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Abstract— In this paper, the H∞ control problem with mini-
mum information exchange between a plant and a remote con-
troller is considered. For transmission of the measured outputs,
an event-triggering mechanism is proposed. We measure the
transferred information satisfying the causality condition by the
directed information, and measure the H∞ control performance
by the L2-gain. We achieve the minimum directed information
required for a guaranteed level of control performance. In
particular, corresponding to the worst case disturbances, we
develop a filter with a recursive variable, and show that the
optimal control policy is a linear function of this recursive
variable. Finally, we define the value of information, and

determine the structure of the optimal sampling policy based
on the value of information.

I. INTRODUCTION

In this paper, the H∞ control synthesis problem with

minimum information exchange between a plant and a

remote controller is considered. This study has a broad

range of applications in cyber-physical systems in which

privacy preservation and communication constraints matter.

Examples include surveillance and reconnaissance, planetary

explorations, wireless wearables, and teleoperation.

The optimal H∞ control problem in the frequency domain

was originally formulated by Zames [1] for sensitivity reduc-

tion in linear plants. Later, Glover and Doyle [2] developed

the optimal H∞ control synthesis in state space for linear

systems based on the solutions of two coupled Riccati equa-

tions. The connection with the risk sensitive problem was

made by Whittle [3]. Then, Başar and Bernhard [4] studied

the optimal H∞ control synthesis using dynamic games, and

James and Baras [5] covered the H∞ output-feedback control

problem for general nonlinear partially observed dynamic

games. In the dynamic game interpretation, the optimal H∞

control problem is seen as a min-max optimization problem

where the controller is viewed as the minimizing player and

the disturbance as the maximizing player. For problems with

incomplete information, the certainty equivalence principle

(see e.g., [6] and [5]) states that at each time one can compute

the estimate of the state based on the worst disturbance

or on the information state, and then use it in the optimal
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state-feedback policy, obtained as the saddle point of a full

information dynamic zero-sum game.

We measure the information between the plant and the

remote controller by directed information. First, Massey in

[7] proposed directed information as a natural counterpart of

mutual information for characterizing causality in informa-

tion and control systems, in a more general manner than the

Granger causality [8]. Then, Kramer [9] extended the use of

directed information to discrete memoryless networks with

feedback. In order to reduce the transferred information from

the plant to the controller, we employ an event-triggering

mechanism. Åström and Bernhardsson [10] showed that for

a stochastic scalar linear system under an average sampling

rate constraint event-driven sampling outperforms uniform

sampling. This result has received much attention leading to

the development of different event-triggered sampling poli-

cies for estimation and control problems with communication

costs or constraints, see e.g., [11], [12], [13]. Recently, it

was shown in [14] (see also [15], [16], [17]) that for the

LQG control problem the optimal sampling policy, without

presuming a priori any structure, samples a measurement

whenever the value of information exceeds a threshold.

In this paper, we develop a framework for linear partially

observable H∞ control with minimum directed information.

We achieve the minimum directed information required for

a guaranteed level of control performance. In particular,

corresponding to the worst case disturbances, we develop

a filter with a recursive variable, and show that the optimal

control policy is a linear function of this recursive variable.

Finally, we define the value of information, and determine

the structure of the optimal sampling policy based on the

value of information.

The outline of the paper is as follows. After some pre-

liminaries, we provide the system model and formulate the

problem in Section II. In Section III, we derive the opti-

mal H∞ control and sampling policies. Finally, concluding

remarks are made in Section IV.

II. PROBLEM FORMULATION

A. Preliminaries

In the sequel, we write aT to indicate the transpose of

the vector a. We represent an n dimensional vector at time

k with ak and the stack vector of all aℓ, ℓ = 0, . . . , k
with ak. The weighted norm of the vector a with respect

to the matrix A is denoted by ‖a‖2A. The identity matrix

with dimension n is denoted by In. For matrices A and

B, we write A ≻ 0 and B � 0 to denote that A and B
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Fig. 1. General system interconnection in H∞ control under event-
triggered sampling.

are positive definite and positive semi-definite, respectively.

The probability distribution of the stochastic variable a is

denoted by P(a). The expected value and the covariance of

a are denoted by E[a] and cov[a], respectively.

For the zero-sum game with state x and cost function J ,

the upper value J and the lower value J are defined as

J = inf
u1(x)

sup
u2(x)

J(u1, u2),

J = sup
u2(x)

inf
u1(x)

J(u1, u2).

The game is said to have a saddle point (u′1, u
′
2) if the

following inequalities are satisfied

J(u′1, u2) ≤ J(u′1, u
′
2) ≤ J(u1, u

′
2).

for any u1 and u2. Then, we have J = J .

B. System Model

Consider a plant with discrete-time stochastic dynamics

given by the following linear state system:

xk+1 = Axk +B1wk +B2uk,

zk = C1xk +D11wk +D12uk,

ζk = C2xk +D21vk +D22uk,

for k ≥ 0 and with initial condition x0, where xk ∈ R
n

is the state of the system, wk ∈ R
mw and vk ∈ R

mv are

disturbances, uk ∈ R
mu is the control input to be decided

by a remote controller, zk ∈ R
nz is the controlled output,

and ζk ∈ R
p is the measured output. We assume that the

system is controllable and observable. For abbreviation, we

use Q1 = CT
1 C1, Q2 = DT

12D12, R1 = B1B
T
1 , and R2 =

D21D
T
21. We assume that D12 and D21 have full column

rank and full row rank, respectively. One can transform this

system to an equivalent one such that

D11 = 0, D22 = 0,

D12D
T
12 = I, DT

21D21 = I. (1)

In addition, without loss of generality we can make the

following standard assumptions:

DT
12C1 = 0, D21B

T
1 = 0. (2)

Under the above assumptions, we can write the dynamics of

the plant by

xk+1 = Axk +B1wk +B2uk, (3a)

zk = C1xk +D12uk, (3b)

ζk = C2xk +D21vk. (3c)

The measured outputs ζk should be transmitted to the

remote controller. In order to reduce the transferred in-

formation from the plant to the controller, we employ an

event-triggering mechanism that samples and transmits the

measured outputs only at specific times k ∈ S where S is

the set of all sampling times. The decisions are represented

by a sampling variable δk defined as

δk =

{

1, if k ∈ S,
0, otherwise.

(4)

The transmitted measured output are denoted by yk ∈ R
p

such that

yk =

{

ζk, if δk = 1,
∅, otherwise.

(5)

We assume that the transmitted measurements are available

at the controller by one-step delay. Therefore, at time k
the information available at the event-triggering mechanism

and at the controller are Ik = {ζk, δk−1,uk−1} and Ĩk =
{yk−1, δk−1,uk−1}, respectively.

Next, we will specify the measure of information and

the measure of performance. We measure the transferred

information satisfying the Granger’s causality condition from

the plant to the controller by the directed information [18].

Definition 1: We define the causally conditioned directed

information from the plant to the controller over the time

horizon N by

Ic(xN →yN ) =

N
∑

k=0

I(xk; yk|Ĩk), (6)

where I(xk; yk|Ĩk−1) represents the mutual information

between xk and yk conditioned on Ĩk.

Let us consider the initial condition x0 as a part of the

disturbance, define the disturbance till time k by ωk =
(wk,vk, x0), and show the whole disturbance by ω = ωN .

We measure the H∞ control performance by the L2-gain

of the system [19]:

sup
ω

‖(zN , xN+1)‖

‖(wN ,vN , x0)‖
, (7)

where

‖(zN , xN+1)‖ = (‖zN‖22 + ‖xN+1‖
2
Q3

)
1
2 ,

‖(wN ,vN , x0)‖ = (‖wN‖22 + ‖vN‖22 + ‖x0‖
2
Q0

)
1
2 .

We are seeking for a class of stabilizing controllers that

achieve a desired level of performance γ.

Definition 2: We define the γ-feasibleH∞ controller class

as the set of all stabilizing controllers that satisfy

sup
ω
Jγ ≤ 0, (8)
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where

Jγ = −γ2‖x0‖
2
Q0

+ ‖xN+1‖
2
Q3

+

N
∑

k=0

‖zk‖
2 − γ2‖wk‖

2 − γ2‖vk‖
2. (9)

To achieve the minimum directed information required for

a guaranteed level of control performance γ, we need to solve

the following problem:

inf
π∈P,µ∈M
supω Jγ≤0

Ic(xN →yN ), (10)

where π is the sampling policy defined in the admissible set

P and µ is the control policy defined in the admissible set

M. We can recast the above problem as

inf
π∈P,µ∈M

{

Ic(xN →yN ) + λ sup
ω
Jγ

}

, (11)

where λ ≥ 0. In the sequel, we study this problem.

III. MAIN RESULTS

A. Directed Information and Least-Square Estimator

To measure the information flow in the system, we need

first to specify the distribution of the disturbances. In the

sequel, we assume that wk and vk are white noises with

standard normal distributions, x0 is normal with mean m and

covariance R0, and wk , vk, and x0 are mutually independent.

In addition, we need the following assumption for the results

of this section.

Assumption 1: We assume that due to privacy the struc-

ture of the event-triggering mechanism, i.e., the set of admis-

sible sampling polices P , is not revealed to the controller.

In other words, the controller will not make any inference

based on the structure of the event-triggering mechanism.

The following lemma gives the optimal least-square esti-

mator which can be used at the controller.

Lemma 1: Let x̂k = E[xk|Ĩk] and Pk = cov[xk|Ĩk]. The

following estimator adopted by the controller minimizes the

mean-square error:

x̂k+1 = Ax̂k+B2uk + δkKk(yk−C2x̂k), (12a)

Pk+1 = APkA
T +R1 − δkKkC2PkA

T , (12b)

where

Kk = APkC
T
2 (C2PkC

T
2 +R2)

−1. (12c)

with initial conditions x̂0 = m0 and P0 = R0.

Proof: Following the Kolmogorov forward equation

[20], the estimate and its covariance are propagated as

x̂k+1 = Ax̂k+ +B2uk, (13a)

Pk+1 = APk+AT +R1, (13b)

where k+ denotes time k just after the update of the estimate

and its covariance. From Bayes’ rule [20], the estimate and

its covariance are updated when δk = 1 as

x̂k+ = x̂k+PkC
T
2 (C2PkC

T
2 +R2)

−1(yk−C2x̂k); k ∈ S,

(14a)

Pk+ =
(

In−PkC
T
2 (C2PkC

T
2 +R2)

−1C2

)

Pk; k ∈ S.

(14b)

Following Assumption 1, the controller cannot make any

inference when δk = 0. We obtain (12) by substituting (14)

in (13).

The following lemma expresses the causally conditioned

directed information as a function of δk.

Lemma 2: The causally conditioned directed information

for the system is equal to

Ic(xN →yN ) = −

N
∑

k=0

1

2
ln det(In − δkKkC2). (15)

Proof: We can write:

Ic(xN →yN )

=

N
∑

k=0

I(xk; yk|Ĩk−1)

=

N
∑

k=0

I(xk; yk|Ĩk−1) + I(xk−1; yk|Ĩk−1, xk)

=

N
∑

k=0

I(xk; yk|Ĩk−1)

=

N
∑

k=0

h(xk|Ĩk−1)− h(xk|Ĩk−1, yk),

where the second equality is due to the property of the

mutual information, and third equality is because xk−1 is

independent of yk given xk. Following Assumption 1, the

conditional distributions P(xk|Ĩk) and P(xk|Ĩk, yk) remain

Gaussian. Hence, the differential entropies are:

h(xk|Ĩk) =
1

2
ln
(

(2πe)n detPk

)

,

h(xk|Ĩk, yk) =
1

2
ln
(

(2πe)n detPk+)
)

.

Therefore, we can obtain:

Ic(xN →yN ) =

N
∑

k=0

1

2
ln detPk

−

N
∑

k=0

1

2
ln det

(

(In − δkKkC2)Pk

)

= −

N
∑

k=0

1

2
ln det(In − δkKkC2).

This completes the proof.

B. Recursive Filter and Optimal H∞ Control Policy

According to Lemma 2, Ic(xN → yN ) does not depend

on the control policy. Hence, we can write the optimal value
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of the optimization problem in (11) as

inf
π∈P

{

Ic(xN →yN ) + λ inf
µ∈M

sup
ω
Jγ

}

. (17)

Now, consider the following zero-sum dynamic game prob-

lem:

inf
µ∈M

sup
ω
Jγ . (18)

In the following, we employ forward-backward dynamic

programming [21] to solve this problem.

Definition 3: We define the value function of the zero-

sum dynamic game problem in (18) with full state feedback

as

Vk= inf
µ∈M′

sup
ω

{

‖xN+1‖
2
Q3

+
N
∑

ℓ=k

‖zℓ‖
2−γ2‖wℓ‖

2
}

. (19)

where M′ is the set of admissible state-feedback policies.

For the zero-sum dynamic game in (18) with full state

feedback, the disturbance vk can be set to zero, because

measured outputs are not influential. Moreover, we do not

add −γ2‖x0‖
2
Q0

to the value function.

Lemma 3: The value function Vk satisfies the dynamic

programming recursion, i.e.,

Vk = inf
uk∈M′

sup
wk

{

‖zk‖
2 − γ2‖wk‖

2 + Vk+1

}

, (20)

with boundary condition VN+1 = ‖xN+1‖
2
Q3

.

Proof: The proof is straightforward by induction.

Lemma 4: The value function Vk is of quadratic form

Vk = xTkMkxk, (21)

where Mk is given by the following Riccati equation

Mk = AT (M−1
k+1 +B2B

T
2 − γ2R1)

−1A+Q1, (22)

with boundary condition MN+1 = QN+1.

Proof: The proof follows from the dynamic program-

ming recursion in (20).

Lemma 5: The saddle point (u′
N ,w

′
N ) of the zero-sum

dynamic game problem in (14) with full state feedback exists

if the Riccati equation in (22) admits a solution. Then,

u′k = −BT
2 (M

−1
k+1 +B2B

T
2 − γ−2R1)

−1Axk, (23)

w′
k = γ2BT

1 (M
−1
k+1 +B2B

T
2 − γ−2R1)

−1Axk. (24)

Proof: Using Lemma 3 and Lemma 4, we can write:

Vk = inf
uk

sup
wk

{

‖zk‖
2 − γ2‖wk‖

2 + ‖xk+1‖
2
Mk+1

}

= inf
uk

sup
wk

{

‖xk‖
2
Q1

+ ‖uk‖
2
Q2

− γ2‖wk‖
2

+ ‖Axk +B1wk +B2uk‖
2
Mk+1

}

.

Taking derivatives from the terms inside the brace with

respect to uk and wk and setting them to zero, we obtain

(23) and (24).

In the following, we assume that controls in the future

are selected based on the optimal state-feedback policy. At

time k, the transmitted measured outputs yo
k−1, the sampling

variables δo
k−1, and the controls u

o
k−1 are fixed. We will

obtain the worst case disturbance ω̃k−1 = (w̃k−1, ṽk−1, x̃0)
that maximizes the total cost and is compatible with all the

information available at the controller. Then, we will show

that the worst case disturbance defines a state trajectory that

can be used in the optimal control policy.

Let us define the disturbance constraint set as

Ωk =

{

ωk′

∣

∣

∣

∣

∣

k′ ≥ k, ℓ ≤ k,
xℓ+1 = Axℓ +B1wℓ +B2u

o
ℓ ,

yoℓ = C2xℓ +D21vℓ, if δoℓ = 1

}

, (25)

and the auxiliary performance index as

Gk=− γ2‖x0‖
2
Q0

+

k
∑

ℓ=0

‖zℓ‖
2−γ2‖wℓ‖

2−γ2‖vℓ‖
2

+ Vk+1(xk+1). (26)

The worst case disturbance under event-triggered sampling

is obtained by solving the following problem:

sup
ωk−1∈Ωk−1

Gk−1, (27)

given y
o
k−1, uo

k−1, and δok−1.

Lemma 6: Suppose that there exists a unique maximum to

the problem in (27). Then, the following two-point boundary

value problem admits a unique solution satisfying the worse

case disturbance and worst case state trajectory:

x̃ℓ+1 = Ax̃ℓ + γ−2R1λℓ+1 +B2u
o
ℓ ,

λℓ+ = ATλℓ+1 +Q1x̃ℓ; λk =Mkx̃k,

λℓ = λℓ+ + γ2CT
2 R

−1
2 (yoℓ − C2x̃ℓ); ℓ ∈ S,

w̃ℓ = γ−2BT
1 λℓ,

ṽℓ = D−1
21 (y

o
ℓ − C2x̃ℓ),

x̃0 = γ−2Q−1
0 λ0.

where ℓ+ denotes time ℓ+ before λℓ is updated.

Proof: Let us introduce the compact dynamics for

ζo
k−1, zk−1, xk as

ζo
k−1 = φ1u

o
k−1+φ2wk−1+φ3x0+φ4vk−1, (28)

zk−1 = θ1u
o
k−1+θ2wk−1+θ3x0, (29)

xk = ψ1u
o
k−1+ψ2wk−1+ψ3x0. (30)

Following the above compact dynamics and Lemma 4, we

can rewrite the problem in (27) as

maximize Gk−1=‖ψ1u
o
k−1+ψ2wk−1+ψ3x0‖

2
Mk

+ ‖θ1u
o
k−1+θ2wk−1+θ3x0‖

2

− γ2(‖wk−1‖
2+‖vk−1‖

2+‖x0‖
2
Q0

)

subject to Tζok−1=T (φ1u
o
k−1+φ2wk−1+φ3x0+φ4vk−1),

over wk−1, vk−1, x0 where T is a diagonal matrix of

appropriate dimension with Tℓ,ℓ = 0 if ℓ /∈ S and Tℓ,ℓ =
1 otherwise. We form the Lagrangian with the Lagrange
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multiplier 2pN−1 as

L =‖ψ1u
o
k−1+ψ2wk−1+ψ3x0‖

2
Mk

+ ‖θ1u
o
k−1+θ2wk−1+θ3x0‖

2

− γ2(‖wk−1‖
2+‖vk−1‖

2+‖x0‖
2
Q0

)

+ 2pT
N−1(φ1u

o
k−1+φ2wk−1+φ3x0+φ4vk−1)

− 2pT
N−1y

o
k−1.

Notice that pℓ = 0 if ℓ /∈ S. Let ω̃k−1 = (w̃k−1, ṽk−1, x̃0)
be the solution. Taking derivatives with respect to w̃k−1,

ṽk−1, and x̃0, and setting them to zero we obtain

φT2 pN−1+θ
T
2 qN−1 + ψT

2 λN = γ2w̃k−1,

φT4 pN−1 = γ2ṽk−1,

φT3 pN−1+θ
T
3 qN−1 + ψT

3 λN = γ2Q0x̃0,

where

qN−1 = θ1u
o
k−1+θ2w̃k−1+θ3x̃0,

λN =Mk(ψ1u
o
k−1+ψ2w̃k−1+ψ3x̃0).

From Lemma 8 in the Appendix, we can show that the fol-

lowing internal representation of the worst case disturbances

is admitted:

w̃ℓ = γ−2BT
1 λℓ, (31)

ṽℓ = γ−2D21pℓ, (32)

x̃0 = γ−2Q−1
0 λ0, (33)

where pℓ = γ2(D21D
T
21)

−1(yoℓ − C2x̃ℓ) for ℓ ∈ S obtained

by substituting the worst case disturbance into the constraint.

After few modifications, we get

x̃ℓ+1 = Ax̃ℓ + γ−2B1B
T
1 λℓ+1 +B2u

o
ℓ ,

λℓ+ = ATλℓ+1 + CT
1 C1x̃ℓ,

λℓ = λℓ+ + γ2CT
2 (D21D

T
21)

−1(yoℓ − C2x̃ℓ); ℓ ∈ S.

This completes the proof.

The results in Lemma 6 are not very useful from a com-

putational point of view. Rather, we would like to construct

a recursive equation for the worst case state trajectory. The

next proposition gives us such a conversion.

Proposition 1: The two-point boundary value problem in

Lemma 6 can be converted into an initial value problem in

terms of new variables x̌k and Σk:

x̌k+1= Āx̌k+B2uk+δkK̄k(yk−C2x̌k), (34a)

Σk+1=A(Σ
−1
k +δkC

T
2 R

−1
2 C2−γ

−2Q1)
−1AT+R1, (34b)

where

Ā = A+A(Σ−1
k −γ−2Q1)

−1γ−2Q1, (34c)

K̄k = Ā(Σ−1
k + CT

2 R
−1
2 C2)

−1CT
2 R

−1
2 , (34d)

with initial conditions x̌0 = 0 and Σ0 = Q−1
0 .

Proof: Consider the solution Σk of the following

Riccati equation:

Σk+1 = A(Σ−1
k+ −γ−2Q1)

−1AT +R1,

Σk+ = (Σ−1
k + CT

2 R
−1
2 C2)

−1; k ∈ S,

and define the recursive variable x̌k = x̃k − γ−2Σkλk. We

can write:

x̌k+1 = Āx̌k+ +B2uk, (35)

x̌k+ = x̌k +Σk+CT
2 R

−1
2 (yk − C2x̌k); k ∈ S. (36)

From the definition of the sampling variable δk, we obtain

recursive equations in (34).

Lemma 7: Assume the transmitted outputs yk−1, the sam-

pling variables δk−1, and the controls uk−1 are fixed. Then,

sup
ωk−1∈Ωk−1

Gk−1 = inf
uk

sup
ωk∈Ωk−1

Gk, (37)

and the optimal ω̃k−1 of both problems coincide.

Proof: We note that the disturbances wk and vk are

unconstrained. Following the definition of Gk and in view

of Lemma 3, we have:

inf
uk

sup
ωk∈Ωk−1

Gk = inf
uk

sup
ωk∈Ωk−1

{

− γ2‖x0‖
2
Q0

+

k
∑

ℓ=0

‖zℓ‖
2−γ2‖wℓ‖

2−γ2‖vℓ‖
2 + Vk+1(xk+1)

}

= sup
ωk−1∈Ωk−1

{

− γ2‖x0‖
2
Q0

+

k−1
∑

ℓ=0

‖zℓ‖
2−γ2‖wℓ‖

2−γ2‖vℓ‖
2

+ inf
uk

sup
wk,vk

{

‖zk‖
2−γ2‖wk‖

2−γ2‖vk‖
2+Vk+1(xk+1)

}

}

= sup
ωk−1∈Ωk−1

{

− γ2‖x0‖
2
Q0

+

k−1
∑

ℓ=0

‖zℓ‖
2−γ2‖wℓ‖

2−γ2‖vℓ‖
2

+ Vk(xk)
}

= sup
ωk−1∈Ωk−1

Gk−1.

This completes the proof.

The following theorem shows the optimal value of the

game based on the auxiliary performance index Gk.

Theorem 1: The optimal value of the zero-sum dynamic

game problem in (18) is given by

inf
µ∈M

sup
ω
Jγ = sup

x0

G0. (38)

Proof: Given ωk−1 ∈ Ωk−1, we have

Fk = sup
ωk−1∈Ωk−1

Gk−1 = inf
uk

sup
ωk∈Ωk−1

Gk

= sup
ωk∈Ωk−1

Gk(u
∗
k).

Using u∗k, we can write

Fk+1 = sup
ωk∈Ωk

Gk(u
∗
k).

Since Ωk ⊂ Ωk+1, we can show that Fk for a control policy

µ̃ is a decreasing function with time k, i.e., Fk+1 ≤ Fk.

Moreover, GN+1 = Jγ(µ̃, ω). Therefore,

Jγ(µ̃, ω) ≤ sup
x0

G0. (39)

Furthermore, we can choose a disturbance ω̃ based on the

state-feedback saddle-point policy such that for any µ,

Jγ(µ, ω̃) ≥ sup
x0

G0. (40)
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Hence, we establish the result.

Now, we can obtain the optimal control policy in (18)

based on the worst case state trajectory.

Proposition 2: The optimal control policy in the problem

(18) is a worst case certainty equivalence control given by

u∗k=−Lk(In−γ
−2ΣkMk)x̌k, (41a)

where

Lk=B
T
2 (M

−1
k+1+B2B

T
2 −γ−2R1)

−1A. (41b)

and x̌k is the recursive variable given by (34).

Proof: From Lemma 7, we have

inf
uk

sup
ωk∈Ωk−1

Gk

= sup
ωk−1∈Ωk−1

{

−γ2‖x0‖
2
Q0

+
k−1
∑

ℓ=0

‖zℓ‖
2−γ2‖wℓ‖

2−γ2‖vℓ‖
2

+ inf
uk

sup
wk,vk

{

‖zℓ‖
2−γ2‖wℓ‖

2−γ2‖vℓ‖
2+Vk+1(xk+1)

}

}

.

Assume that the minimum and maximum exist. From

Lemma 4, we have

u∗k(xk) = argminmax
wk

{‖zℓ‖
2 − γ2‖wℓ‖

2 − γ2‖vℓ‖
2

+ xTk+1Mk+1xk+1}.

From Theorem 1, this gives us the optimal control. In

addition, xk = x̃k is specified at time k following Lemma

6. From Lemma 5 and using the following transformation

x̃k = (In−γ
−2ΣkMk)x̌k, (42)

we obtain (41).

Remark 1: Notice that the control policy in (41) is of form

uk = uk(δk−1), and it resembles the one in the problem

analyzed by Witssenhausen [22]. Here, we showed that the

control policy in (41) is optimal, because in addition to the

transmitted output measurement yk−1, the sampling variable

δk−1 is available to the controller at time k.

Remark 2: The disturbances corresponding to the worst

case certainty equivalence control in (41) are

w∗
k = −Gk(In−γ

−2ΣkMk)x̌k, (43)

v∗k = 0. (44)

where

Gk=γ
2BT

1 (M
−1
k+1+B2B

T
2 −γ−2R1)

−1A. (45)

C. Optimal Sampling Based on Value of Information

Now, we come back to the problem in (17). We have,

inf
π∈P

{

Ic(xN →yN ) + λ inf
µ∈M

sup
ω
Jγ

}

= inf
π∈P

{

N
∑

k=0

I(xk; yk|Ĩk)

− λγ2‖x∗0‖
2
Q0

+ λ‖xN+1‖
2
Q3

+

N
∑

k=0

λ‖xk‖
2
Q1

+ λ‖u∗k‖
2
Q2

− λγ2‖w∗
k‖

2 − λγ2‖v∗k‖
2
}

,

where the terms including x0 do not depend on π and the

conditional mutual information is calculated in (15). Using

the worst case certainty equivalence control, we consider

the worst case state x̃k as the actual state of the system.

Therefore, we can write

inf
π∈P

{

−
N
∑

k=0

1

2
ln det(In − δkKkC2)

+ λ‖x̃N+1‖
2
Q3

+ λ

N
∑

k=1

‖x̃k‖
2
Q1

+ ‖x̃‖2
LT

k
Q2Lk

− ‖x̃k‖
2
γ2GT

k
Gk

}

= inf
π∈P

{

−

N
∑

k=0

1

2
ln det(In − δkKkC2) + λ

N+1
∑

k=1

‖x̌k‖
2
Ek

}

,

where

Ek = (In−γ
−2ΣkMk)

T (Q1 + LT
kQ2Lk − γ2GT

kGk)

× (In−γ
−2ΣkMk); k = 1, . . . , N,

EN+1 = (In−γ
−2ΣN+1MN+1)

TQ3(In−γ
−2ΣN+1MN+1).

Define Wk as

Wk = −

N
∑

ℓ=k

1

2
ln det(In−δℓKℓC2) +

N+1
∑

ℓ=k

λ‖x̌ℓ‖
2
Eℓ
, (46)

with final condition WN+1 = λ‖x̌N+1‖
2
EN+1

. Following

dynamic programming, we can show:

Wk=min
δk

{

−
1

2
ln det(In−δkKkC2)+λ‖x̌k‖

2
Ek

+Wk+1

}

.

(47)

Definition 4: We define the value of information αk at

time k as

αk =Wk+1(0)−Wk+1(1), (48)

where Wk+1(δk) is defined in (47).

The following proposition gives the optimal sampling

policy based on the value of information.

Proposition 3: The optimal sampling policy in the opti-

mization problem in (17) is given by

δ∗k =

{

1, if αk ≥ − 1
2 ln det(In −KkC2),

0, otherwise.
(49)

Proof: The proof follows directly from (47) and (48).

Remark 3: The function Wk in (46) can be calculated

using techniques in approximate dynamic programming [21].

IV. CONCLUSION

In this work, we studied the optimal H∞ control problem

where for transmission of the measurements, an event-

triggering mechanism based on the value of the information

is proposed. We specified the distribution of the disturbances,

and employed the directed information to measure the trans-

mitted information between the plant and the controller sat-

isfying the causality condition. We showed that the optimal

control can be written as a linear function of a recursive
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variable obtained by solving an initial value problem. Finally,

we showed that the optimal sampling policy can be written

in terms of the value of information.

V. APPENDIX

Lemma 8: Suppose that the system in (3) has the follow-

ing compact dynamics

yk−1 = φ1uk−1+φ2wk−1+φ3x0+φ4vk−1,

zk−1 = θ1uk−1+θ2wk−1+θ3x0,

x̂k = ψ1uk−1+ψ2wk−1+ψ3x0,

with the corresponding dual operator:

αN−1 = φT1 pN−1 + θT1 qN−1 + ψT
1 λN ,

βN−1 = φT2 pN−1 + θT2 qN−1 + ψT
2 λN ,

λ0 = φT3 pN−1 + θT3 qN−1 + ψT
3 λN ,

ǫ = φT4 pN−1,

with pk = 0 for k ∈ S. Then, the following internal

dynamics is admitted

αk = BT
2 λk +DT

12qk,

βk = BT
1 λk,

λk+ = ATλk+1 + CT
1 qk,

λk = λk+ + CT
2 pk; k ∈ S

ǫk = D21pk.

where k+ denotes time k+ before λk is updated.

Proof: Substitute xk+1 and λk in the identity

λNxN − λ0x0

=
N−1
∑

k=1

(λk+1xk+1 − λkxk) +
∑

k∈S

(λk+ − λk)xk. (53)

Then, we have

λNxN +

N
∑

k=1

(qTk zk) +
∑

k∈S

(pkyk)

= λ0x0 +
∑

k∈S

(πkwk) +
N
∑

k=1

(βkvk) +
N
∑

k=1

(αkuk). (54)

This proves the lemma.
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