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Abstract: This study concerns control of dynamical systems via wireless sensor nodes with
minimal transmission power. In particular, we jointly design a controller and a transmission
power control mechanism that adjusts the transmit power of a wireless sensor node. We develop
a framework for achieving the minimum expected transmit power required for a specific level of
the LQG control performance. We model the communication channel between the wireless sensor
node and the controller by an AWGN channel compatible with the IEEE 802.15.4 standard,
which was formed for the specification of low-data-rate and low-power wireless communication.
We use dynamic programming to characterize the optimal policies, and show that there exists
a separation between the designs of the optimal estimator, optimal controller, and optimal
transmission power control mechanism.
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1. INTRODUCTION

This study concerns control of dynamical systems via
wireless sensor nodes with minimal transmission power.
Wireless sensor nodes are of significant interest because of
their promising and innovative applications in the context
of Internet of Things (IoT). In general, a wireless sensor
node is very small and requires very low power, but it is
often equipped with a limited power source that is not re-
placeable due to application-related constraints. The fact
is that the power of a wireless sensor node is mainly con-
sumed for communication. Hence, energy-efficient wireless
communication for control purposes is vital. One effective
technique to conserve energy in a wireless sensor node is
transmission power control. In this study, we would like
to design a mechanism for minimizing the transmit power
of a wireless sensor node subject to a constraint on the
quality of control. In fact, the transmit power influences
signal-to-noise ratio and subsequently the packet dropout
rate. Packet dropouts, as shown by Sinopoli et al. (2004)
and Schenato et al. (2007), can cause instability in the
estimation and the control problems. Therefore, we need
to jointly design a controller and a transmission power con-
trol mechanism. Intuitively speaking, a transmission power
control mechanism should adjust the transmit power such
that a high level of transmit power is used only for trans-
mission of measurements that contain important informa-
tion for the controller.

In this paper, we develop a framework for achieving the
minimum expected transmit power required for a spe-
cific level of the LQG control performance. We model
the communication channel between the wireless sensor
node and the controller by an AWGN channel compatible

with the IEEE 802.15.4 standard, which was formed for
the specification of low-data-rate and low-power wireless
communication. We use dynamic programming to charac-
terize the optimal policies, and show that there exists a
separation between the designs of the optimal estimator,
optimal controller, and optimal transmission power con-
trol mechanism. Transmission power control for estimation
problems over a fading channel have been investigated
by Leong et al. (2011), Wu et al. (2015), and Ren et al.
(2018). Closely related to our study, the joint design of a
state-feedback controller and a transmission power control
mechanism for fading channels is addressed by Gatsis
et al. (2014). On the contrary, here we jointly design
an output-feedback controller and a transmission power
control mechanism.

The outline of this paper is as follows. We formulate the
problem in Section 2. In Section 3, we obtain the optimal
policies and show the separation principle. We illustrate
numerical and simulation results in Section 4. Finally, we
make concluding remarks in Section 5.

1.1 Notations

In this paper, we represent an n dimensional vector with
x = [x1, . . . , xn]T where xi is its ith component. We write
xT to denote the transpose of the vector x. The normal
distribution with mean µ and covariance Σ is denoted
by N(µ,Σ). The expected value and the covariance of
the random variable x are denoted by E[x] and cov[x],
respectively. For matrices A and B, we write A � 0 and
B � 0 to mean that A and B are positive definite and
positive semi-definite respectively.
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2. PROBLEM FORMULATION

2.1 Dynamical System and Quantization

Consider a discrete-time dynamical system generated by
the following linear state equation:

xk+1 = Fxk +Buk + wk, (1)

for time k ∈ N+ and with initial condition x0 where
xk ∈ Rn is the state of the system, F is the state matrix,
B is the input matrix, uk ∈ Rm is the control input,
wk ∈ Rn is a Gaussian white noise with zero mean and
covariance R1 where R1 � 0. At each time step, the output
of the system is measured by a wireless sensor node. The
measurement of the sensor is given by

yk = Hxk + vk, (2)

where yk ∈ Rp is the output of the system, H is the
output matrix, and vk ∈ Rp is a Gaussian white noise
with zero mean and covariance R2 where R2 � 0. It is
assumed that the initial state x0 is a Gaussian vector
with mean m and covariance R0, and that x0, wk, and
vk are mutually independent. In addition, it is assumed
that (F,B) is controllable and (F,H) is observable.

The measurements are quantized by a high-resolution
quantizer into codewords of fixed length `. We model the
quantizer output by

zk = yk + nk, (3)

where nk is assumed to be a Gaussian white noise with
zero mean and covariance Λ where Λ � 0. We assume that
each measurement codeword is carried by a single network
packet.

2.2 Wireless Communication Channel

The wireless sensor node is connected to a controller via
a wireless communication channel. The codeword corre-
sponding to each measurement is modulated, transmitted
as an analog signal in the channel, and then demodu-
lated. We assume that the channel is an additive white
Gaussian noise (AWGN) channel. Compatible with the
IEEE 802.15.4 standard, we employ the offset quadrature
phase-shift keying (O-QPSK) modulation with coherent
detection and cyclic redundancy check (CRC).

The power of the transmitted signal is attenuated as the
signal propagates through the channel. The power of the
received signal is obtained by

pRXk = pTXk pDk
−1
, (4)

where pRXk is the received power, pTXk is the transmit
power, and pDk is the power decay due to attenuation. We
model attenuation in the channel with a path loss model
(Goldsmith (2005)), i.e.,

pDk =

(
4πfd0

c

)2(
d

d0

)η
, (5)

where d0 is the reference distance, d is the distance
between the wireless sensor node and the controller, f is
the carrier frequency, c is the speed of light, and η is the
path loss exponent.
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Fig. 1. The required transmit power versus packet success
rate for the specific wireless channel described in
Section 4.

In an AWGN channel, the received signal-to-noise ratio
SNRk of the channel is defined as the ratio of the received
signal power to the noise power within the bandwidth of
the transmitted signal (Goldsmith (2005)), i.e.,

SNRk =
pRXk
N0Bn

=
EkRc
N0Bn

, (6)

where Ek is the received signal energy per bit, Rc is
the communication rate, N0 is the noise power spectral
density, and Bn is the noise bandwidth. Using equations
(4), (5), and (6), we obtain

Ek
N0

=

(
4πfd0

c

)−2(
d

d0

)−η
(N0Rc)

−1pTXk , (7)

In addition, for O-QPSK modulation with coherent detec-
tion (Proakis (1995)) the performance of the communica-
tion channel is specified by

BERk = Q

(√
2Ek
N0

)
, (8)

where BERk is the bit error rate and Q(.) denotes the
Q-function. Following CRC error detection, all single bit
errors in a packet can be detected. Hence, the packet
success rate PSRk for transmission of packets with length
of ` bits is given by

PSRk = (1− BERk)`. (9)

Inserting (8) in (9), we obtain

PSRk =

(
1−Q

(√
2Ek
N0

))`
. (10)

Inserting (7) in (10), we can obtain the required transmit
power at time k as a function of the packet success rate as

pTXk =

{
c0

(
Q−1

(
1− PSR

1
`

k

))2

, PSRk ∈ [a, b],

0, PSRk = 0,
(11)

where [a, b] represents the operational range of PSRk with
specific a and b, and
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c0 =
1

2
N0Rc

(
4πfd0

c

)2(
d

d0

)η
. (12)

With abuse of notation we consider PSRk = 0 for the case
in which the transmitter is in sleep mode. Therefore, if
PSRk = 0 then nothing is transmitted at time k. In the
sequel, we denote the function in (11) by pTXk = ψ(PSRk)
defined in the domain Γ = 0∪ [a, b]. The required transmit
power as a function of the packet success rate is depicted
in Figure 1 for the specific wireless channel described in
Section 4.

The packet loss in the channel is modeled by an i.i.d.
arrival process γk with probability distribution P(γk =
1) = PSRk such that

γk =

{
1, if zk is received successfully,
0, otherwise.

(13)

Hence, E[γk] = PSRk. We assume that packets are received
with one-step delay, and packets that are not received
successfully are not retransmitted.

2.3 Transmission Power Optimization for LQG Control

Let π and µ be a packet success rate policy and a
control policy respectively. At time k, we assume that the
information available at the controller is specified by:

Ik = {γ0:k−1, u0:k−1, z0:k−1}. (14)

We assume that the controller decides also about the
transmit powers, and notifies the wireless sensor node of
transmit powers through an ideal communication channel.

We measure the control performance penalizing the state
deviation and control effort over the time horizon N by
the quadratic function:

Φ = E
[
‖xN+1‖2Q0

+
N∑
k=0

‖xk‖2Q1
+ ‖uk‖2Q2

]
, (15)

where Q0, Q1 � 0 and Q2 � 0 are weighting matrices.

We would like to find the optimal π and µ that minimize
the required transmit power for a guaranteed level of
control performance β, i.e.,

Ψ = inf
π,µ: Φ≤β

E
[ N∑
k=0

ψ(PSRk)
]
, (16)

which is equivalent to

Ψ = inf
π,µ

E
[
λ‖xN+1‖2Q0

+
N∑
k=0

ψ(PSRk) + λ‖xk‖2Q1
+ λ‖uk‖2Q2

]
, (17)

where λ > 0 is a Lagrange multiplier.

3. OPTIMAL POLICIES

We first need to obtain the optimal state estimate at
the controller given the information set Ik. The following
lemma gives the optimal state estimate.

Lemma 1. The conditional expected value of the state
with the following dynamics is the minimizer of the mean

square error (MSE) for the system defined by (1), (2), and
(3) with the one-step-delay channel with arrival process
specified by (13):

x̂k+1 = Fx̂k +Buk + γkKk(zk−Hx̂k), (18a)

Pk+1 = FPkF
T +R1 − γkKkHPkF

T , (18b)

where x̂k = E[xk|Ik], Pk = cov[xk|Ik], and

Kk = FPkH
T (HPkH

T + R̄2)−1, (18c)

with initial conditions x̂0 = m0, P0 = R0, and R̄2 = R2 +
Λ.

Proof. The state estimate and error covariance are
propagated as

x̂k+1 = Fx̂k+ +Buk, (19)

Pk+1 = FPk+F
T +R1, (20)

where x̂k and Pk are the a priori state estimate and
error covariance, and x̂k+ and Pk+ are the a posteriori
state estimate and error covariance. Moreover, the state
estimate and error covariance are updated as

x̂k+ = x̂k + γkPkH
T (HPkH

T + R̄2)−1(zk −Hx̂k), (21)

Pk+ = (In − γkPkHT (HPkH
T + R̄2)−1H)Pk. (22)

We obtain the result by substituting (21) and (22) in (19)
and (20) respectively. �

The following facts are used in the derivation of the
optimal control policy.

Lemma 2. The following equalities hold:

(a)E[γ2
k|Ik] = E[γk|Ik] = PSRk, (23)

(b)E[γkKk(zk −Hxk)|Ik] = 0, (24)

(c)E[xTk Sxk|Ik] = x̂Tk Sx̂k + tr(SPk), ∀S. (25)

Proof. (a) From the definition, the arrival process γk and
its square γ2

k have the same mean. Moreover, since γk is
independent of the information set Ik, we have

E[γk|Ik] = E[γk] = PSRk . (26)

Therefore, E[γ2
k|Ik] = PSRk.

(b) From the definition, the arrival process γk and the
innovation zk −Hxk are independent. Therefore,

E[γkKk(zk −Hxk)|Ik]

= E[γk]E[Kk(zk −Hxk)|Ik]

= E[γk]Kk E[(zk −Hxk)|Ik] = 0,

where we used the facts that Kk is Ik-measurable and the
innovation has zero mean.

(c) Applying algebraic operations, we obtain

E[xTk Sxk|Ik]

= tr
(
S E[xkx

T
k |Ik]

)
= tr

(
S E[xk|Ik]E[xk|Ik]T + S cov[xk|Ik]

)
= x̂Tk Sx̂k + tr(SPk).

�
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We define the cost-to-go function Vk as

Vk = min
π,µ

E
[
‖xN+1‖2Q0

+
N∑
t=k

1

λ
ψ(PSRt)

+ ‖xt‖2Q1
+ ‖ut‖2Q2

∣∣∣Ik]. (27)

Then, Ψ(π∗, µ∗) = λE[V0]. The next lemma provides the
optimal control policy.

Lemma 3. The optimal control policy is a certainty-
equivalence policy, i.e., µ∗k = −Lkx̂k where

Lk = (Q2 +BTSk+1B)−1BTSk+1F, (28)

and S � 0 is the solution of the following Riccati equation

Sk = FTSk+1F +Q1 − LTk (BTSk+1B +Q2)Lk, (29)

with initial condition SN+1 = Q0.

Proof. We can write:

Vk = min
PSRk,uk

E
[ 1

λ
ψ(PSRk) + xTkQ1xk

+ uTkQ2uk + Vk+1

∣∣∣Ik].
We shall prove that the cost-to-go is of the form Vk =
x̂Tk Skx̂k + sk where Sk � 0 and sk does not depend on xk
and x̂k. For time N + 1, we see

VN+1 = E[xTN+1Q0xN+1|IN+1]

= x̂TN+1Q0x̂N+1 + tr(Q0PN+1).

We assume that the hypothesis holds for time k + 1, and
show that it also holds for time k. From the hypothesis,
we have

Vk = min
PSRk,uk

{ 1

λ
ψ(PSRk) +x̂TkQ1x̂k+tr(Q1Pk)

+ uTkQ2uk + (Fx̂k +Buk)TSk+1(Fx̂k +Buk)

+ PSRk tr
(
Sk+1Kk(HPkH

T + R̄2)KT
k

)
+ sk+1

}
.

(30)

In the above derivation, we used

E[xTkQ1xk|Ik] = x̂TkQ1x̂k + tr(Q1Pk),

and

E[x̂Tk+1Sk+1x̂k+1|Ik]

= (Fx̂k +Buk)TSk+1(Fx̂k +Buk)

+ E[γ2
k|Ik] tr

(
Sk+1Kk(HPkH

T + R̄2)KT
k

)
= (Fx̂k +Buk)TSk+1(Fx̂k +Buk)

+ PSRk tr
(
Sk+1Kk(HPkH

T + R̄2)KT
k

)
,

where in the first and the second equalities we used (18a)
and Lemma 2. We observe that uk does not depend on
PSRk. Hence, taking the derivative of the expression in
the minimum in (30) with respect to uk and setting it
equal to zero, we obtain u∗k = −Lkx̂k where

Lk = (Q2 +BTSk+1B)−1BTSk+1F,

and

Sk = FTSk+1F +Q1 − LTk (BTSk+1B +Q2)Lk,

sk =
1

λ
ψ(PSR∗k) + tr(Q1Pk)

+ PSR∗k tr(Sk+1Kk(HPkH
T + R̄2)KT

k ) + E[sk+1|Ik].

where PSR∗ does not depend on xk and x̂k. The minimum
with respect to uk exists for all k, because the relevant
functions are quadratic and Q2 � 0 and Sk+1 � 0. Hence,
Vk = x̂Tk Skx̂k + sk. This completes the proof. �
Lemma 4. The following equality holds:

E[tr(PN+1Q0)− tr(R0S0)] =

+E
[ N∑
k=0

tr(Sk+1R1)+tr(PkL
T
k (BTSk+1B +Q2)Lk)

]
−E

[ N∑
k=0

tr(PkQ1)+PSRk tr(Sk+1Kk(HPkH
T +R̄2)KT

k )
]
.

(31)

Proof. We can rewrite the random Riccati equation in
(18b) as

Pk+1 = FPkF
T +R1 − γkKk(HPkH

T + R̄2)KT
k . (32)

Let us multiply (32) by Sk+1 and (29) by Pk, and take the
trace of difference. We obtain

tr(Pk+1Sk+1)− tr(PkSk)

= tr(Sk+1R1)− tr(γkSk+1Kk(HPkH
T + R̄2)KT

k )

− tr(PkQ1) + tr(PkL
T
k (BTSk+1B +Q2)Lk).

Summing from 0 to N , and then taking expectation we
obtain

E[tr(PN+1SN+1)]− E[tr(P0S0)] =

+ E
[ N∑
k=0

tr(Sk+1R1) + tr(PkL
T
k (BTSk+1B +Q2)Lk)

]
− E

[ N∑
k=0

(tr(PkQ1) + tr(γkSk+1Kk(HPkH
T + R̄2)KT

k )
]
.

However, from independency of γk we have

E[tr(γkSk+1Kk(HPkH
T + R̄2)KT

k )]

= E[γk]E[tr(Sk+1Kk(HPkH
T + R̄2)KT

k )]

= PSRk E[tr(Sk+1Kk(HPkH
T + R̄2)KT

k )]

= E[PSRk tr(Sk+1Kk(HPkH
T + R̄2)KT

k )].

Moreover, SN+1 = Q0 and P0 = R0. This completes the
proof. �
Proposition 1. The cost function Ψ(π, µ∗) associated with
the optimal control policy µ∗ and a packet success rate
policy π that is independent of the state and state estimate
is equal to

Ψ(π, µ∗) = λmTS0m+ λ tr(R0S0)

+ E
[ N∑
k=0

ψ(PSRk) + λ tr(Sk+1R1) + λ tr(ΘkPk)
]
,

(33)

where Θk = FTSk+1BLk.

Proof. From the proof of Lemma 3 and by considering
V πk as the cost-to-go Vk in (27) for a fixed π, we have
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Ψ(π, µ∗) = λE[V π0 ] = λE[x̂0S0x̂0 + s0]

= λmTS0m+ E
[
λ tr(Q0PN+1) +

N∑
k=0

ψ(PSRk)

+ λ tr(Q1Pk) + λPSRk tr(Sk+1Kk(HPkH
T +R2)KT

k )
]

= λmTS0m+ E
[
λ tr(R0S0) +

N∑
k=0

ψ(PSRk)

+ λ tr(Sk+1R1) + λ tr(PkL
T
k (BTSk+1B +Q2)Lk)

]
,

where in the last equality we used Lemma 4. We can now
obtain the result by using the definition of Lk. �

Let us define the value function Wk as

Wk(Pk)=min
π

E
[ N∑
t=k

ψ(PSRt) + λ tr(ΘtPt)
∣∣∣Ik], (34)

with WN+1 = 0. Next, we characterize the optimal packet
success rate policy of the optimization problem in (17).

Lemma 5. The optimal packet success rate policy is pro-
vided by

π∗k = argmin
PSRk∈Γ

{
ψ(PSRk) + (1− PSRk)Wk+1(FPkF

T +R1)

+ PSRkWk+1(FPkF
T +R1 −KkHPkF

T )
}
. (35)

Proof. Notice that only the third and last terms of
Ψ(π, µ∗) in (33) depend on PSRk and Pk. Moreover, the
dynamics of Pk is governed by the random Riccati equation
in (18b). Hence, we can obtain the optimal packet success
rate policy by solving the following optimization problem:

min.E
[ N∑
k=0

ψ(PSRk) + λ tr(ΘkPk)
]
,

s. t. Pk+1 = FPkF
T +R1 − γkKkHPkF

T , (36)

with initial condition P0 = R0. Let us define

ρ(Pk,PSRk) = ψ(PSRk) + λ tr(ΘkPk),

and

φ(Pk,PSRk) = FPkF
T +R1 − γkKkHPkF

T .

Since the stage cost ρ(Pk,PSRk) is Ik-measurable for any
PSRk, we can write

Wk(Pk)= min
PSRk∈Γ

{
ρ(Pk,PSRk)+E[Wk+1(φ(Pk,PSRk))|Ik]

}
.

Moreover, the transition function φ(Pk,PSRk) can take
only two different values:

P 0
k+1 = FPkF

T +R1, (37)

P 1
k+1 = FPkF

T +R1 −KkHPkF
T . (38)

The probability of Pk+1 = P 1
k+1 is PSRk and the probabil-

ity of Pk+1 = P 0
k+1 is 1−PSRk. Therefore, we can calculate

the expected value of the cost-to-go Wk+1

(
φ(Pk,PSRk)

)
as

E[Wk+1(φ(Pk,PSRk))|Ik]

= (1− PSRk)Wk+1(P 0
k+1) + PSRkWk+1(P 1

k+1).

Hence, the optimal PSRk is obtained by

PSR∗k = argmin
PSRk∈Γ

{
g(Pk,PSRk) + (1− PSRk)Wk+1(P 0

k+1)

+ PSRkWk+1(P 1
k+1)

}
.

Notice that the term tr(ΘkPk) in ρ(Pk,PSRk) does not
depend on PSRk. This completes the proof. �

Following Lemma 5, the optimal transmit power at time
k can be obtained by

p∗k
TX = ψ(PSR∗k). (39)

The next theorem shows that a separation exists in the
design of the overall system.

Theorem 1. There is a separation between the designs of
the optimal estimator, optimal controller, and optimal
transmission power control mechanism.

Proof. The optimal state estimate, optimal control pol-
icy, and optimal packet success rate policy are separately
designed by Lemma 1, Lemma 3, and Lemma 5. �

4. ILLUSTRATIVE EXAMPLE

In this section, we provide a simple example to illustrate
the method we developed in this study. Consider the
following unstable system observed by a wireless sensor
node:

xk+1 = 1.01xk + uk + wk,

yk = 0.30xk + vk,

with the initial conditions m = 0 and R0 = 2, and with
the covariances R1 = 0.1 and R̄2 = 0.3. The weighting
matrices are Q0 = 1, Q1 = 1, and Q2 = 0.5, and the
weighting coefficient is λ = 0.0004. The communication
channel is characterized by the following parameters: the
data rate of the communication Rc = 250 Kbps, the
carrier frequency f = 2.45 GHz, the receiver distance
d = 10.00 m, the path loss exponent η = 3.6, the noise
power spectral density N0 = 6 × 10−18 watt/Hz, and the
payload length ` = 100 bits. This yields c0 = 3.149×10−5.

We used dynamic programming to calculate the cost-to-go
function W (P ). The spaces of PSR and P are discretized
by grids with cardinality M = 2500 over the intervals
[0.0001, 0.9999] and [0, 10] respectively. Figure 2 illustrates
the optimal transmit power policy as a function of the
covariance at time k = 1. As it is seen, the transmitter
is in sleep mode for small values of the covariance. This
result can justify the usage of a simple threshold event-
triggering mechanism for transmission power control (see
e.g., Soleymani et al. (2016)). We simulated the system
over the horizon N = 200. Figure 3 and Figure 4 depict the
trajectories of the estimation error and error covariance,
and Figure 5 shows the trajectory of the transmit power.
It can be observed that the transmit power is adaptive and
at many time steps the transmitter is in sleep mode, which
leads to an overall improvement in the energy conservation
of the wireless sensor node while satisfying the required
control quality.

5. CONCLUSION

We studied the problem of minimizing the expected trans-
mit power of a wireless sensor node required for a specific
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Fig. 2. Optimal transmit power policy at time k = 1.
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Fig. 3. Trajectory of the estimation error.

level of the LQG control performance over a finite horizon.
We employed dynamic programming, obtained the optimal
policies, and showed that there exists a separation between
the designs of the optimal estimator, optimal controller,
and optimal transmission power control mechanism.
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