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Abstract: In this paper, we consider the classic car overtake problem. There are three cars,
two moving along the same direction in the same lane while the third car moves in the direction
opposite to that of the first two cars in the adjacent lane. The objective of the trailing car is
to overtake the car in front of it avoiding collision with the other cars in the scenario. The
information available to the trailing car is the relative position, relative velocities with respect
to other cars and its position and past actions. The relative position and relative velocity
information is corrupted by noise. Given this information, the car needs to make a decision
as to whether it wants to overtake or not. We present a control algorithm for the car which
minimizes the probability of collision with both the cars. We also present the results obtained
by simulating the above scenario with the control algorithm. Through simulations, we study the
effect of the variance of the measurement noise and the time at which the decision is made on
the probability of collision.
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1. INTRODUCTION

In recent years, there has been significant interest and re-
search activity in the area of cooperative control of multi-
ple autonomous vehicles. The ultimate goal in automating
the driving process is to reduce accidents and improve
safety. Among all the scenarios, overtaking maneuver is
one of the most dangerous ones, especially in two-way
roads, due to non-cooperative behaviors from the drivers,
lack of distance, poor visibility, etc.

Due to the high demand from the practice, many results
about overtaking are available in the literature. Roughly
speaking, the overtaking problem can be categorized in
the study of the lane-change maneuver, including chang-
ing lanes on a highway, leaving the road, or overtaking,
which is one of the most thoroughly investigated auto-
matic driving operations for autonomous vehicles after
trajectory tracking, see e.g., Böhm et al. (2011), Petrov
and Nashashibi (2014) and the references within. In Sezer
(2017), the overtaking problem is formulated using the
tools from the Mixed Observable Markov Decision Process
(MOMDP),which provides optimum strategy considering
the uncertainties in the problem. However, the methodol-
ogy suffers from high complexity. In Vinel et al. (2012), the
authors consider the scenario in which the driver is in the
loop and the proposed system helps for a safe overtaking
by cooperative perception.

We consider the following scenario. There are three cars,
Car 1, Car 2 and Car 3 (Figure 1). Car 1 and Car 2
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Fig. 1. Schematic

are moving in same lane while Car 3 is moving in the
adjacent lane in the direction opposite to the other two
cars. There is no physical barrier between the two lanes.
Car 1 is trailing Car 2. When Car 1 is close “enough” to
Car 2, Car 1 has to decide if it should overtake Car 2 or
not while avoiding collision with both the cars. If Car 1
decides to overtake, it needs to determine its trajectory of
overtaking as well. At every time instant, Car 1 measures
its relative speed and velocity with respect to the other two
cars. These measurements are corrupted by noise. Based
on noisy measurements of relative distance and velocity
with respect to Car 2 and Car 3, Car 1 needs to make the
decision.
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The major contribution of this paper is the stochastic
control formulation of this problem and the control al-
gorithm based on probability of collision calculation. The
probability space constructed by the trailing car is based
on the joint distribution of the noise in its measurements
and its initial state. The actions of the other cars are
considered as exogenous random variables. Based on the
statistics of the measurement noise, a numerical method
to compute probability of Car 1 colliding with Car 2 and
probability of Car 1 colliding with Car 3 while overtaking
is discussed. A control algorithm, where the probability of
collision is minimized is presented. Through simulations
the effect of measurement noise and time at which the
decision is made on the probability of collision is studied.

Notation: Let V denote the set of admissible speeds for
the cars and it is assumed to be a finite set. Let W denote
the set of admissible angular speeds for Car 1 and it is
also assumed to be a finite set. Let M denote the set of
possible times that Car 1 could spend in the alternate
lane while overtaking. d denotes the breadth of the lanes
while L denotes minimum safety distance between cars.
Let (Ω,F ,P) be a probability space for Car 1.

2. PROBLEM FORMULATION

2.1 System Model

The dynamics of Car 1 is modeled by the unicycle (Du-
bin’s) model:

x1(k + 1) = x1(k) + v1(k) cos(θ1(k)),

y1(k + 1) = y1(k) + v1(k) sin(θ1(k)),

θ1(k + 1) = θ1(k) + ω(k).

x1(k), y1(k) denote the longitudinal and lateral coordi-
nates of Car 1 at time k. θ1(k) denotes the orientation
of Car 1 at time k. The longitudinal coordinate at time
zero is, x1(0) v N (0,Σ1), while the lateral coordinate and
orientation are y1(0) = d

2 , θ1(0) = 0. The actions taken
by Car 1 at time k are, v1(k) and ω(k). For Car 2 and
Car 3, their y coordinate is fixed. They traverse along the
x direction with speed that could be time varying. The
dynamics of Car 2 is described as:

x2(k + 1) = x2(k) + v2(k),

y2(k) =
d

2
, θ2(k) = 0.

The initial longitudinal coordinate of Car 2 is random,
x2(0) v N (x̃2,Σ2). x̃2 is larger than 0 and Σ2 is chosen
small enough, so that x2(0) > x1(0). The dynamics of Car
3 is described as:

x3(k + 1) = x3(k) + v3(k),

y3(k) =
3d

2
, θ3(k) = 0.

The initial longitudinal coordinate of Car 3 is random,
x3(0) v N (x̃3,Σ3), x̃3 is much greater than x̃2. Σ3 is
chosen small enough, so that x3(0) > x2(0). The actions
taken by Car 2 and Car 3 are v2(k) and v3(k) respectively.
The first set of observations collected by Car 1 are its
relative positions with respect to Car 2 and Car 3:

z1(k) = x2(k)− x1(k) +W1(k), k ≥ 0,

z2(k) = x3(k)− x1(k) +W2(k), k ≥ 0.

Fig. 2. Sample trajectory during overtake

Once the cars take their respective actions, the second set
of observations collected by Car 1 are the relative velocities
with respect to Car 2 and Car 3.

z3(k) = v2(k)− v1(k) +W3(k), k ≥ 0,

z4(k) = v3(k)− v1(k) +W4(k), k ≥ 0.

Wi(k), i = 1, 2, 3, 4 are white Gaussian processes with
zero mean and variances σ2

i (k). {Wi}k≥1, x1(0), x2(0) and
x3(0) are assumed to be independent. Let I1(k) denote
the information available to Car 1 before taking its action.
Then,

I1(k) ={x1(n), v1(n), y1(n), θ1(n), z1(n), z2(n)}n=k
n=0

∪{z3(n), z4(n)}n=k−1
n=0 .

After the three cars take their respective actions, z3(k) and
z4(k) also become available. Hence the new information set
available to Car 1 is

I2(k) ={x1(n), v1(n), y1(n), θ1(n), z1(n), z2(n)}n=k
n=0

∪{z3(n), z4(n)}n=k
n=0 .

2.2 Control Problem

In this section we formulate the control problem for Car
1. As a solution to the overtake problem, Car 1 could wait
for Car 3 to pass by and then it would have to take into
account only collision with Car 2 while making the decision
to overtake. We do not consider such a solution as a feasible
solution. Apart from choosing v1 and ω1 at every time
instant, Car 1 needs to take other decisions as well. The
first objective of Car 1 is to find the decision time, i.e.,
the time at which it should decide to overtake or not. We
denote the decision time by τ . At τ , Car 1 should make
the decision to overtake or not. We note the decision by
D. After the decision is taken, Car 1 needs to decide its
trajectory for overtaking. In our study we restrict ourselves
to trajectories generated as follows: the trajectories are
characterized by v1, ω1 and t1. v1 denotes the constant
speed of Car 1 through out the overtake. ω1, the magnitude
of the angular velocity of Car 1 during the overtake. t1
denotes the time spent by Car 1 in the alternate lane. Let
∆ = 1

ω1
arccos(1− dω1

2v1
). ∆ is approximately the time taken

by Car 1 to go from y = d
2 to y = d. Then,
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ω(k) = ω1, τ ≤ k < τ + ∆ [T2],

ω(k) = −ω1, τ + ∆ [T2] ≤ k < τ + 2∆ [T3],

ω(k) = 0, τ + 2∆ [T3] ≤ k < τ + 2∆ + t1 [T5],

ω(k) = −ω1, τ + 2∆ + t1 [T5] ≤ k < τ + 3∆ + t1 [T6],

ω(k) = ω1, τ + 3∆ + t1 [T6] ≤ k < τ + 4∆ + t1 [T7].

A sample trajectory generated using such a law is shown
in Figure 2. Note that, in our formulation we do not give
Car 1 the freedom to return to the original lane during the
process of overtaking.

Hence the control problem for Car 1 is to find Decision
time (τ), the overtake decision (D), and a triple (v1, ω1,
t1) which has the least probability of collision.

3. SOLUTION

To find its control policy, Car 1 needs to estimate the posi-
tion and velocity of Car 2 and Car 3 from the information
available to it.

3.1 Estimation

Car 1 estimates the position and velocity of Car 2 and Car
3 using the available information. The position of Car 2
can be estimated as follows : Let z̃1(k) = z1(k) + x1(k)
and z̃3(k) = z3(k) + v1(k). Then,

x2(k + 1) = x2(k) + z̃3(k)−W3(k),

z̃1(k) = x2(k) +W1(k).

Let,

EP[x2(k + 1)|I2(k)] = x̄2(k + 1), EP[x2(k)|I1(k)] = x̂2(k).

Using I1(k), and Kalman filtering,

x̂2(k) = x̄2(k) +G(k)(z̃1(k)− x̄2(k)),

G(k) =
P (k)

σ2
1(k)

, Q(k + 1) = P (k) + σ2
3(k),

P (k) =
Q(k)σ2

1(k)

σ2
1(k) +Q(k)

, P (0) = Σ2.

Once the actions are taken by the cars, I2(k) is available.
Since v2(k) is treated as an exogenous random variable,
E[W3(k)|I2(k)] is set to zero (i.e., E[W3(k)]).

x̄2(k + 1) = x̂2(k) + z̃3(k).

The best estimate of velocity of Car 2 is given by :

v̂2(k) = EP[x2(k + 1)− x2(k)|I2(k)] =

x̄2(k + 1)− x̂2(k) = z̃3(k).

Let e2(k) = x2(k) − x̂2(k). e2(k) v N (0, P (k)). Similarly
the position and velocity of Car 3 can be estimated by Car
1: Let z̃2(k) = z2(k) + x1(k) and z̃4(k) = z4(k) + v1(k).
Then,

x̄3(k + 1) = x̂3(k) + z̃4(k),

x̂3(k) = x̄3(k) +H(k)(z̃2(k)− x̄3(k)),

H(k) =
R(k)

σ2
2(k)

, S(k + 1) = R(k) + σ2
4(k),

R(k) =
S(k)σ2

2(k)

σ2
2(k) + S(k)

, R0 = Σ3.

v̂3(k) = EP[x3(k + 1)− x3(k)|I2(k)]

= x̄3(k + 1)− x̂3(k) = z̃4(k).

Let e3(k) = x3(k)− x̂3(k). e3(k) v N (0, R(k)).

3.2 Decision Time

Using the estimated position, Car 1 considers a distance
based definition for τ . τ is defined as :

τ = min
k≥1
{k : N × L ≤ x̂2(k)− x1(k) ≤ (N + 1)× L},

where N is a natural number. N could be used to char-
acterize the behavior of the driver in Car 1. For a passive
driver N could 5 or 8, while for a aggressive driver it could
be 1 or 2. Hence the estimated safety distance between Car
1 and Car 2 at τ is greater than or equal to N × L. To
guarantee existence of τ , the simulation time step has to
be chosen to be less than L

2×maxV .

3.3 Feasibility

At a given time instant k, when the above definition is
satisfied and τ is found, the next goal for Car 1 is to
make the decision of overtaking. Note that since the cars
have not taken their actions yet, velocity estimates are not
available. At τ , given x1(τ), x̂2(τ), v̂2(τ − 1), every triple
(v1, ω1, t1) ∈ V×W×M does not guarantee that Car 1 will
overtake Car 2. Hence using the information available τ ,
Car 1 predicts where Car 2 would be at the time it finishes
overtaking and the feasible triples are defined accordingly.
Let M × L be the desired safety distance between Car 1
and Car 2 after Car 1 overtakes Car 2.

Definition 3.1. Given, X2 = [x1(τ); x̂2(τ); v̂2(τ − 1)],
(v1, ω1, t1) ∈ V × W ×M is said to be feasible for Car
1 with respect to Car 2 if :

x1(τ) +
2v1

ω1
sin(2ω1∆) + v1t1

≥ [x̂2(τ)] + (v̂2(τ − 1))(4∆ + t1) +M × L.

The L.H.S of the above inequality is the position of Car 1
after it overtakes Car 2 along the trajectory generated by
v1, ω1 and t1. The R.H.S of the inequality is the estimated
position of Car 2 at the time Car 1 finishes overtaking
incremented by the safety distance. For given X2 , let
SX2 denote the set of all feasible triples. At τ , given
x1(τ), x̂3(τ), v̂3(τ − 1), some triples (v1, ω1, t1) ∈ V ×W ×
M might lead to collision with Car 3 during the process
of overtaking. Car 1 considers a triple (v1, ω1, t1), to be
feasible if at T3, Car 3 has already passed it or at T5, Car
3 is at safe distance from it. Since the exact position and
velocity of Car 3 is not known, following definition is also
based on the estimate. Let M̄ × L be the desired safety
distance between Car 1 and Car 3 when Car 1 overtakes
Car 2.

Definition 3.2. Given X3 = [x1(τ)); x̂3(τ)); v̂3(τ − 1)],
(v1, ω1, t1) ∈ V × W ×M is said to be feasible for Car
1 with respect to Car 3 if :

x1(τ) +
v1

ω1
sin(2ω1∆) ≥ x̂3(τ) + (v̂3(τ − 1))(2∆) + M̄ × L,

or x1(τ) +
v1

ω1
sin(2ω1∆) + v1t1 + M̄ × L

≤ x̂3(τ) + (v̂3(τ − 1))(2∆ + t1).

For given X3 , let SX3
denote the set of all feasible triples.

3.4 Probability of Collision - Car 2

Among the feasible triples, Car 1 would have to find the
triple that has the least probability of collision with both

2018 IFAC CTS
June 6-8, 2018. Savona, Italy

126



Car 2 and Car 3. Let δ = 1
ω1

arccos(1 − Lω1

v1
). If Car 1

decides to overtake, it is the time taken by Car 1 to move
from y1(k) = d/2 to y1(k) = d/2 +L given that the action
of Car 1 is v1, ω1. It is used in the following sections to
determine if a collision has occurred. We now define the
collision random variable and discuss a numerical approach
to find the probability of collision.

Definition 3.3. Car 1 is said to collide with Car 2 if:

C2 = 1 if : ∃ k 3

{
x2(k)− L ≤ x1(k) ≤ x2(k) + L, (1)

d

2
≤ y1(k) ≤ d

2
+ L. (2)

Note that C2 is a function of (v1, ω1, t1). Given X2 and
a triple (v1, ω1, t1), the objective is now to find time
intervals or instances where both the conditions hold. Since
y coordinates of the three cars are known precisely at all
times, the intervals where (2) holds (if Car 1 decides to
overtake) are known with certainty. The intervals are :
[0, τ ], [τ, τ + δ] and [τ + 4∆ + t1− δ, τ + 4∆ + t1]. Since X2

is random, the intervals where (1) is satisfied are random.
Let e be the true value of error in position estimation at
τ and w be the true value of error in velocity estimation
at τ − 1. Consider the interval [0, τ ]. Define:

ψ1(s, e) = [x̂2(s) + e]− x1(s).

ψ1(s, e) is the difference in the position of Car 2 and
position of Car 1 at time s. Thus for (1) and (2) to hold
in the considered time interval, it suffices to find

A1(e) = {s ∈ [0, τ ] : −L ≤ ψ1(s, e) ≤ L}.
Clearly, A1(e) 6= ∅ implies C1(e) = 1, where C1(e) is
collision variable for a given value of error. Consider the
time interval [τ, τ + δ]. For a given X2 and same triple
(v1, ω1, t1) ∈ SX2 , define:

ψ2(s) = x1(τ) +

∫ s

0

v1 cos(ω1t) = x1(τ) +
v1

ω1
sin(ω1s),

ψ3(s, e, w) = (x̂2(τ) + e) + (v̂2(τ − 1)− w)(s).

ψ2(s) is the position of Car 1 at time τ+s and ψ3(s, e, w) is
the predicted position of Car 2 at time τ+s. ψ2(s) is found
using continuous time version of the Dubin’s model. Thus
for (1) and (2) to hold in the considered time interval, it
suffices to find

A2(e, w) = {s ∈ [0, δ] : −L ≤ ψ2(s)− ψ3(s, e, w) ≤ L}.
Consider the time interval, [τ + 4∆ + t1 − δ, τ + 4∆ + t1].
For the given X2, triple (v1, ω1, t1) ∈ SX2 ,

ψ4(s) = x1(τ) +

∫ 2∆

0

v1 cos(ω1t)dt+ v1t1+∫ ∆+s

0

v1 cos(ω1t)dt = x1(τ) +
v1

ω1
sin(2ω1∆)

+ v1t1 +
v1

ω1
sin(ω1(∆ + s)),

ψ5(s, e, w) = (x̂2(τ) + e) + (v̂2(τ − 1)− w)(3∆ + t1 + s).

ψ4(s) is the position of Car 1 at time τ + 3∆ + t1 + s and
ψ5(s, e, w) is the predicted position of Car 2 at the same
time. Here again, to verify if (1) and (2) hold,

A3(e, w) = {s ∈ [∆− δ,∆] :

− L ≤ ψ4(s)− ψ5(s, e, w) ≤ L}.
For the fixed value of e and w, the collision variable is :

C2(e, w) = 1A2∪A3 6=∅.

Since (v1, ω1, t1) does not affect A1, collision resulting
in A1 is defined separately. It is difficult to find closed
form expression for C2(e, w). We find it numerically by
considering finite domains for e and W . The procedure to
construct domains for e and w is explained in the next
section. The joint density of e2(τ) and W3(τ − 1) is found
as follows:

f2(e2(τ) = e,W3(τ − 1) = w) =

f(e2(τ) = e|W3(τ − 1) = w)× f(W3(τ − 1) = w).

Before we get to the conditional distribution we first find,
E[e2(τ)W3(τ − 1)].

e2(τ) = (1−G(τ))(e2(τ − 1) +W3(τ − 1))−G(τ)W1(τ),

E[e2(τ)W3(τ − 1)] = (1−G(τ))E[e2(τ − 1)W3(τ − 1)]+

(1−G(τ))E[(W3(τ − 1))2]−G(τ)E[W1(τ)W3(τ − 1)]

= (1−G(τ))σ2
3(τ − 1),

the last equality follows from independence of e2(τ − 1),
W3(τ − 1) and W1(τ). Since e2(τ) and W3(τ − 1) are
Gaussian random variables, the conditional distribution
is also Gaussian with mean:

E[e2(τ)|W3(τ − 1)] = E[e2(τ)] +
E[e2(τ)W3(τ − 1)]

E[(W3(τ))2]
×

[W3(τ − 1)− E[W3(τ − 1)]]

= (1−G(τ))[W3(τ − 1)],

and variance:

E[(e2(τ)− E[e2(τ)|W3(τ − 1))2] = E[(e2(τ))2]−
E[e2(τ)((1−G(τ))W3(τ − 1)]

= P (τ)− ((1−G(τ))2σ2
3(τ − 1).

Thus,

f2(e2(τ) = e,W3(τ − 1) = w) = N (0, σ2
3(τ − 1))×

N ((1−G(τ))w,P (τ)− ((1−G(τ))2σ2
3(τ − 1)).

Thus in the above discussion, for fixed X2 and (v1, ω1, t1),
the collision variable, C2(e, w), for Car 1 colliding with
Car 2 has been defined. The joint distribution between the
error in position and error in velocity, f2(e2(τ),W3(τ −1))
has been found. The approximate probability of Car 1
colliding with Car 2 is found numerically by integrating
C2(e, w) and f2(e2(τ),W3(τ − 1)). The procedure for the
same is discussed in section 4.

3.5 Probability of Collision - Car 3

In this section, we discuss a procedure similar to the
previous section to find the probability of Car 1 colliding
with Car 3.

Definition 3.4. Car 1 is said to collide with Car 3:

C3 = 1 if : ∃ k 3

{
x3(k)− L ≤ x1(k) ≤ x3(k) + L, (3)

3d

2
− L ≤ y1(k) ≤ 3d

2
. (4)

C3 is a function of (v1, ω1, t1). Given X3 and (v1, ω1, t1) ∈
SX3 , if Car 1 decides to overtake, the time intervals where
(4) holds are: [τ + 2∆ − δ, τ + 2∆], [τ + 2∆, τ + 2∆ + t1]
and [τ+2∆+ t1, τ+2∆+ t1 +δ]. Let e be the true value of
error in position estimate of Car 3 at τ and w is true value
of error in velocity estimate of Car 3 at τ − 1. Consider
[τ + 2∆− δ, τ + 2∆],

2018 IFAC CTS
June 6-8, 2018. Savona, Italy

127



φ1(s) = x1(τ) +

∫ ∆+s

0

v1 cos(ω1t)dt

= x1(τ) +
v1

ω1
sin(ω1(∆ + s)),

φ2(s, e, w) = (x̂3(τ) + e) + (v̂3(τ − 1)− w)(∆ + s).

At time τ + ∆ + s, φ1(s) is the position of Car 1 while
φ2(s, e, w) is the predicted position of Car 3. To verify if
(3) and (4) hold, we find :

B1(e,W ) = {s ∈ [∆− δ,∆] :

− L ≤ φ1(s)− φ2(s, e, w) ≤ L}.
Consider the interval [τ + 2∆, τ + 2∆ + t1],

φ3(s) = x1(τ) +
v1

ω1
sin(2ω1∆) + v1s,

φ4(s, e, w) = (x̂3(τ) + e) + (v̂3(τ − 1)− w)(2∆ + s).

At time τ + 2∆ + s, φ3(s) is the position of Car 1 while
φ4(s, e, w) is the predicted position of Car 3. To verify the
collision definition, we find :

B2(e, w) = {s ∈ [0, t1] : −L ≤ φ3(s)− φ4(s, e, w) ≤ L}.
For the third interval, [τ + 2∆ + t1, τ + 2∆ + t1 + δ],

φ5(s) = x1(τ) +
v1

ω1
sin(2ω1∆) + v1t1 +

v1

ω1
sin(ω1(s)),

φ6(s, e, w) = (x̂3(τ) + e) + (v̂3(τ − 1)− w)(2∆ + t1 + s).

φ5(s) is the position of Car 1 at time τ + 2∆ + t1 + s while
the φ6(s, e, w) is the predicted position of Car 3 at the
same time. To verify if (3) and (4) hold, we find :

B3(e, w) = {s ∈ [0, δ] : −L ≤ ψ5(s)− ψ6(s, e, w) ≤ L}.
For the fixed values of e and W , the collision variable is:

C3(e, w) = 1B1(e,W )∪B2(e,W )∪B3(e,W ) 6=∅.

The joint density of e3(τ) and W4(τ − 1) is given by :

f3(e3(τ) = e,W4(τ − 1) = w) = N (0, σ2
4(τ − 1))×

N ((1−H(τ))w,R(τ)− ((1−H(τ))2σ2
4(τ − 1))

The probability of Car 1 colliding with Car 3, is found
numerically by integrating C3(e, w) and the above density.
The same procedure is followed for every (v1, ω1, t1)) ∈
SX3 to obtain P(C3(v1, ω1, t1)).

3.6 Decision

If SX2
∩ SX3

= ∅, then D = 0. Given the probability of
collision with Car 2 and Car 3 for the admissible triples,
Car 1 does an exhaustive search in SX2

∩ SX3
to find the

triple for which the maximum of the probability of collision
with Car 2 and the probability of collision with Car 3 is
minimized.

P ∗ = min
{v1,ω1,t1∈SX2

∩SX3
}

max[P(C2(v1, ω1, t1),

P(C3(v1, ω1, t1)].

(v∗1 , ω
∗
1 , t
∗
1) = arg min

{v1,ω1,t1∈SX2
∩SX3

}
max[P(C2(v1, ω1, t1),

P(C3(v1, ω1, t1)].

Given a threshold level T which is a function of the cost
incurred for collision (C)and the reward for overtaking (R)
(example : T = R

C+R ),

D = 1, if P ∗ ≤ T
= 0, otherwise.

D = 1 corresponds to overtaking.

3.7 Car 1 Action

In this section we discuss the control algorithm for Car 1.
The detailed algorithm is presented in algorithm 1. The
summary is as follows: from k = 0 to τ − 1, v1(k) is fixed
and ω(k) = 0. At τ , Car 1 first obtains both the feasible
sets. Then for the feasible triples, it obtains the probability
of collision. Using the probability of collision, it finds the
optimal decision. If the optimal decision is to overtake,
then v1(k) is set to v∗1 , while ω(k) is changed from time
to time as described in the algorithm. As the estimate of
the velocity could be poor, a conservative policy for Car
1 would be to change his velocity to half the estimated
velocity of Car 2, when the optimal decision is to trail.

Algorithm 1 Control Algorithm

1: function Control (x1, x̂2, x̂3, v1, v̂2, v̂3, Pk, Rk, i) . i
denotes the iteration number

2: if (N × L ≤ x̂2 − x1 ≤ (N + 1) × L ∧
DecisionComplete = −1) then

3: DecisionComplete← 0
4: DIt ← i;

5: if DecisionComplete = −1 then
6: v1(i)← v, v : v ∈ V,
7: ω1(i)← 0

8: if DecisionComplete = 0 then
9: Obatin SX2

∩ SX3

10: Obatin P(C2(v1, ω1, t1)),P(C3(v1, ω1, t1))
11: Obtain D,(v∗1 , ω

∗
1 , t
∗
1)

12: Find ∆∗

13: DecisionComplete← 1

14: if (D = 1 ∧DecisionComplete = 1) then
15: Deltac = ∆∗/timestep, t1,c = t∗1/timestep
16: v1(i) = v∗1
17: if 0 ≤ i−DIt < Deltac then
18: ω1(i) = ω∗1
19: else if Deltac ≤ i−DIt < 2Deltac then
20: ω1(i) = −ω∗1
21: else if 2Deltac ≤ i−DIt < 2Deltac+t1,c then
22: ω1(i) = 0
23: else if 2Deltac+ t1,c ≤ i−DIt < 3Deltac+ t1,c

then
24: ω1(i) = −ω∗1
25: else if 3Deltac+ t1,c ≤ i−DIt < 4Deltac+ t1,c

then
26: ω1(i) = ω∗1
27: else if i−DIt ≥ 4Deltac + t1,c then
28: ω1(i) = 0

29: else if (D = 0 ∧DecisionComplete = 1) then

30: V 2est←
∑i−1

j=0
v̂2(j)

i
31: v1(i)← v, v : v ∈ V, v ≤ V 2est/2
32: ω1(i)← 0

4. SIMULATION RESULTS

4.1 Setup

We first describe the simulation setup. The lane width, d
was chosen as 3.7 m. The safety distance, L was chosen as
1.5 m. M and M̄ were set to 2. The simulation time step
was taken to be 0.01 second. The initial position, velocities
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and variances where chosen as in Table 1. The velocity of

Parameter Value Variance

x1(0) 0 0.001

x2(0) 50 m 0.001

x3(0) 275 m 0.001

v1(0) 17 m/s -

v2(0) 10 m/s -

v3(0) -9 m/s -

Table 1. Initial position and velocity

Car 2 and Car 3 remain fixed. In practice, it is known
that it is not possible to measure the relative position and
velocity with the same accuracy. In the simulations, the
variance of the noise in position and velocity measurements
were chosen as follows: if k was even, then σ1(k) =
σ2(k) = c1 and σ3(k) = σ4(k) = 10c1. If k was odd,
then σ1(k) = σ2(k) = 10c1 and σ3(k) = σ4(k) = c1. The
admissible velocities considered were :{V-Min,V-Min +
step-size,V-Min + 2 × step-size, . . . ,V-Max}. Similarly,
admissible sets were generated for angular velocity and
time in alternate lane. The lower bound, upper bound and
the step sizes for all three sets has been tabulated in Table
2. The finite sets for error in position estimate and velocity

Parameter Maximum minimum step-size

v1 30 m/s 8 m/s 0.5

ω1 0.7 rad/s 0.1 rad/s 0.2

t1 10 s 2 s 0.5

Table 2. Admissible velocity, angular velocity
and time

estimate were generated as follows. Let σp =
√
P (τ) and

σv = σ3(τ − 1). Let N1 = d 6σp

step-sizee and M1 = d 6σv

step-sizee.
Then the finite domain for e, error is position estimate was
E = {−3σp,−3σp + step-size, . . . ,−3σp +N1× step-size}.
The finite domain for w, error is velocity estimate was
U = {−3σv,−3σv + step-size, . . . ,−3σv +M1× step-size}.
The step-size for the generation of these two sets was set to
0.2. For every triple (v1, ω1, t1) ∈ SX2

, P(C2(v1, ω1, t1)) was
calculated as follows. First, for each pair (e, w) ∈ E×U , the
collision variable C2(e, w) was found. Then, the probability
of collision with Car 2 was approximated as:

P(C2(v1, ω1, t1)) =
∑

{e,w}∈E×U

C2(e, w)f2(e, w).

Similarly the probability of collision with Car 3 was
approximated. The threshold T was set to 0.01. Three
values of N was considered, N = 8, 5, 2. Three values
of c1 was considered, c1 = 1, 0.5, 0.1. With these settings
simulations were performed. P ∗ was found to be zero in
all except one scenario, for the pair (N = 2,c1 = 0.5). For
N = 2,c1 = 0.5, P ∗ was found to be 0.0945. For N = 5,
c1 = 0.1, the optimal triple was (15 m/s, 0.3 rad/s, 2 s).
For that pair and rest of the simulation setup described
above, the trajectory of the three cars has been plotted in
Figure 3. For higher velocities of Car 1 and Car 3, it was
observed that the optimal decision is to not overtake.

5. CONCLUSION AND FUTURE WORK

In this paper we studied a stochastic control approach
to the car overtake problem. Based on the information
available to Car 1, the probability of collision with either

Fig. 3. Trajectory of the three cars

car was calculated as a function of the velocity, angular
velocity and time spent in the alternate lane. The control
action was chosen by Car 1 in such way that maximum
of the probability of collision with other two cars was
minimized. For the simulation settings mentioned, when
Car 1 decided to overtake Car 2 at farther distance, it was
observed that the probability of collision was lower. The
novelty of the solution is that even though the problem
involves multiple agents, the solution relies only on the
probability space constructed by the agent making the
decision, i.e, Car 1.

In the present formulation, Car 1 does not have the
flexibility to return to its original lane while taking over.
So it would be interesting to include this action into the
formulation. Another question that arises is that, if Car
1 decides to return what is the “optimal” time. We could
also study the effect of collaboration or noncooperation
between Car 1, Car 2 and Car 3.
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