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Abstract: In this paper we consider the problem of detecting which Markov chain model generates
observed time series data. We consider two Markov chains. The state of the Markov chain cannot be
observed directly, only a function of the state can be observed. Using these observations, the aim is to
find which of the two Markov chains has generated the observations. We consider two observers. Each
observer observes a function of the state of the Markov chains. We formulate a binary hypothesis testing
problem for each observer. Each observer makes a decision on the hypothesis based on its observations.
Then Observer 1 communicates its decision to Observer 2 and vice-versa. If the decisions are the same,
then a consensus has been achieved. If their decisions are different then the binary hypothesis testing
problem is continued. This process is repeated until consensus has been achieved. We solve the binary
hypothesis testing problem and prove the convergence of the consensus algorithm. The “value” of the
information gained through 1-bit communication is discussed along with simulation results.
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1. INTRODUCTION

Hidden Markov Models (HMM) are models in which the state
of the Markov chain cannot be observed directly, instead only a
function of the state can be observed. These models are used in
speech recognition, econometrics, computational biology and
computer vision and many other fields (Cappé et al. (2005)).
The hypothesis testing problems have been well studied in lit-
erature, one of the standard assumptions being that the observa-
tions are i.i.d. Hidden Markov models are instances of models
in which observations have memory and hence are not i.i.d.
Chen and Willett (2000) have formulated the problem of quick-
est detection of transient signals using hidden Markov models.
They develop a procedure analogous to Pages test for dependent
observations which can be applied to the detection of a change
in hidden Markov modeled observations, i.e., a switch from one
HMM to another. Lalitha et al. (2014) consider the problem
where individual nodes in a network receive noisy observations
whose distributions depend on the hypotheses. They analyze
an update rule (for the belief of hypotheses), where each agent
performs a Bayesian update based on local observations and
a linear consensus among its neighbors. They prove that the
belief of any agent in any incorrect hypotheses converges to
zero exponentially fast.
Alanyali et al. (2004) address the problem where N sensors are
observing an event and obtain noisy observations. The sensor
network is modeled by a graph and the sensors are restricted to
exchange messages alone. They characterize conditions under
which the N sensors achieve consensus and derive conditions
under which the consensus converges to the centralized MAP
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estimate. Nayyar and Teneketzis (2011) consider the problem
of sequential decentralized detection where each sensor makes
repeated noisy observations of a binary hypothesis. At each
time the peripheral sensors need to decide whether to continue
making costly observations or to send a final decision to the the
fusion center. The fusion center is also faced with a stopping
problem and needs to take into account the decision of the
peripheral sensors. They provide parametric characterization of
the optimal policies for the peripheral sensors and fusion center.
In this paper, we consider two Markov chains and two ob-
servers. Under the alternate hypothesis, each observer observes
a different function of the state of the first Markov chain. Under
the null hypothesis, each observer observes a different function
of the state of the second Markov chain. Thus each observer
has its own sequence of observations. Given two sequences of
observations (one for each observer), the objective is to find
if the sequences were generated under the null hypothesis or
under the alternate hypothesis.
An example of this scenario would be when there are 2 cameras
observing an environment/scene and have different perspec-
tives / views of the scene. The elementary events in sample
space could be defined based on the environment. Consider the
problem where the environment has two states . The manner
in which the scene or the environment changes in each state
with time is Markovian. The images (or the observations in the
present example) obtained by the cameras are functions of the
states of the environment. Given the images we would like to
arrive at a consensus on the state of environment.
For both observers , the hypothesis testing problem is for-
mulated and solved as partially observed stochastic control
problem. Thus both observers make individual decisions on
the hypothesis. Then they communicate their decisions. If they

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

3944



Fig. 1. Proposed Framework

have arrived at the same decision, then they have arrived at
a consensus on the hypothesis though it could be wrong. If
their decisions are different, then they collect more observations
and repeat the hypothesis testing problem. This algorithm is
repeated until consensus has been achieved. The convergence
of this consensus algorithm has been proven. Figure 1 depicts
the proposed framework.
To understand as to what was gained by the use of 2 observers
and the 1 bit communications , the notion of value of informa-
tion has been introduced. We define the value of information
and perform simulations to obtain the value of information.

2. PROBLEM FORMULATION

2.1 System Model

Let (Ω,F ,P) be a probability space. Two systems are consid-
ered whose dynamics are described as follows : State of system
1 is described by a finite-state, homogeneous, discrete time
Markov chain X1

k , k ∈ N. The distribution of X1
0 is assumed to

be known. State of system 2 is also described by a finite-state,
homogeneous, discrete time Markov chain X2

k , k ∈ N and the
distribution of X2

0 is assumed to be known. The state space of
X1

k andX2
k is assumed to be haveNs elements and is identified

by the set
SX = {e1, ..., eNs

},
where ei are unit vectors in RNs with unity as ith element and
zeros elsewhere. Let F1

k be the complete σ algebra generated
by {X1

0 , ..., X
1
k} and F2

k be the complete σ algebra generated
by {X2

0 , ..., X
2
k}. The Markov property implies that :

P(X1
k+1 = ej |Fk) = P(X1

k+1 = ej |X1
k),

P(X2
k+1 = ej |Fk) = P(X2

k+1 = ej |X2
k).

The transition matrices for the Markov chains can be defined
as:

a1
ji = P(X1

k+1 = ej |X1
k = ei), A

1 = (a1
ji) ∈ RNs×Ns ,

a2
ji = P(X2

k+1 = ej |X2
k = ei), A

2 = (a2
ji) ∈ RNs×Ns .

Thus the Markov property also implies,
E[X1

k+1|F1
k ] = E[X1

k+1|X1
k ] = A1X1

k ,

E[X2
k+1|F2

k ] = E[X2
k+1|X2

k ] = A2X2
k .

Define:
W 1

k+1 = X1
k+1 −A1X1

k , W
2
k+1 = X2

k+1 −A2X2
k .

So that
X1

k+1 = A1X1
k +W 1

k+1, X
2
k+1 = A2X2

k +W 2
k+1.

H (signifying the hypothesis) is a Bernoulli random variable
such that

P(H = 1) = p̄1, P(H = 0) = p̄0 = 1− p̄1.

It is assumed that H,X1
0 and X2

0 are independent random
variables. Let Fk = σ{H,X1

0 , ..., X
1
k , X

2
0 , ..., X

2
k} denote the

complete σ algebra generated by X1
0 , ..., X

1
k , X

2
0 , ..., X

2
k . It is

also assumed that:
E[X1

k+1|Fk] = A1X1
k , E[X2

k+1|Fk] = A2X2
k .

The state processes for these systems are not observed directly.
Consider Observer 1, under H = 1, it observes a function
c1(., .) (with finite range ) of X1

k :

Y 1
k+1 = c1(X1

k , v
1
k+1), k ≥ 0, (1)

where v1
k is a sequence of independent, identically distributed

random variables. It is assumed that {v1
k}k≥1 are independent

of H , X1
0 , X2

0 , {W 1
k }k≥1 and {W 2

k }k≥1. Similarly under H =
0, it observes a function c2(., .) (with finite range) of X2

k :

Y 2
k+1 = c2(X2

k , v
2
k+1), k ≥ 0, (2)

where v2
k is a sequence of independent, identically distributed

random variables. It is assumed that {v2
k}k≥1 are independent

of H , X1
0 , X2

0 , {W 1
k }k≥1, {W 2

k }k≥1 and {v1
k}k≥1. Let G1

k de-
note the complete σ algebra generated byH,X1

0 , ..., X
1
k , X

2
0 , ..,

X2
k , Y

1
1 , ..., Y

1
k , Y

2
1 , ..., Y

2
k . Without loss of generality, we can

assume that range of c1(., .) and c2(., .) consists of M1 points
and identify it with set of unit vectors

SY = {f1
1 , ..., f

1
M1
},

where f1
j are unit vectors in RM1 with unity as jth element and

zeros elsewhere. (1) and (2) imply
P(Y 1

k+1 = f1
j |G1

k) = P(Y 1
k+1 = f1

j |X1
k),

P(Y 2
k+1 = f1

j |G1
k) = P(Y 2

k+1 = f1
j |X2

k).

The state to output transition matrices are defined as:

c1ji = P(Y 1
k+1 = f1

j |X1
k = ei), C

1 = (c1ji) ∈ RM1×Ns ,

c2ji = P(Y 2
k+1 = f1

j |X2
k = ei), C

2 = (c2ji) ∈ RM1×Ns .

Thus,
E[Y 1

k+1|G1
k] = E[Y 1

k+1|X1
k ] = C1X1

k ,

E[Y 2
k+1|G1

k] = E[Y 2
k+1|X2

k ] = C2X2
k .

Define:
V 1
k+1 = Y 1

k+1 − C1X1
k , V

2
k+1 = Y 2

k+1 − C2X2
k .

Y 1
k+1 = C1X1

k + V 1
k+1, Y

2
k+1 = C2X2

k + V 2
k+1.

Hence when H = 1, Observer 1 is a discrete Hidden Markov
Model (HMM) (under P) and is defined by the state space
equations :

X1
k+1 = A1X1

k +W 1
k+1,

Y 1
k+1 = C1X1

k + V 1
k+1.

and when H = 0, it is again a discrete HMM (under P) and is
defined by the state space equations :

X2
k+1 = A2X2

k +W 2
k+1,

Y 2
k+1 = C2X2

k + V 2
k+1.

Hence the observation equation for Observer 1, is given by :
Yk+1 =

[
(C1X1

k + V 1
k+1)H + (C2X2

k + V 2
k+1)(1−H)

]
,
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where X1
k , X

2
k ∈ SX and V 1

k , V
2
k ∈ SY , A1, A2, C1, C2 are

matrices of transition probabilities. The entries satisfy
Ns∑
j=1

a1
ji = 1,

Ns∑
j=1

a2
ji = 1,

M1∑
j=1

c1ji = 1,

M1∑
j=1

c2ji = 1, c1ji > 0, c2ji > 0.

W 1
k ,W

2
k and V 1

k , V
2
k are martingale increments satisfying

E[W 1
k+1|F1

k ] = E[V 1
k+1|G1

k] = 0,

E[W 2
k+1|F2

k ] = E[V 2
k+1|G1

k] = 0.

Observer 2, under H = 1 observes a function d1(., .) (with
finite range) of X1

k :

Z1
k+1 = d1(X1

k , u
1
k+1), k ≥ 0, (3)

where u1
k is a sequence of independent, identically distributed

random variables. It is assumed that {u1
k}k≥1 are independent

of H , X1
0 , X2

0 , {W 1
k }k≥1 and {W 2

k }k≥1. Under H = 0, it
observes a function d2(., .) (with finite range) of X2

k :

Z2
k+1 = d2(X2

k , u
2
k+1), k ≥ 0, (4)

where u2
k is a sequence of independent, identically distributed

random variables. It is assumed that {u2
k}k≥1 are independent

of H , X1
0 , X2

0 , {W 1
k }k≥1, {W 2

k }k≥1 and {u1
k}k≥1. Each of

d1(., .) and d2(., .) are assumed to haveM2 points in their range
and the points are identified with set of unit vectors

SZ = {f2
1 , ..., f

2
M2
},

where f2
j are unit vectors in RM2 with unity as jth element and

zeros elsewhere. Following the procedure which was used to
derive the observation equation for Observer 1, it can be shown
that the observation equation for the Observer 2 is given by :

Zk+1 =
[
(D1X1

k + U1
k+1)H + (D2X2

k + U2
k+1)(1−H)

]
,

where D1, D2 are matrices of transition probabilities and the
entries satisfy

M2∑
j=1

d1
ji = 1,

M2∑
j=1

d2
ji = 1, d1

ji > 0, d2
ji > 0.

Notation :

(1) < a, b > denotes inner product in Euclidean space. Hence
< a, b >= aT b.

(2) Let a and b be real numbers . Then a ∧ b = min(a,b).
(3) Y j,(l)

k =< Y j
k , f

1
l > so that Y j

k = (Y
j,(1)
k , ..., Y

j,(M1)
k )T .

For each k ∈ N, exactly one component =1, the reminder
being 0. Y (l)

k = Y
1,(l)
k H + Y

2,(l)
k (1 − H). Index j

corresponds to hypothesis and index l corresponds to the
component. Thus j = 1, 2 and l = 1, ...,M1. Zj,(l)

k , Z
(l)
k

are defined similarly.
(4) cj,(l)k+1 = E[Y

j,(l)
k+1 |G1

k] =
∑Ns

m=1 c
j
lm < Xj

k, em >. Thus
cjk+1 = E[Y j

k+1|G1
k] = CjXj

k and ck+1 = E[Yk+1|G1
k] =

C1X1
kH + C2X2

k(1 − H) = c1k+1H + c2k+1(1 − H).

Define c(l)k+1 = c
1,(l)
k+1H + c

2,(l)
k+1(1 − H). Again, index

j corresponds to hypothesis and index l corresponds to
the component. Hence, j = 1, 2 and l = 1, ...,M1.
d
j,(l)
k+1, d

j
k+1, d

(l)
k+1, dk+1 are defined similarly.

(5) σ(Yk) denotes the smallest complete σ algebra generated
by the random variable Yk.

(6) ifH1 andH2 are 2 sub σ algebras of F , then σ(H1 ∪H2)
denotes the smallest complete σ algebra generated by the
sets inH1 andH2.

2.2 Hypothesis Testing Problem

We consider the 2 observer problem given by :

Under H = 1 : X1
k+1 = A1X1

k +W 1
k+1,

Under H = 0 : X2
k+1 = A2X2

k +W 2
k+1,

Observer O1 :

Yk+1 =
[
(C1X1

k + V 1
k+1)H + (C2X2

k + V 2
k+1)(1−H)

]
,

Observer O2 :

Zk+1 =
[
(D1X1

k + U1
k+1)H + (D2X2

k + U2
k+1)(1−H)

]
.

Let Yk denote the complete σ algebra generated by Y1, ..., Yk
and Zk denote the complete σ algebra generated by Z1, ..., Zk.
In this paper, we consider the block testing problem with fixed
number of samples, T . t − 1 denotes the number of times the
block testing problem has been performed. Hence when the
block testing problem is performed for the tth time, tT number
of observations have been collected.
For Observer 1, the aim is to find D1

t ∈ {0, 1} which is YtT
measurable, such that the following cost is minimized:

J1(D1
t ) = E

[
C1

10H(1−D1
t ) + C1

01(1−H)D1
t

]
,

where C1
10and C1

01 are positive real numbers.
For Observer 2, the aim is to find D2

t ∈ {0, 1} which is ZtT

measurable, such that the following cost is minimized:

J2(D2
t ) = E

[
C2

10H(1−D2
t ) + C2

01(1−H)D2
t

]
,

where C2
10and C2

01 are positive real numbers.

2.3 Consensus

Let the optimal decisions at t for Observer 1 and Observer 2 be
denoted by D1,∗

t and D2,∗
t respectively.

while D1,∗
t 6= D2,∗

t
Repeat binary hypothesis testing by taking T more samples and
finding D1,∗

t+1 and D2,∗
t+1.

3. SOLUTION

3.1 Hypothesis Testing Problem

First we discuss the solution to the binary hypothesis testing
problem. We present the solution for Observer 1. An identical
procedure can be used to find the solution for Observer 2.
Theorem 3.1. Let π1

k (the information state) be defined as :

π1
k = EP[H|Yk]. (5)

The optimal decision D1,∗
t is given by :

D1,∗
t = 0 if C1

01(1− π1
tT ) ≥ C1

10π
1
tT ,

= 1 Otherwise. (6)

Also, π1
k can be calculated recursively as follows :
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π1
k =

Num(k)

Num(k) +Den(k)
, (7)

Num(k) =

Ns∑
r=1

qk(er),

qk+1(er) = M1

Ns∑
j=1

qk(ej)a
1
rj

M1∏
i=1

(c1ij)
Y

(i)

k+1 ,

q1(er) = M1 × p̄1 × [

Ns∑
l=1

M1∏
i=1

(c1il)
Y

(i)
1 (P(X1

0 = el))a
1
rl],

Den(k) =

Ns∑
r=1

pk(er),

pk+1(er) = M1

Ns∑
j=1

pk(ej)a
2
rj

M1∏
i=1

(c2ij)
Y

(i)

k+1 ,

p1(er) = M1 × p̄0 × [

Ns∑
l=1

M1∏
i=1

(c2il)
Y

(i)
1 (P(X2

0 = el))a
2
rl]. (8)

Proof : From the tower law of conditional expectation, the cost
function can be written as :

= E[E[C1
10H(1−D1

t ) + C1
01(1−H)D1

t ]|YtT ].

Since D1
t is YtT measurable and π1

tT = EP[H|YtT ] , it follows
that the cost function can be written as

E[(C1
10π

1
tT )× (1−D1

t ) + (C1
01(1− π1

tT ))×D1
t ].

From monotonicity of expectation, it follows that :

D1,∗
t = 0 if C1

01(1− π1
tT ) ≥ C1

10π
1
tT ,

= 1 Otherwise.

and the optimal cost is given by :

J1(D1,∗
t ) = EP[[C1

01(1− π1
tT )] ∧ [C1

10π
1
tT ]]. (9)

2

For the derivation of the recursion equations for the information
state we refer to Appendix A. From the above theorem, it
follows that after collecting a new observation the information
state can be updated using the same. At specific time instants
(k = T, 2T, ..., tT ), the updated information state can be used
to find the optimal decision using (6), which is a threshold based
policy.

3.2 Convergence to Consensus

Theorem 3.2. (π1
k,Yk)k∈N and (π2

k,Zk)k∈N for i = 1, 2 are
right-closable martingales. Also,

lim
k→∞

πi
k = H P a.s, i = 1, 2, (10)

lim
k→∞

E[πi
k] = p1, i = 1, 2, (11)

lim
t→∞

J i(Di,∗
t ) = 0, i = 1, 2, (12)

inf
t∈N

J i(Di,∗
t ) = 0, i = 1, 2. (13)

Proof : The proof is mentioned for Observer 1. The same
proof can be extended for Observer 2 as well. E[π1

k+1|Yk] =

E[EP[H|Yk+1]|Yk] = EP[H|Yk] = π1
k. Thus (π1

k,Yk)k∈N is a
martingale. Since ∃ random variable π1

∞ = H such that

π1
k = E[π1

∞|Yk] ∀ k,

it follows that (π1
k,Yk)k∈N, is a right-closable martingale. By

Doob’s theorem (Koralov and Sinai (2007)) for the convergence
of right closable martinagles (10) follows. Since (π1

k,Yk)k∈N
is a martingale, it follows that E[π1

k] = p1 ∀ k. Hence (11)
follows. (10) implies that :

lim
k→∞

[C1
01(1− π1

k)] ∧ [C1
10π

1
k] = 0 P a.s.

Also note that |[C1
01(1− π1

k)] ∧ [C1
10π

1
k]| ≤ C1

10 +C1
01, ∀ ω ∈

Ω, k. By the Lebesgue dominated convergence theorem, (12)
follows. Consider,

[C1
01(1− π1

tT )] ∧ [C1
10π

1
tT ]

=
C1

01 + π1
tT (C1

10 − C1
01)− |C1

01 − π1
tT (C1

01 + C1
10)|

2
.

Since (π1
k,Yk)k∈N is a martingale, it follows that (C1

01 +
π1
tT (C1

10−C1
01),YtT )t∈N and ( C1

01−π1
tT (C1

10+C1
01),YtT )t∈N

are martingales. As Φ(x) = |x| is convex, from the condi-
tional Jensen’s inequality, it follows that (|C1

01 − π1
tT (C1

01 +
C1

10)|,YtT )t∈N is a submartingale. Hence ([C1
01(1 − π1

tT )] ∧
[C1

10π
1
tT ],YtT )t∈N is a supermartingale. Hence,

J1(D1,∗
t+1) ≤ J1(D1,∗

t ) ∀ t.

Hence by the monotone convergence theorem, (13) follows.

2

The main result of the above theorem is that, the information
state converges to the true hypothesis. This result is used in
proving the convergence of the consensus algorithm which is
done in the following theorem.
Theorem 3.3. ∀ ω ∈ Ω , ∃ t̂(ω) ∈ N such that

D1,∗
t̂(ω)

(ω) = D2,∗
t̂(ω)

(ω) = H(ω) (14)

Proof : Fix ω ∈ Ω. From (10), it follows that ∀ ε > 0 ,
∃ N i(ε, ω) such that

|πi
k(ω)−H(ω)| < ε ∀ k ≥ N i(ε, ω), i = 1, 2.

Suppose H(ω) = 1 , then let εi1 = 1 − Ci
01

Ci
10 + Ci

01

. Then,

∀ k ≥ max(N1(ε11, ω), N2(ε21, ω)),

πi
k(ω) >

Ci
01

Ci
10 + Ci

01

, i = 1, 2.

Thus ∀ t̂(ω) > dmax(N1(ε11, ω), N2(ε21, ω))

T
e,

D1,∗
t̂(ω)

(ω) = D2,∗
t̂(ω)

(ω) = H(ω) = 1.

Suppose H(ω) = 0 , then let εi2 =
Ci

01

Ci
10 + Ci

01

. Then, ∀ k ≥

max(N1(ε12, ω), N2(ε22, ω)),

πi
k(ω) <

Ci
01

Ci
10 + Ci

01

, i = 1, 2.

Thus ∀ t̂(ω) > dmax(N1(ε12, ω), N2(ε22, ω))

T
e

D1,∗
t̂(ω)

(ω) = D2,∗
t̂(ω)

(ω) = H(ω) = 0.

This completes the proof of (14). Hence convergence is guar-
anteed.

2

The above result states that, for every sample path, there is a
index t̂ such that the optimal decision of both the observers is
the same and is equal to the true hypothesis. Since the result is
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an asymptotic result, in practice it is possible that the observers
arrive at a consensus to the wrong hypothesis even before
reaching the index t̂.
Another special case to consider would be when A1 = A2.
Though A1 = A2, it should be noted that C1 6= C2 and D1 6=
D2 as the noise seen by the observers is not the same under
either hypothesis. In this case also, convergence is guaranteed
as none of the results mentioned in the previous section involve
conditions on A1 and A2.

4. SIMULATION RESULTS

We are also interested in understanding the “value of infor-
mation” associated with the repeated 1 bit communication.
So through simulations we would like to understand whether
through the 1 bit communications, the number of false alarms
and number of misses reduced. A heuristic way to calculate
the value of information for this specific problem would be :
Calculate the average reduction in detection error as :
α = Number of simulations in which consensus occurs to cor-
rect hypothesis after one iteration
β = Number of simulations in which consensus occurs to wrong
hypothesis while the decision for either observers after the first
iteration was equal to true hypothesis.
γ = Total number of bits communicated in all the simulations
total = Total number of simulations

V alue of information =

α− β
total
γ

total

=
α− β
γ

(15)

The simulations were performed with two three state Markov
chains. The transition matrices for the two Markov chains were
chosen as:

A1 =

[
0.2 0.4 0.2
0.3 0.35 0.6
0.5 0.25 0.2

]
, A2 =

[
0.6 0.25 0.25
0.15 0.5 0.35
0.25 0.25 0.4

]
.

Observer 1 and Observer 2 were considered to have two and
four outputs respectively. The state to output transition matrices
were chosen as :

C1 =

[
0.7 0.5 0.4
0.3 0.5 0.6

]
, C2 =

[
0.35 0.5 0.55
0.65 0.5 0.45

]
,

D1 =

0.25 0.1 0.35
0.15 0.15 0.5
0.2 0.5 0.05
0.4 0.25 0.1

 , D2 =

 0.5 0.1 0.15
0.2 0.5 0.05
0.15 0.1 0.50
0.15 0.3 0.3

 .
The convergence of the information state to the true hypothesis
for a particular sample path has been shown in figure 2. The
costs were assigned the values C1

10 = 8, C1
01 = 5, C2

10 = 11,
C1

01 = 9. T was set 50 samples. p̄1 was set to 0.6. The
number of simulations was varied from 10 to 105. The value of
information was calculated in each case and has been tabulated
(Table 1).

5. CONCLUSION AND FUTURE WORK

The binary hypothesis testing problem with observations gen-
erated by Markov chains and two communicating observers has

Number of Simulations Value of Information
10 0.2181
100 0.2115

1000 0.2197
10000 0.2212
100000 0.2198

Table 1. Value of Information

Fig. 2. The Information state for Observer 2 converging to the
true hypothesis = 1.

been solved by formulating the problem as a partially observed
stochastic control problem. Convergence of the information
state to the true hypothesis and optimal cost to zero has been
studied. The convergence of the consensus algorithm has been
proven. To understand the value of the 1 bit communication
used to achieve consensus, simulations were performed. It was
observed there was a reduction in miss and false detection. On
an average, if the observers exchanged their decisions 3 times
it led to reduction in a miss or false detection.
In the present work, communication between the observers was
assumed to be perfect but in practice communication errors
could occur as well. Hence we could study the problem by
modeling the communication channel using a binary symmet-
ric channel with error probability ε. Also we have restricted
ourselves to one bit communication. The problem could be
studied in the framework where the observers not only share
their decisions but also share their respective probabilities of a
miss and false detection.
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Appendix A. INFORMATION STATE RECURSION
EQUATIONS

Due to space restrictions some of the details have been skipped.
To prove the recursions mentioned in equations (7) and (8), we
consider a change of measure. Define :

αl =

M1∏
i=1

(
M−1

1

c
(i)
l

)Y
(i)

l

, Γk =

k∏
l=1

αl.

It can be shown that (Γk,G1
k)k∈N is a martingale. We now define

a new probability measure P̄ on (Ω,∪∞l=1G1
l ) by restricting the

Radon- Nikodym derivative, dP̄/dP to the σ algebra G1
k equal

to Γk. Thus
dP̄
dP

∣∣∣∣
G1
k

= Γk ⇒ P̄(B) =
∫
B

ΓkdP ∀B ∈ G1
k .

The existence of such a measure P̄ follows from Kolmogorov’s
Extension Theorem [Elliott et al. (2008)].

(1) Under, P̄, {Yk} , k ∈ N, is a sequence of i.i.d random
variables each having uniform distribution that assigns
probability 1

M1
to each point f1

i , 1 ≤ i ≤ M1, in its

range space. P̄(Y
(i)
k+1 = 1|G1

k) =
1

M1
.

(2) Under P̄, X1
k and X2

k remain Markov chains with transi-
tion matrices A1 and A2 respectively .

Given probability measure P̄ on (Ω,∪∞l=1G1
l ) such that (1) and

(2) (as mentioned above) hold true and matrices Ĉ1 and Ĉ2,
we construct a measure P̂ as follows: Let ĉk+1 = Ĉ1X1

kH +

Ĉ2X2
k(1−H). Define:

ᾱl =

M1∏
i=1

(M1ĉ
(i)
l )Y

(i)

l , Γ̄k =

k∏
l=1

ᾱl,
dP̂
dP̄

∣∣∣∣∣
G1
k

= Γ̄k.

Again, the existence of such a measure P̂ follows from Kol-
mogorov’s Extension Theorem (Elliott et al. (2008)). With the
above definitions, the following are true:

(1) EP̄[ᾱk+1|G1
k] = 1. Thus (Γ̄k,G1

k)k∈N is a martingale.
(2) EP̂[Yk+1|G1

k] = Ĉ1X1
kH + Ĉ2X2

k(1−H)

If C1 = Ĉ1 and C2 = Ĉ2 then it follows that P̂ = P on
(Ω,∪∞l=1G1

l ). Thus by letting C1 = Ĉ1 and C2 = Ĉ2, we

obtain, EP[H|Yk] =
EP̄[Γ̄kH|Yk]

EP̄[Γ̄k|Yk]
. Define:

Num(k) = EP̄[Γ̄kH|Yk], Den(k) = EP̄[Γ̄k(1−H)|Yk],

qk(er) = EP̄[Γ̄kH < X1
k , er > |Yk],

pk(er) = EP̄[Γ̄k(1−H) < X2
k , er > |Yk].

It follows that :

Num(k) = EP̄[Γ̄kH

Ns∑
r=1

< X1
k , er > |Yk] =

Ns∑
r=1

qk(er),

Den(k) = EP̄[Γ̄k(1−H)

Ns∑
r=1

< X2
k , er > |Yk] =

Ns∑
r=1

pk(er),

EP̄[Γ̄k|Yk] = EP̄[Γ̄k[H + (1−H)]|Yk] =

Num(k) +Den(k).

⇒π1
k = EP[H|Yk] =

Num(k)

Num(k) +Den(k)

We now prove the recursion for qk(er):

qk+1(er) = EP̄[Γ̄kH(

M1∏
i=1

(M1(c
1,(i)
k+1H + c

2,(i)
k+1 (1−H)))Y

(i)

k+1)

< X1
k+1, er > |Yk+1]

= M1 × EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)

k+1)

< A1X1
k , er > |Yk+1]

+M1 × EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)

k+1)

< W 1
k+1, er > |Yk+1]

Since under P̄, EP̄[< W 1
k+1, er > |σ(G1

k ∪ σ(Yk+1))] = 0, the
second term in the summation equals zero.

qk+1(er) = M1 × [

Ns∑
j=1

EP̄[Γ̄kH(< X1
k , ej >)|Yk+1]

a1
rj(

M1∏
i=1

(c1ij)
Y

(i)

k+1)]

Since under P̄, σ(σ(H) ∪ σ(X1
k) ∪ Yk) is independent of

σ(Yk+1),

= M1 × [

Ns∑
j=1

EP̄[Γ̄kH(< X1
k , ej >)|Yk]a1

rj(

M1∏
i=1

(c1ij)
Y

(i)

k+1 ]

= M1 × [

Ns∑
j=1

qk(ej)a
1
rj(

M1∏
i=1

(c1ij)
Y

(i)

k+1)].

The initial condition , q1(er) :

q1(er) = M1 × EP̄[

M1∏
i=1

(c
1,(i)
1 H)Y

(i)
1 H(< X1

1 , er >)|Y1]

= M1 × EP̄[

M1∏
i=1

(c
1,(i)
1 H)Y

(i)
1 H(< A1X1

0 , er >)|Y1]

= M1 × [

Ns∑
l=1

M1∏
i=1

(c1il)
Y

(i)
1 EP̄[H(< X1

0 , el >)|Y1]a1
rl]

= M1 × [

Ns∑
l=1

M1∏
i=1

(c1il)
Y

(i)
1 EP̄[H(< X1

0 , el >)]a1
rl]

the last equality is true since under P̄, σ(H,X1
0 ) is independent

of Y1. Since EP[α1|σ(H,X1
0 )] = 1, it follows that:

EP̄[H(< X1
0 , el >)] = EP[α1H(< X1

0 , el >)]

= EP[EP[α1H(< X1
0 , el >)|σ(H,X1

0 )]]

= EP[H(< X1
0 , el >)EP[α1|σ(H,X1

0 )]]

= EP[H(< X1
0 , el >)]

= EP[H]EP[< X1
0 , el >]

= p̄1 × (P(X1
0 = el))

⇒ q1(er) = M1×[

Ns∑
l=1

M1∏
i=1

(c1il)
Y

(i)
1 p̄1 × (P(X1

0 = el))a
1
rl].

The recursion for pk+1 and p1 can found by the exact same
procedure. This completes the proof.
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