists of all entire functions of a complex

variable with inner product

P 1 -
<f,p> = f (z)g(z); exp (-z z) dz. (24)

.

The operators 3, A look like ?a; and "multiplication by £" respectively. This
space of entire finctions has very nice properties [12]. Strong convergence im-



plies pointwise convergence. The evaluation functionals

f > f(a), a complex (25)

are bounded and give thus rise to principal vectors °. such that

<e,f>= f(a) (26)
and

e, (2) = 7 27

The coherent state |a> corresponds to

* - 4
exp( - ———

5 ) eg - 29)

It is a reproducing kernel Hilbert space with kernel

Kiw,z)= e~ . (29)

Every bounded operator on the Fock space is represented with an intergal oper-

ator with kernel

TL(w,z) = < e’ Lez> . (30)

The Weyl operator [11]
W) = exp (Aa' - Xa) (31)

gives rise to the Weyl characteristic function for the density operator o via

X (\)= Tr{pexp(ra - 3a)}. (32)

This is really the analog to the classical characteristic function, save for the fact
that Fourier transform is non-commutative here. The inverse Fourier transform
of X(+) is the Wigner-distribution function [11]. We clearly have other choices for
the Fourier transform since a, n‘ do not commute. The normal characteristic

function is given by

X (A = Tr{o exp (A a’) exp (<X a) ). (33)
Now if p has a P-representation [8],[10]

p= Ip(a)‘c><c|dza, (34)
then

XM = [ P(@) exp 07 13 RPL (35)

and going to real variables we see that P(a) is the Fourier transform of XN(X Yo
when ever it exists. The importance of the P-representation stems f{rom the fol-

*
lowing fact: for Mn(a‘,a) s normally ordered operator {i.e. a power series ina ,

2
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*®
a,where a appears to the left of a) expected values for the corresponding measure-

ment outcome can be easily computed by (81,
* - 2
Tr[ cMyla ,a)] = Ip(a) M(a,0)d” @ (36)

where M(;, @) is a scalar function of the complex variables ;, o,
To summarize, the importance of coherent states is due primarily to:
1) they are very good models for lasers operating above threshold,
2) they are related to some very important experimental results in optics

abouthigher order coherence of laser beams (for details see[2], [ 5] ).

3. BILINEAR STOCHASTIC P.D.E. FROM QUANTUM OPTICS

The state of the quantumn system is an operator p, trace class, selfadjoint on
some complex Hilbert space X, with Tr(o] = 1. Let J" () denote all trace class
selfadjoint operators on ¥ . IfHis the Hamiltonianoperator ofa closed system then
it is a consequence of the Sch rodinger equation, that p evolves according to the
equation [ 9], [11]

Ao
t

37 - -ilHo] (37)

or in integrated form for time independent H,

where we have adopted the normalization # = 1. Depending on the particular repre-
sentation of X, the operator His a typical unbounded selfadjoint operator. The in-
finitesimal generator of the strongly continuous group of isometries Tt is the op-

erator

Z(o)= -i(H,p) = -iadyp

with domain #(Z)= foed ) |  pe #(H) S #(H), and Hp-pH is norm bounded on
§ (H) with an extension to a trace class operator on X } (n].

For the time independent case (37) has been studied heavily and for an inter-
esting account I refer to {11]. Quite often however, the situation arises where the
Hamiltonian depends upon a random process X,. Then (37) becomes clearly 2
stochastic operator diffe rential equation with multiplicative excitation. In any
representation for K that is useful for computations, the state ope rator p will ap-
pear as an integral operator and then (37) will take the form of & stochastic p.d.e.

for the kernel of r, with multiplicative excitation. This is in short, the way that

X
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s,p.d.e. arise {rom quantum optics. Nhat we have here also is 2 random fleld
and 2 way to describe it. Unfortunately even for simple cases the rigorous treat-
ment of (37} with stochastic Hamiltonians is very complicated and very little is
xnown in general. Physicists however have developed an impressive stock pile of
formal or approximation techniques to handle such squations depending on the
values of some relevant but important parameters, I believe that these methods
can provide the inspiration for the development of similar methods for stochastic
bilinear systems. I now proceed to give some concrete sxamples and their solu-
tion.

Since I am primarily interested in laser communication probiems the frst wo
exampies describe two common ways that signals are carried by laser beams.
These are amplitude and phase modulation of laser beams using the slectrooptic

effect. The electrooptic amplitude modulation is described in figure 5 below.

. x +
3 ‘\,\ i m'l S ":;’:
= | hs ;:} —
::f:: B/ 3 \‘ eut i.
quar ~pu
i, t » k- c.
?o}z:nzcr z :z:réa4 F; to ;-Of

I to x @

Figure 5. Electrooptic amplitude modulation for laser beam Q].

By applying an electric fleld along the z direction in certain crystals it is pos-
sible to eifect a change in the index of refraction that is proportional to the feld.
Certain crystals have an "ordinary’ and "extradordinary' ray with different in-
dices of refraction. The linear 2lectrooptic effect is the change in the indices of
the ordinary and extraordinary rays that is caused by and is proportional to an ap-
plied electric field. In the figure above x', y' are the electrically induced princi-
pal axes of the crystal, When the slectric fleld is on,the polarization of the incident
beam is rotated as it goes through the crystal and passes through unattenuated.

On the other hand with the field off the input beam is completely attenuated. For
3mall magnitude of the applied voltage V(t) we have IO/Ii proportional to V{t). Then
the interaction Hamiltonian for the quantum mechanical description of the ampli-

tude modulation is modeled by

3
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x
Hopq " -igfit)fa -a ] (38)

where g is the coupling constant and f(t) may contain stochastic variations.
Next we consider phase modulation. The same phenomenon can be used as

shown below,

P“Q“ moclu!qtul
d:——_? z > cutput beawm
Bc',a-.

D

v
Figure 6. Electrooptic phase modulating of a laser beam nl-

Here the incident field is polarized parallel to x!} the induced birefringent axis.
In this case the application of the electric field along the = direction does not
change the state of polarization but merely the output phase, by an amount propor-

tional to V. In this case the interaction Hamiltonian is modeled by

*
Hp, = gflthaa (39)

where f(t) can have stochastic fluctuations.

The final example is that of optical parametric oscillation and amplification
[1]. The classical analog is: consider two slightly damped harmonic oscillators,
call them "signal'' and 'idler' with frequencies Ul and 2 and damping constants
kl and kz. Let these two oscillators be coupled by some "parameter',and modu-
late this parameter with a harmonically varying F of {requency 03. A simplecal-

culation shows that provided the matching condition

e - ow_ |
TR PILR T

is satisfied, the effective damping in both oscillators is reduced, and above a cer-
tain threshold value of F self-sustained oscillations take place. The W3 oscillator
is called the "pump'’. Below threshold such a device is called & parametric amp-
lifier, above threshold we have the oscillator region, If the two oscillators coin-
cide, it is called degenerate parametric oscillation or subharmonic generation.

In classical physics, one could imagine a situation in which there are no fluctu-
ations. However, the situation changes completely if #ignal and idler are quan-
tized, Zero-point fluctuations of these oscillators will always be present and these

are sufficient for the build up of self-sustained oscillation. So we should study
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parametirc oscillation in a set up, w~here quantum phenomena can be observed and

therefore the sffect of noise can be understood. This is done a3 follows in optics:
signal and idler oscillations 1re provided by *wo modes of the slectromagnetic
field. The coupling parameter is the susceptibility of the medium (P = polariz-
ation, E = electric fleld, P = so x‘ E) in which the slectromagnetic modes pro-
pagate (a nonlinear crystal that is). U we choose a medium whose susceptibility
depends linearly on the slectric fleld we can modulate this coupling parameter by

shining in a powerful beam of laser light of Irequency » 3

mirvrors,
transparent at w,,
PAL flecting atw,,®,

Laser L_%__1 |- X’X.+X‘.‘_E e O Cetector

vronlinear
crysta?l

e’

Figure 7. Laaser parametric amplifier{4].

Generation of optical signal and idler modes has been achieved experimentally but
requires phase and momentum matching. Now the importance of noiseis paramcunt
hers, Moreover this device is extrsmely useful because it is Sunabie ' {contrasted

with lasers which are not). The interaction Hamiltonian in this case can be ei-

fectively modelled by

- i z % L
Hpa= X (a3, =25 2)2,)
(40)

® *
-1 (F (t)a3 - F(t)t3 )

Heat baths must be included here to model damping. Again F(t) can contain acise

which has serious effects here.

Notice that the examples given here are relatively simple in the sense that
the Hamiltonian operator is a memoryless fanction and linear in the stochastic
excitation. Nonlinear memoryless functions as well as functions with memory

are possible. All examples I desc ribed thus far lead to stochastic evoiution eq-

uations of the type

d
-d-;{(t) =(Z°+A(xt))f(t) {41)

where x, is a stochastic process and {(t) lies ina Banach space 8. When the pro-

a3
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cess x, is stationary or Gaussian the work of Hida [13] [14] appears to be usefulin
;mlyzing this type of stochastic evoluﬁon equations. In relation to this see also
the work of Balakrishnan [15]. Asymptotic properties based on different time
scales for f and x _have been studied by Papanicolaou and Varadhan [16]. The ex-
act theory of (41) is going to be at best very technical and complicated. Here phy-
sicists employ several useful techniques to analyze equations like (41).

To study dissipation and losses in quantum mechanical systems,and in orderto
simplify dynamical equations,physicists go from closed systems to open systems.
So instead of studving the full evolution (37), they try to deduce the dynamical eq-
uations for a simple but important (for the particular problem) subsystem. The
system becomes open in the following sense: it is represented by a Hilbert space
K and state f and is coupled to a reservoir represented by a Hilbert space J. This
is also motivated by the irreversibility of many real systems. The total system is

represented thus on the space K®JF with the Hamiltonian
:H?:®I+IOK3+XHI (42)

where )\ is a coupling constant. Initially the two systems are uncoupled and the

initial state is ;@ 7, . At time t the state is

£ = '1Ht(o®o )eHE (43)

To find the evolution of the relevant part of the state we trace over the reservoir

variables., That is if B= -T‘ X®3) and '0 = J;(K) the partial trace is a bounded lin-

ear map

characterized by
Tr| (POX)A] = Tr[ X(A®1)] (44)

for all Xe 8 and A‘:i.s(}f). ldentifying p € Bo with p® Pge 8, makes P, a projection
of B8 onto 80' Let

7,{.")=-i[H.K®I+IQ'.K3,p] (45)
Alc) = -i[HI,o]

and by projecting (43) (note ZP, = POZ) we get the dynamics of the system's state

L (Z4NAR
(CPye ol,Voeao. (46)

This is a special instance of a general procedure which leads to Master equations

{6], [11]. Namely let Py be a projection on a Banach space 8 and setBp= Pg 8,

M
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P,=1. Po, 31 = ?I" Let Z be the generator of a strongly contimuous group of iso-
metries Ut on B, such that UtPo = ?OUt' Suppose A is 2 bounded perturbation of
Z. Ifos BD is the initial state,the state at time t is given by {46), where ) is a

parameter, ILet

= = P = = rd
Aij PiAPj ’ Zi Z‘i Piz, i=90, 1 {47)

and define Iz+,\ {A00+ An)} )
U'= e . {43)
It is shown in (11) that o, ias a solution of

t

d - 2 a
G %7 (2t aagdo 4t ] A01Vt0 410 %0 4° (49)

0=0
which is an sxact equation on '0 (the state space of the subsystem of interest, and
not on B). This is the general form of Master equations. At this point approxi-
mations are introduced such as neglecting memory sifects, which ars usually sat-

isfied by the relative length of various relaxation times. This leads from {49) to

d 2
gt %= (2ot A At A Ko,

N 2,0 -0 (50)
X = J‘A[)le Ame deo .

0

This method relies on the existence of 2 small parameter and it is usually rery

successful if coupled with our physical knowledge about the system, and in part-
icular the relative range of coupling parameters. For stochastic evolutions the
situation is more complicated, However, results sxist utilizing this approach,
where the role of PO is played by the expectation operator over the statistics of the
fluctuating input. This way we can generate approximate moment squations. I
believe thatthis method can also prove to be very effective in variable structure
stochastic systems and large scale systems analysis.

Another approximate method directly related to my main topic is the use of
classical or quasi-classical states in quantum optics problems. This utilizses the
P-representation discussed in the previous section. For a rigorous discussion I
refer again to [11]. The idea is then to translate (37) into a p.d.e. with two spa
tial variabies. I restrict the discussion here to the single mode case for aimpli-
city. This program is easily sxecuted once the Hamiltonian is given, since in all
cases of interest it is a polynomial in the operators a and ;*. For such computa-

tions we typically need to calculate the P-representation of operators of the form

3
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ap,pas, a*o, oa*, ~aa, a’ap, Oaa‘, noa‘, a*pa. That is each of these operators
can be written in the form

r 2

fk(a) Pla) |a><a|d a (51)

3 - 3 — -
where k(o) is a, o - YK a- 35 o, o0 @
- - 2 > — @
aa,ltae - %" 33° + Sosz for the operators above, inthe same order. The

end result of such a computationisa p.d.e. ofthe Fokker-Planck type. Weillustrate
with the examples above,
First we consider phase modulation. From (13)and (39) the total Hamiltonianis
H=waa+gi(t)aa. (52)

Suppose we are interested in states that have P-representation. Then P satisfies

d d . 2

——’—’ai"?'——'l - - i(@-gft) (35 & -3 @) Pla,t) (53)
and going to real variables, @ = x+iy

3 Pix, v, t) ) 3

e = - @ -g ) (y 53 - x 37) Ploy.t) (54)

which is clearly a degenerate Fokker-Planck equation. If f(t) is stochastic this is
a s.p.d.e. Since f(t) is a signal, it is not natural to assume that it is white noise,
rather it is generated by a stochastic differential equation driven by a Wiener pro-
cess. Then essentially we can solve (54) sample path by sample path. For more
details about equations of this type I refer to [17]. In polar coordinates (54)

becomes

3P(r, 9, _ 3
Y = (W gf(t” 20 P(r, eot)° (55)
Now if the initial state is a coherent state then Po(a) = 62( a-co). One way to
solve for P(x,y,t) is to add a ''diffusion term"' in (54)
.2 2
o}
2 2

) Pix,vy,t)

which will give a Ganssijan solution for a 8 -function initial condition and then take
the limit as b # 0. This will give us back a 8-function. All this can be made

very precise since this new Fokker-Planck equation corresponds to the stochastic

dxt 01 x, 10
dv, =la-gf]i o y, dt +b| . |dw, (56)

d. e.



for which we can compute the densities. So if we start with 2 coherent state wa will
have acoherent state at 2111 ¢t. Another way to see this is o0 cbserve that the soiu-
tion %o {55} is simply
t
Plr,9 + wt - I gf(s)ds, 0).

0
The coherent state is thus the solution of

4 - , 2
= aft) = - i{w - git)) 2{t)

{s7)
x(0) = @, .
Now this is an exact result {or stochastic inputs with appropriately continucus sam-
ple paths., Both (57) and {56) with b= 0 are stochaatic bilinear squations on thecir-
cle, 80 results on filtering problems for such state equations [13] can be apolied
here. 1 want :o maks two remarks now., First observe that in reality the laser
beam will be coupled with a reservoir that produces decay and loss=s and therefore
we will get a 'diffusion term' in the Fokker-Planck squation. Second the coherent
state approximation is a very gocd one for lasers operating above threshold Isee
previous section).

The situation is very similar for amplitude modulation. The lotal Hamiltonian

from {13) and {38) is
* *x
H=ma a~{zf(t) {a-a ). {58)

In a similar fashion if we use coherent states approximation we obtain the degen-

erate stochastic Fokker-Planck equation

3P(a,t) _ 2 - 2 3,23
e -1o (3355 a)Pa,n- g1 (55 33/ Pla.)
{59)

or

) 3 3 3
_13_(53,_3,_9 = ~w(757 - xgj) P(x.y.t)-gf(t)g Pix,7,t). (60)

Again if we start at a coherent state o _ = x0+iyo we have 2 coherent state at all t

0
whers
ﬁ
d [=t| _ ,[o1] [= 1
at [y(t)] =0 [-1 oJ [y(t)] *3i) [o} {61)
or t
a(t) = ;mt ay + J‘ a-im (t-s) g i(s) ds. 62)
0

The final example refers to coupling during propagation and resulting losses.

This is very important for communication problems and refers to the transmis-

n
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sion of the laser through the channel medium. Here one combines master equa-

tions and coherent states approximation. The total Hamiltonian is now

+zw * +2 *ata 63
H=%a a K%k %% gk(akl ltk) (63)
k
EM mode reservoir interaction

where g, are the coupling constants with the heat bath that is usually modelled as
an infinite set of harmonic oscillators. The usual assumptions about the reser-
voir are: i) it is in thermal equilibrium before the interaction and ii) it is a very
large system weakly coupled to the field so its thermal equilibrium is never dis-
turbed. Utilizing first master equations [ 6] one obtain the d.e. for the density of

the field

= - i(w+d) [a*a,o(t)] +k [[l,D(t)l‘] +{an(t), “] }
+2kn{a[ptha’l]. (64)

The parameters -, k, n, characterize the influence of the heat bath and represent
a frequency shift, a damping constant and the average number of photons at the
frequency of the mode (4 ). By incorporating the frequency shift in @ and using

P-representation we obtain the Fokker-Planck equation

QP(a,t d - . \ 3 - .}
—_—"t ). 'iw(a& @ -3 a}P(a,t)+k(—aaa+—-—ac c)P(c.t)
a2
+2kn 3035 P(a,t) (65)

or

3Pyt -w(v‘?‘"‘%) Plx,y,t) +

2t dx 3
2 2
-] 3
+x( x5 +y-5-+ z}p(x,y,m k2 (——+ —z_) P(x,v,t).
x" ¥y
(66)
This is equivalent to the linear stochastic d.e.
dx -k w x dw
] . tlaee| ®7)
dytJ al B R A ¥

where Wi Wap 2Te independent (O,k;) Wiener processes. The solution of (66) with
a b -function initial condition is well known, It is a Gaussian density with mean and

variance calculated from (67). In complex form (67) becomes
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dat: (-k-im)a*dt+dw,, {63)
with w, complex Brownian motion. So the solution to /65) with initial condition
S(a-a )i ’

(@ ao) is 5 ‘L’x-iw,\qz
1 «- @ i

Pla,t) = _‘.—-2-; exp {—_ Zk:tl, } {69)

ma{l-e” °%%) a{l-e )

Thus we aee that the effect of such a coupling is to turn a coherent state to a state
with a2 Gaussian P(-) in its Rrepresentation {34).

W2 can now deduce the state transformations occuring when we first modulate
and then transmit a laser operating above threshold., The mocdulation will shift the
initial coherent state and the propagation will turn it into a quasi-classical state
with Gaussian P-representation.

4. FILTIZRINC PROCBLEMS

In communication problems after modulating *he carrier by the siznal, and
propagating through the channel we raceive it. At the receiver we must maks
3ome sort of measurement and then process the measursment outcomes to obtain
estimates of the signal with respect to 2 fidelity criterion. For us this critericn
will be the minimum variance of he 2rror between estimate and signal,

As it was explained in section ] and 2 quantum mechanical formulation of the
measurement process is required, when analysing laser communication systems.
However the traditiona] quantum mechanical formalism {section 2) is not adequate,
The reasons is that when transmitting vector valued signals, traditional quantum
mehcanics permit simultaneous measurement of compatible observables [ 7] [ 9].
Detection and estimation problems in thia area demonstrate however that it may
be advantageous to attempt "approximate’ measurements of aoncompatible obsery-
ables [7] [19] [20]. I refer to these references for further details on the general
measurement formulation. Davies in {1]hasa very enlightening discussion of this
issue and provides a canonical example of "approximate” simultaneous measure-
ment of position and momentum. The resulting model is a positive operator valued
measure, that is a mapping M from the Borel J-algebra of {the value space of
the measurement process) 8~ into the space iaﬁ(') of self-adjoint bounded oper-

ators on X with the properties
LI M(B,)= M({U3)
i i i

M(B) 2 0 (70)

M(RMy = 1
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for B Be 8" and the operator equalities are interpreted in the weak operator
sense, The outcome of the measurement is a classical random variable v€ R"

with distribution function

F (A= TroM(A)], Ae o (1)

when the quantum system is in state p. In view of Naimark's theorem [ 7] [19]
this measurement is actually realized by adjoining to the inital system (,0) an
auxiliarysystem (Ke. <) and then performing on the augmented system (.KOKe,

p® oe) simultaneous measurements of compatible observables, characterized by

the spectral measure EM. That is

Tr( (pE 1) By, (A)] = Te[p M(A)], Acs”, (72)

Finally I would like to bring together all these concepts and meth-
odologies in analyzing a filtering problem in a laser system. We imagine a laser
beam operating above threshold which carries a two dimensional real signal as
its in phase and quadrature amplitudes, xl(t). xz(t). Suppose the two signal pro-
cesses are inputed on the laser by amplitude and phase modulation techniques.
We would like to utilize quantum mechanical measurements on the beam to obtain
the minimum square error estimate of x‘(t) and xztt). We assurne that the laser
has one mode i.e. it is monochromatic and that has been contaminated during
transmision (i.e. heat bath). Now if we formulate the problem starting from
Hamiltonians and all that the problem will become to look unsolvable. Let us
utilize what we have developed. Since we are above threshold we can model the
laser initially by a coherent state. Then we know that modulation will change the
laser beam only by changing the coherent state (see equations (57) and (62)).
Finally by amplification we can neglect damping, so that we can take k=0 in (69).
So that the received field will have a gaussian Pla).

| a- (x () +ix, (0]
X1 2 } 73)

l {
(>x,t) - -
P exp =

where by abuse of notation we set the signals Xy Xy as the shifting arguments of
the coherent statr. Actually xl(t). xz(t) are linear functions of the true signals,
but we can retrace the operations backwards.

Suppose now o <tart making measurments on the beam. We represent these
measurements by n.o, m.'s. Since we need two measurement outcomes we con-
sider p.o.m.'s on F ‘ . Ideally you would like to make one measurement at dis-

crete instances of time i, e, by beam splitting e.t.c. The problem becomes

40
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quickly intractable again because of another fundamental theorem in quantum
mechanics [ 9] [11]: '""The state after measurement of a discrete observable

changes. If Pi is the projection to the ith eigenspace of the observable the state
Pip Pi
"

Tr(pP,)
one measuring procedure for all times and process its outcomes in an optimal

after the measurement is Pi = . Instead we restrict ourselves to use
fashion. This at first seems restrictive but we defend it by the following argu-
ments: 1) it is certainly very realistic from the engineering point of view ii) it
has been shown in similar problems [ 20] that it is a very good approximation
after all! Before we proceed,we know that we can safely assume that if the orig-
inal modulating signals were derived from a linear stochastic differential equa-
ation then the same is true for xl(t), xz(t). So we can tracing back the calculations
write

xl(t)

d X, (8 = A x@)dt + B(t) dw, (74)
We further think about the '"quantum mechanical meaning" of (73). Recall that
a+ a* corresponds to q (or to H) and a-a’ corresponds to p(or to E) from our dis-
cussion of the electromagnetic field. Now X, is clearly related to Re o, X, to Imec
and therefore to a+ a.* and a-a* respectively. So what we have at hand is a
problem of simultaneous estimation of p, q. So it makes sense to look for "ap-
proximate' simultaneous measurements of p,q. We know that such things exist
[11]. It can be shown through our earlier work [ 20] that the optimum p.o.m for

the estimation of xl(t), xz(t) is described by

M(A)=-;—I|a><°|d2a. -
A
Then we can compute the joint density for the measurement cutcomes Ypr Ype
v 55X, (L), x, (¢t
P (:(t)cl :(1:,) 2 ’): Tre[p(x(t)) |la>< a] _}r_]
(s -x,(t) )Z
= wem <P -~ )

2 (76)
coxn (- S -ﬁtzl(t))
e e e—

This is the same as saying that the measurement out@ omes can be represent“ as

y(t) = x(t) + vy (77)

where \ is a white noise process with mean sero and variance 2—;‘—1 .
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But then the minimum variance filter for the problem is well known since (74) and
(77) constitute a classical problem., Itis Kalman filtering. Next question you
want to answer is how to implement it. You need the realization He, oe' EM.
You can show that if you take a local oscillator at its ground state oe= !0e>< Oel,

then M is equivalent to the simultaneous measurement of

*
a : a +a
s a e e
—a]-[® P (78)
onXQeX |
% e
a * a -a
-3 > e
and > sl+le——=
w1l wl

and this is called optical heterodyning.
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Y

output

NN AR
-]

Local

oscilla tor

iz, 8. Optical heterodyning.
Further work is nrcessary to establish rigorously the solution to similar filtering
problems,
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