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Abstract: This paper considers a variant of two-player linear quadratic stochastic differential
games. In this framework, none of the players has access to the state observations for all the
time, which restricts the possibility of continuous feedback strategies. However, they can observe
the state intermittently at discrete time instances by paying some finite cost. Having on demand
costly measurements ensure that open-loop strategy is not the only strategy for this game. The
individual cost functions for each player explicitly incorporate the value of information and the
asymmetry that comes along with different costs of state observation for different players.
We study the structural properties of the Nash equilibrium for this particular class of problems
when the cost of observation is finite and positive. We show that the game problem simplifies
into two decoupled game problems: one for deciding the control strategies, and the other for
deciding the observation acquisition times. The study also reveals that under two extreme cases
-cost of observation being 0 or∞- the strategies coincide with feedback and open-loop strategies
respectively.
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1. INTRODUCTION

Game theory has been an active topic for research in
control for its wide applicability in stochastic control,
robust control; and it has been studied extensively by
the community as can be found in Basar and Olsder
(1995), James and Baras (1996), Engwerda (2005), Başar
and Bernhard (2008), Fleming and Hernández-Hernández
(2011) and many others. A differential stochastic game
encompasses many aspects of a control problem such as op-
timality, stochasticity and filtering, and estimation; hence
the results can reveal several properties related to those.
Linear-quadratic-Gaussian is a subclass of such differen-
tial game problems that attain a closed form analytical
solution for the Nash strategy as reported in Cruz Jr. and
Chen (1971), Jacobson (1973), Weeren et al. (1999). The
solution of linear-quadratic differential games are generally
constructed by certain Riccati equation; for details, see
Jacobson (1973), Weeren et al. (1999), and the references
therein. Studies on the necessary and sufficient conditions
for a strategy to be a Nash strategy for a linear-quadratic
game can be found in the work of Foley and Schmiten-
dorf (1971), and Bernhard (1979). Basar (1976) studied
the uniqueness property of a Nash strategy. The work of
Weeren et al. (1999) studies the asymptotic behavior of
the Nash strategy over an infinite horizon.

? Research partially supported by ARO grants W911NF-14-1-0384
and W911NF-15-1-0646, and by National Science Foundation (NSF)
grant CNS-1544787.

Unlike the well perceived fact about linear control laws
being optimal for a linear-quadratic-Gaussian problem,
Basar (1974) provided a counterexample showing that the
optimality is achieved by some nonlinear Nash strategy
for a linear-quadratic game problem. A non-cooperative
game is inherently a joint problem on the control and the
decision making process and hence the solution relies on
the knowledge of the behavior of the opponent.

In the vast majority of the past work in the community,
the studied problems either assume that the state infor-
mation is available to the players for all time or only the
initial state information is available. The former situation
results in a feedback-type Nash strategy whereas the lat-
ter exhibits an openloop Nash strategy. To the best of
our knowledge, the problem of having multiple discrete
state measurements for this problem class remained unad-
dressed. In this scenario, the players have less information
about the state of the system since the measurements
are available at only certain discrete time instances, not
for all time; however, they have more information than
merely having the knowledge of the initial state. In this
work we address this linear-quadratic game problem un-
der discrete measurements where the players are given
the freedom to select their time instances to acquire the
measurements of the state. Moreover, it is imposed that
each such query about the state information requires some
finite cost. This new framework introduces certain changes
in the well known behavior of the Nash strategy since the
feedback strategy is not plausible, and the open loop is not
necessarily optimal. Given the fact that each observation
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requires finite cost, the players must decide optimal time
instances for observing the state. Therefore, the problem
includes designing a sampling policy to measure the state
and synthesizing a controller such that they constitute a
Nash equilibrium for the game.

In this work, we assume that the sampling is done instan-
taneously and there is no delay or noise in communicating
the sampled value to the controller. We consider asyn-
chronous switching i.e. players can choose their switching
policy irrespective of the policy chosen by their opponent.
We also assume that whenever a player receives a sample,
the opponent is notified about that but the opponent does
not get the value of the sample.

In this study, we show that given a switching policy,
there always exists a Nash strategy for controller synthesis
and the controller is a dynamic controller that resets its
value in an optimal way every time the switch is closed.
The problem is decomposed into two decoupled sub-
problems for designing the switching policy and designing
the controller. The studied game is asymmetric since the
parameters associated with the players are different (e.g.
cost per sample is different for different players) and that
essentially leads to different strategy for them.

2. NOTATION

x(t): state of the game, Ci: controller of player-i, Si:
switching policy of player-i, ‖a‖2B = a′Ba for matrices
a and b of proper dimensions, Ti(t): set of sampling times
until t for player-i, Xi(t): set of sampled state values for
player-i until t, Ii(t): total information available to player-
i that includes Xi(t), T1(t) and T2(t). For any matrix M ,
ΦM (t, s) denotes the associated state transition matrix.

3. PROBLEM FORMULATION

Let us consider the following stochastic linear differential
game dynamics:

dx = (Ax+B1u1 +B2u2)dt+GdWt (1)

where x ∈ Rn, u1 ∈ Rm1 , u2 ∈ Rm2 and Wt is a
p dimensional Wiener process noise, independent of the
initial state x(0), acting on the system. The associated
quadratic cost is:

J(u1, u2) = E

[∫ T

0

(x′Lx+ u′1R1u1 − u′2R2u2)dt

]
(2)

where L,Ri � 0. All the matrices A,Bi, L,Ri, G are time
varying unless or otherwise mentioned in the paper.

The objective of player-1 (or player-2) is to minimize (or
maximize) the cost functional (2) with the knowledge of
x(t) at some finite number of discrete time instances. Let
us consider the schematic presented in Figure 1 where
player-i has to design its controller Ci and the optimal
switching policy Si. The switch Si closes only for a time
instance and opens immediately so that the controller gets
the state value only at a single time instance. We assume
there is no delay in the switching action or in the noise-less
channel so that the controller Ci gets the state information
precisely at the switching time instance.

Prior works on linear-quadratic differential games either
consider the switches Si are closed for all t or open for

Fig. 1. Schematic of the game: Ci represents the controller
(dynamic) of player-i and Si implements a switch that
samples the state x at some optimal instances. ZOH is
a zero order hold circuit. The switches Si are initially
closed and they open at t = 0+ so that each player
has the knowledge of x0.

all t > 0. We study the characteristics of the game and
the associated Nash strategy(s) for this special set up of
the game. Maity and Baras (2016a) studies the problem
when the switches S1 and S2 operate synchronously i.e.
they samples the state at the same time instances.

In this work we assume that the state x is fully observable,
however the study easily extends under partial observation
framework along the lines of Maity et al. (2017). Moreover,
the players are given the freedom to select their switching
instances for sampling the state by incurring a finite cost.

Let Ti(t) = {τ i1, τ i2, · · · , τ ini(t)
} be the set of selected time

instances for closing the switch Si of player-i till time t,
where τ ik < τ ik+1 < · · · < τ ini(t)

< t. Let T (t) = T1(t)∪T2(t)

denote the set of all instances for observing the state. The
state information available to player-i at time t is denoted
as Xi(t) = {x(τ) | τ ∈ Ti(t)}. The total information
available to player-i at any time instance t is Ii(t) = Xi(t)∪
T (t). However as mentioned, the information acquisition
is not free and in order to construct Ii(t), player-i needs to
pay λi(> 0) for each sample of the state and cij(> 0) for
each element in Tj (player-j is the opponent of player-i).
Thus, it should be noted that the cost function J(u1, u2)
is implicitly a function of the information set I1 and I2

since the strategies u1 and u2 are I1 and I2 measurable
functions respectively (J(u1, u2) ≡ J(u1, u2, I1, I2)).

Therefore, player-1 (P1) needs to minimize:

J1(u1, u2, I1, I2) =E
[ ∫ T

0

(‖x‖2L + ‖u1‖2R1
− ‖u2‖2R2

)dt

+ λ1N1 + c12N2

]
, (3)

and player-2 (P2) should maximize:

J2(u1, u2, I1, I2) =E
[ ∫ T

0

(‖x‖2L + ‖u1‖2R1
− ‖u2‖2R2

)dt

− λ2N2 − c21N1

]
. (4)

where Ni = ni(T ) is the number of samples in Ti(T ).
In their respective cost functions, appropriate terms have
been added to account for the cost of sampling (or could be
thought as the cost of communication over the channel). It
should be noted right away that the new cost functions do
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not allow infinite number of switching and hence the Zeno
behavior is not possible for an optimal switching policy.

The game is studied under asymmetric information struc-
ture and remarks are made when the game is symmetric
(i.e. c12 = c21, λ1 = λ2, B1 = B2, R1 = R2).

4. NASH STRATEGY

In this section we aim to study the existence of Nash
strategy for the proposed game framework. The Nash
strategy includes designing a Nash switching policy (Si)
and designing a Nash controller (Ci) for both the players.
We seek for Nash equilibrium solution (u∗1, u

∗
2, I∗1 , I∗2 ) such

that

J∗1 = J1(u∗1, u
∗
2, I∗1 , I∗2 ) = min

u1,I1
J1(u1, u

∗
2, I1, I∗2 ) (5)

J∗2 = J2(u∗1, u
∗
2, I∗1 , I∗2 ) = max

u2,I2
J2(u∗1, u2, I∗1 , I2) (6)

Note that for player-i, choosing an I∗i essentially means to
choose a T ∗i . It can be easily shown that

J∗1 = min
I1

[
min
u1

J(u1, u
∗
2, I1, I∗2 ) + λ1N1

]
+ c12N

∗
2 (7)

J∗2 = max
I2

[
max
u2

J(u∗1, u2, I∗1 , I2)− λ2N2

]
+ c21N

∗
1 (8)

Equations (7) and (8) decouple the problem that is the
minimization (or maximization) is performed in two stages
rather than in a single stage. Therefore, as a first step to-
wards the proof, the Nash strategies (u∗1, u

∗
2) ≡ (u∗(I1, I2),

u∗2(I1, I2)) are found for the cost function J(u1, u2, I1, I2)
for a given (I1, I2). Let us denote J#(I1, I2) to be the
value of J(u1, u2, I1, I2) at the Nash equilibrium (u∗1, u

∗
2).

That is, for a fixed (I1, I2), and for any u1, u2,

J(u∗1, u2, I1, I2) ≤ J#(I1, I2) ≤ J(u1, u
∗
2, I1, I2). (9)

Theorem 2 characterizes the Nash strategy (u∗1, u
∗
2).

Using completion of squares, it can be shown that (cf.
Maity and Baras (2016b)):

J(u, u2, I1, I2) = E
[
‖x(0)‖2P (0)

]
+

∫ T

0

tr(PGG′)dt (10)

+ E

[∫ T

0

(‖u1 +R−1
1 B′1Px‖2R1

− ‖u2 −R−1
2 B′2Px‖2R2

)dt

]
where P (t) satisfies the Riccati equation:

Ṗ +A′P + PA+ L+ P (B2R
−1
2 B′2 −B1R

−1
1 B′1)P = 0

P (T ) = 0 (11)

Assumption 1. In order to ensure the existence and well-
definedness of the solution of the Riccati equation (11), we
assume that B2R

−1
2 B′2 −B1R

−1
1 B′1 � 0

The admissible strategy ui(t) has to be Ii(t) measurable.

Lemma 1. For a given switching Ii, the optimal control
strategy for player-i is of the form,

u∗i (t) = (−1)iR−1
i B′iPx̂i(t) (12)

for some Ii(t) measurable optimal x̂i(t).

A proof this lemma can be found in (Maity et al., 2017,
Proposition 3.2). Therefore, the goal is to find the Nash
equilibrium of

J (x̂1, x̂2) = E
[∫ T

0
(‖x̂1 − x‖2Q1

− ‖x̂2 − x‖2Q2
)dt
]

for a given (T1, T2) (or equivalently (I1, I2)), where Qi =
PBiR

−1
i B′iP .

Theorem 2. J has a unique saddle point at (x̂∗1, x̂
∗
2) such

that:

J (x̂∗1, x̂2) ≤ J (x̂∗1, x̂
∗
2) ≤ J (x̂1, x̂

∗
2) (13)

for all x̂1, x̂2. The optimal x̂∗1 and x̂∗2 satisfy the following
differential equations:

˙̂x∗1 = (A− P−1Q1 + P−1Q2)x̂∗1 (14)

x̂∗1(τ1) = x(τ1)

˙̂x∗2 = (A− P−1Q1 + P−1Q2)x̂∗2 (15)

x̂∗2(τ2) = x(τ2)

for all τ1 ∈ T1 and τ2 ∈ T2.

Proof: The proof of this theorem is presented in the
Appendix A.

Therefore, Theorem 2 ensures that, for a fixed switching
pair (T1, T2) , there exists a Nash controller pair (C∗1 , C∗2 ).
Using the results from Theorem 2, we can write (the ∗ are
removed from x̂∗i for brevity),

dx̂1 − dx =(A+ P−1Q2)(x̂1 − x)dt+ P−1Q2(x− x̂2)dt

−GdWt (16)

dx̂2 − dx =(A− P−1Q1)(x̂2 − x)dt− P−1Q1(x− x̂1)dt

−GdWt

with the resetting conditions x̂1(τ1) = x(τ1) and x̂2(τ2) =

x(τ2) for all τ1 ∈ T1 and τ2 ∈ T2. Denoting z =

[
z1

z2

]
=[

x̂1 − x
x̂2 − x

]
, we can write

dz =

[
A+ P−1Q2 −P−1Q2

P−1Q1 A− P−1Q1

]
zdt−

[
GdWt

GdWt

]
with zi(τ) = 0 for all τ ∈ Ti, i = 1, 2.

Let us denote Σ(t) =

[
Σ11 Σ12

Σ21 Σ22

]
= E[z(t)z′(t)]. Therefore,

Σ̇ = ĀΣ + ΣĀ′ + ḠḠ′ (17)

where Ḡ =

[
G
G

]
, and Ā =

[
A+ P−1Q2 −P−1Q2

P−1Q1 A− P−1Q1

]
. At

τ ∈ T1, Σ11(τ) = Σ12(τ) = Σ21(τ) = 0 and at τ ∈ T2,
Σ22(τ) = Σ12(τ) = Σ21(τ) = 0.

The solution of (17) is given by,

Σ(t) = ΦĀ(t, s)Σ(s)ΦĀ(t, s)′ +

∫ t

s

ΦĀ(t, r)ḠḠ′Φ′Ā(t, r)dr

where ∀σ ∈ (s, t], σ 6∈ T (t).

One can show that, ΦĀ(t, s) =

[
Φ1(t, s) Φ2(t, s)
Φ3(t, s) Φ4(t, s)

]
has the

following expression (we leave out the details here).

Φ1(t, s) = ΦA(t, s) +

∫ t

s

ΦA(t, σ)P−1(σ)Q2(σ)ΦÃ(σ, s)dσ

where Ã = A− P−1Q1 + P−1Q2.

Φ2(t, s) = −
∫ t

s

ΦA(t, σ)P−1(σ)Q2(σ)ΦÃ(σ, s)dσ,
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Φ3(t, s) =

∫ t

s

ΦA(t, σ)P−1(σ)Q1(σ)ΦÃ(σ, s)dσ

and,

Φ4(t, s) = ΦA(t, s)−
∫ t

s

ΦA(t, σ)P−1(σ)Q1(σ)ΦÃ(σ, s)dσ.

Since Σ11 = [I O] Σ

[
I
O

]
and Σ11 = [O I] Σ

[
O
I

]
we get,

Σ11(t) =

∫ t

s

ΦA(t, σ)G(σ)G(σ)′Φ′A(σ, s)dσ+ (18)

Φ1(t, s)Σ11(s)Φ′1(t, s) + Φ1(t, s)Σ12(s)Φ′2(t, s)

+ Φ2(t, s)Σ21(s)Φ′1(t, s) + Φ2(t, s)Σ22(s)Φ′2(t, s)

Similar expression can be found for Σ22 as well.

Therefore, the game problem at this stage is represented
with the objective

J (x̂∗1, x̂
∗
2) = J#(T1, T2) =

∫ T

0

tr(Q1Σ11 −Q2Σ22)dt

=

∫ T

0

tr(Q̄Σ)dt (19)

where Q̄ =

[
Q1 0
0 −Q2

]
. Σ satisfies the dynamics:

Σ̇ = ĀΣ + ΣĀ′ + ḠḠ′ (20)

At τ ∈ Ti, Σii(τ) = Σij(τ) = Σji(τ) = 0 for all i, j = 1, 2.

The dynamic game at this point has a linear dynamics
(20) with a linear cost criterion (19), however, the actions
of the players are switching actions i.e. the actions partially
reset the value of Σ. Clearly, when player-1 strategically
selects a switching instance τ1, it resets Σ11 to zero and
consequently the cost is reduced, however this reduction
in the cost comes with an additional switching cost of λ1.

The objective of player-1 is to minimize J#(T1, T2) +
λ1n1 (since the other term, c12n2, depends solely on
the opponent’s action) and player-2 aims to maximize
J#(T1, T2)− λ2n2, where ni is the cardinality of Ti(T ).

It should be noted at this point that the game is totally
characterized by Σ(t) which can uniquely be determined
whenever the switching instances are known. This game
subproblem is decoupled from the game subproblem seek-
ing the Nash control strategies (Theorem 2). Due to space
constraints, solving for the Nash switching strategy is
beyond the scope of this paper. Instead, we will assume
a solution to this switching game problem exists and we
will provide some characterization of the solution in the
rest of the paper.

If (T ∗1 , T ∗2 ) is an equilibrium strategy for (19) with optimal
number of switching being (n∗1, n

∗
2), then we have

J#(T ∗1 , T2)− λ2(n2 − n∗2) ≤ J#(T ∗1 , T ∗2 ) (21)

≤ J#(T1, T ∗2 ) + λ1(n1 − n∗1)

for all T1 and T2 with cardinality being n1 and n2 respec-
tively. For all (T1, T2) such that ni = n∗i , we obtain:

J#(T ∗1 , T2) ≤ J#(T ∗1 , T ∗2 ) ≤ J#(T1, T ∗2 ). (22)

It can be shown that for any switching strategy played
by Player-2, if player-1 selects no-switching strategy (i.e.

does not attempt to reset Σ(t)), denoted by T 0
1 , then the

following inequality holds:

J#(T1, T2) ≤
∫ T

0

tr(Q1Σ0)dt− λ1n1 (23)

for all (T1, T2) with cardinalities n1 and n2 respectively,

and Σ0(t) =
∫ t

0
ΦA(t, s)GG′Φ′A(s, 0)ds. Similarly for all

(T1, T2), it can be shown that

J#(T1, T2) ≥ −
∫ T

0

tr(Q2Σ0)dt+ λ2n2. (24)

Combining (23) and (24),

−
∫ T

0

tr(Q1Σ0)dt ≤ J#(T1, T2) ≤
∫ T

0

tr(Q1Σ0)dt (25)

for all (T1, T2).

Proposition 3. If n∗i is the number of switchings of player-i
at equilibrium, then

n∗i ≤
1

λi

∫ T

0

tr
(
(Q1 +Q2)Σ0

)
dt.

Proof: From (23), J#(T ∗1 , T ∗2 ) ≤
∫ T

0
tr(Q1Σ0)dt − λ1n

∗
1.

Using (25), we obtain−
∫ T

0
tr(Q1Σ0)dt ≤

∫ T
0
tr(Q1Σ0)dt−

λ1n
∗
1. Hence,

n∗1 ≤
1

λi

∫ T

0

tr
(
(Q1 +Q2)Σ0

)
dt.

Similarly we can proceed for n∗2.

Proposition 3 provides an upper bound on the number
of equilibrium switchings and it is inversely proportional
to the cost of switching λi, as expected. Also notice
that as λi → 0, upper bound on n∗i → ∞, resembling
the continuous-closed-loop strategy. Also, when λi → ∞,
n∗i → 0 resembling the open-loop strategy.

Let (T ∗1 , T ∗2 ) and (T ∗3 , T ∗4 ) two distinct equilibrium strate-
gies with number of switchings equal to (n∗1, n

∗
2) and

(n∗3, n
∗
4) respectively. Therefore,

J#(T ∗1 , T ∗2 ) ≤ J#(T ∗3 , T ∗2 ) + (n∗3 − n∗1)λ1

≤ J#(T ∗3 , T ∗4 ) + (n∗3 − n∗1)λ1 − (n∗4 − n∗2)λ2

≤ J#(T ∗1 , T ∗4 )− (n∗4 − n∗2)λ2

≤ J#(T ∗1 , T ∗2 )

Therefore, all the inequalities in the above equation should
be equalities, and that results into

J#(T ∗1 , T ∗2 ) + n∗1λ1 − n∗2λ2 = J#(T ∗3 , T ∗4 ) + n∗3λ1 − n∗4λ2.

If there exist two equilibria (T ∗1 , T ∗2 ) and (T ∗3 , T ∗4 ) such
that n∗1 = n∗3 and n∗2 = n∗4, then J#(T ∗1 , T ∗2 ) =
J#(T ∗3 , T ∗4 ). Moreover, the costs incurred by both the
players at these two different equilibria remain the same
for both the players. We conclude this section by citing
some results for a symmetric game.

4.1 Symmetric Games

In this section, we extend the results for a game where
λ1 = λ2 = λ and B1R

−1
1 B′1 = B2R

−1
2 B′2. In this case,

Ã = A, and Q1 = Q2 = Q.

One can verify that J#(T , T ) = 0 for all switching
strategy T (with n number of switchings). In this case, the
cost of player-1 is nλ and the same for player-2 is −nλ.
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Let (T ∗1 , T ∗2 ) be a equilibrium switching strategy for under
this symmetric situation. Let n∗i be the number of elements
in T ∗i . Therefore,

J#(T ∗1 , T ∗2 ) + n∗1λ ≤ J#(T ∗2 , T ∗2 ) + n∗2λ = n∗2λ (26)

and

J#(T ∗1 , T ∗2 )− n∗2λ ≥ J#(T ∗1 , T ∗1 )− n∗1λ = −n∗1λ (27)

Combining the above two inequalities,

J#(T ∗1 , T ∗2 ) = (n∗2 − n∗1)λ (28)

Under this situation, the cost incurred by player-1 is n∗2λ
(≥ 0) and by player-2 is −n∗1λ (≤ 0).

Remark 4. If the players cooperate, then no-switching for
all t > 0 produces the best cost for both the players. In
this situation J# = 0 and the costs incurred by both the
players are 0.

5. CONCLUSION

In this work we have considered a variant of two-player
linear quadratic games where we restricted the possibility
of feedback strategies by putting a finite cost for accessing
the state. This work studies the structure of the Nash
controllers of the players under this asymmetric game
setup. We show that the game problem can be solved by
independently solving two simpler game problems.

The costly switching behavior makes this problem chal-
lenging and interesting. The results show that for a high

enough cost (λi >
∫ T

0
tr
(
(Q1 + Q2)Σ0

)
dt) player-i opts

for openloop strategy (i.e. Si is always open). Thus, the
results show the ‘value of information’ of a sample obtained
by performing the switching. It is a trade-off between the
reduction in cost (J) by sampling the state, and the cost
incurred to obtain the state information.
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Appendix A. PROOF OF THEOREM 2:

Player-1 wants to minimize

J (x̂1, x̂2) =

∫ T

0

E
[
‖x̂1 − x‖2Q1

− ‖x̂2 − x‖2Q2
| I1

]
dt

(A.1)
whereas, player-2 wants to maximize (with slight abuse of
notation)

J (x̂1, x̂2) =

∫ T

0

E
[
‖x̂1 − x‖2Q1

− ‖x̂2 − x‖2Q2
| I2

]
dt

(A.2)

Let us denote the solution of (1) as:

x(t) =ΦA(t, t0)x(t0) +Kt,t0
1 [x̂1](t) +Kt,t0

2 [x̂2](t)

+Kt,t0
3 [W ](t) (A.3)

for t ≥ t0. Kt,t0
i for i = 1, 2, 3 are linear operators defined

as follows:

Kt,t0
i [f ](t) = (−1)i

∫ t

t0

ΦA(t, s)P−1(s)Qi(s)f(s)ds,

(A.4)
for i = 1, 2 and

Kt,t0
3 [W ](t) =

∫ t

t0

ΦA(t, s)G(s)dW (s). (A.5)

We seek the Nash equilibrium (x̂∗1, x̂
∗
2) of (A.1). We pro-

ceed using calculus of variation technique by studying the
first and second order Gateaux differentials of the cost
functional J and finally we look for a saddle point of J .

Let us calculate the Gateaux differential of the functional
J :
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δJ [x̂1, x̂2](h1, h2) = lim
ε→0

J (x̂1 + εh1, x̂2 + ah2)− J (x̂1, x̂2)

ε
(A.6)

where the notation δJ [x̂1, x̂2](h1, h2) means the Gateaux
differential of J evaluated at the point (x̂1, x̂2) in the
direction (h1, h2). Note that J [x̂1, x̂2](·, ·) is a linear func-
tional parameterized by x̂1 and x̂2.

Let us denote xh1,h2(t) to be the perturbed solution of the
following dynamics:

xh1,h2(t) = ΦA(t, 0)x(0) +Kt,0
1 [x̂1 + h1](t)

+Kt,0
2 [x̂2 + h2](t) +Kt,0

3 [W ](t), (A.7)

Therefore,
1

2
δJ [x̂1, x̂2](h1, h2) =∫ T

0

E
[(
〈x̂1 − x, h1 −Kt,0

1 [h1]−Kt,0
2 [h2]〉Q1

−

〈h2 −Kt,0
1 [h1]−Kt,0

2 [h2], x̂2 − x〉Q2

)
| I1

]
dt (A.8)

where 〈a, b〉C = a′Cb and a, b, C are matrices (or vectors)
of compatible dimensions.

In order for (x̂1, x̂2) to be a Nash Equilibrium (saddle point
of J ), the necessary condition is δJ [x̂1, x̂2](h1, h2) = 0 for
all (h1, h2).

Let us consider

h2(t) = −
∫ t

0

ΦÃ2
(t, s)P−1Q1h1ds (A.9)

where ΦÃ2
is the state transition matrix corresponding

to the drift matrix A + P−1Q2 i.e. Φ̇Ã2
(t, s) = (A(t) +

P−1(t)Q2(t))ΦÃ2
(t, s) and ΦÃ2

(s, s) = In×n

This choice of (h1, h2) implies,

Kt,0
2 [h2](t)

= −
∫ t

0

ΦA(t, s)P−1Q2

∫ s

0

ΦÃ2
(s, σ)P−1Q1 h1 dσds

= −
∫ t

0

[∫ t

σ

ΦA(t, s)P−1Q2ΦÃ2
(s, σ)ds

]
P−1Q1 h1 dσ

= −
∫ t

0

[∫ t

σ

d

ds
(ΦA(t, s)ΦÃ2

(s, σ))ds

]
P−1Q1 h1 dσ

= h2(t)−
∫ t

0

ΦA(t, s)(−P−1Q1 h1 )ds

= h2(t)−Kt,0
1 [h1](t).

Substituting these (h1, h2), we obtain

1

2
δJ [x̂1, x̂2](h1, h2) =∫ T

0

E
[(
〈x̂1 − x, h1 − h2〉Q1

)
| I1

]
dt = 0 (A.10)

Equation (A.10) holds true for all choices of h1. Thus the
necessary condition becomes,

E[x(t)− x̂1(t) | I1(t)] = 0 (A.11)

or E[x(t) | I1(t)] = x̂1(t) for all t.

Similarly,

h1(t) =

∫ t

0

ΦÃ1
(t, s)P−1Q2h2ds (A.12)

implies Kt,0
1 [h1](t) +Kt,0

2 [h2](t) = h1(t). With this pair of
(h1, h2),

1

2
δJ [x̂1, x̂2](h1, h2) =∫ T

0

E
[(
〈x̂2 − x, h1 − h2〉Q2

)
| I1

]
dt (A.13)

Therefore, another necessary condition is:

E[x(t)− x̂2(t) | I1(t)] = 0 (A.14)

or E[x̂2(t) | I1(t)] = x̂1(t).

Similarly, one can show using (A.2) that the following
relations hold:

x̂2(t) =E[x(t) | I2(t)] (A.15)

x̂2(t) =E[x̂1(t) | I2(t)] (A.16)

From (A.11) and (A.14), and using the fact E[Wt | I1(t)] =
0 for all t, we obtain ∀t

˙̂x1 = (A− P−1Q1 + P−1Q1)x̂1 (A.17)

x̂1(τ1) = x(τ1)

for all τ1 ∈ T1.

Similarly by considering (A.2), one can show that ∀t,
˙̂x2 = (A− P−1Q1 + P−1Q1)x̂2 (A.18)

x̂2(τ2) = x(τ2)

for all τ2 ∈ T2.

Therefore, equations (A.17) and (A.18) are necessary
conditions for x̂1 and x̂2 to be a Nash Equilibrium.

To prove that x̂1 and x̂2 satisfying (A.17),(A.18) are a
saddle point pair (hence Nash Equilibrium) for J , we need
to evaluate the second order Gateaux differential of J . We
do not present the details of this derivation due to space
limitation, but one can check that:

1

2
δ2J [x̂1, x̂2](h1, h2) = D1 −D2 (A.19)

where for i = 1, 2,

Di =

∫ T

0

‖hi −Kt,0
1 [h1]−Kt,0

2 [h2]‖2Qi
. (A.20)

We need to prove that δ2J [x̂1, x̂2] is indefinite i.e. depend-
ing on the direction (h1, h2), δ2J can be positive as well as
negative. Let us consider a (h1, h2) pair such that h2 6= 0
identically for all t and

h1(t) =

∫ t

0

ΦÃ1
(t, s)P−1(s)Q2(s)h2(s)ds (A.21)

Therefore for some h2 (say h2= constant) we have D2 > 0
and D1 = 0 implying that δ2J [x̂1, x̂2](h1, h2) < 0. Also in
a similar fashion, by choosing

h2(t) = −
∫ t

0

ΦÃ2
(t, s)P−1(s)Q1(s)h1(s)ds (A.22)

one can show that δ2J [x̂1, x̂2](h1, h2) > 0.

This proves that the pair (x̂1, x̂2) satisfying (A.17)-(A.18)
is a saddle point of J .

The uniqueness of the saddle point is due to the unique-
ness property of the solution of a linear differential equa-
tion. 2
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