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Abstract— We consider the problem of detecting which Gaus-
sian model generates an observed time series data. We consider
as possible generative models two linear systems driven by
white Gaussian noise with Gaussian initial conditions. We also
consider two collaborating observers. The observers observe a
function of the state of the systems. Using these observations,
the aim is to find which one of the two Gaussian models has
generated the observations. For each observer we formulate a
sequential hypothesis testing problem. Each observer computes
its own likelihood ratio based on its own observations. Using the
likelihood ratio, each observer performs sequential probability
ratio test (SPRT) to arrive at its decision on the hypothesis.
Taking into account the random and asymmetric stopping times
of the two observers, we present a consensus algorithm which
guarantees asymptotic convergence to the true hypothesis. The
consensus algorithm involves exchange of information, i.e., the
decision of the observers. Through simulations, the “value” of
the information exchanged, probability of error and average
time to consensus are computed.

I. INTRODUCTION

Hypothesis testing and changepoint problems arise in
various branches of engineering including quality control,
detection and tracking of targets in war scenarios, detection
of signals in seismology, econometrics, speech segmentation
etc. Some recent applications are structural health monitoring
of bridges, wind turbines, aircrafts, video scene analysis
and sequential steganography [1]. Sequential analysis is a
principal tool in addressing these problems. A sequential
method is characterized by a stopping rule and a decision
rule. These methods have been extensively studied in the
literature when there is a single observer collecting all
observations. In this paper we focus on a problem where
there are multiple detectors collecting observations and work
collaboratively to identify the true hypothesis.

The authors in [2] consider the problem where two detec-
tors making independent observations need to decide which
one of two hypotheses is true. The decisions of the two
detectors are coupled through a common cost function. They
prove that the optimal decisions are characterized by thresh-
olds which are coupled and whose computation requires
the solution of two coupled sets of dynamic programming
equations. In [3] an information theoretic approach is pre-
sented to the distributed detection problem. They consider
an entropy based cost function which maximizes the infor-
mation transferred from the input to the output. They derive
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optimal decision and fusion rules with and without a fusion
center. In [4] a decentralized sequential detection problem
is considered. In their formulation, they consider a set of
sensors making independent observations which need to
decide as to which of the two hypotheses is true. The decision
errors by the sensors are penalized through a common cost
function. Each observation collected by the sensors as a team
is assigned a positive cost. Optimal sensor decision rules
are characterized through generalized sequential probability
ratio tests (GSPRTs) and a technique for finding optimal
thresholds is presented. In [5] the problem of noisy Bayesian
active learning is addressed. They consider a hypothesis
testing problem with observations corrupted by independent
noise. Their objective is to find the true hypothesis using as
few observations as possible by choosing the observations in
an adaptive and strategic manner. They propose a sampling
strategy which is based on collecting observations which
maximize the Extrinsic Jensen - Shannon divergence at each
step. In our previous work [6] we considered the problem of
detecting Markov chain models from observed data. We used
fixed block (given T observations) binary hypothesis testing
and consensus to solve the problem.

In this paper we consider two Gaussian models and two
observers. Under the alternate hypothesis, each observer
observes a different function of the state of the first Gaussian
model. Under the null hypothesis, each observer observes a
different function of the state of the second Gaussian model.
Thus each observer has its own sequence of observations.
Given two sequences of observations (one for each observer),
the objective is to find if the sequences were generated under
the alternate hypothesis or under the null hypothesis. For
each observer we formulate a sequential hypothesis testing
problem which is solved using SPRT. We present a detection
-estimation separation lemma which is useful in finding the
likelihood ratio which is used in the SPRT. Based on the
result of the SPRT, the observers could stop taking observa-
tions and arrive at the decision at the same time or at different
times. We present a consensus algorithm which takes into
account the various scenarios. Only the decisions made by
the observers are exchanged in arriving at consensus. To
understand the benefit of the one bit communication and its
use by the two observers, the notion of value of information
is introduced and discussed. Value of information, probability
of error and average time to consensus have been calculated
through Monte Carlo simulations. It should be noted that the
two key differences of the formulation in this paper from the
previous works mentioned here are: (i) each observer has its
individual cost function (ii) the observations are not i.i.d.
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In the next section we discuss the problem formulation. In
section [III], we first discuss the SPRT, followed by the de-
tection -estimation separation lemma and then the consensus
algorithm. In section [IV] we present the simulation results.
In the last section we provide the conclusion and discuss
future work.

II. PROBLEM FORMULATION

A. System Model

Let (Ω,F ,P) be a probability space. Two systems are
considered whose dynamics are described as follows : Dy-
namics of the state of system 1 is described by a linear
Gaussian model as follows :

X1
k+1 = A1X1

k +B1W 1
k , ∀ k ≥ 0,

where W 1
k is white noise process with zero mean and

covariance R1δkk′ . X1
0 is assumed to be Gaussian random

variable with zero mean and variance Σ1. The dynamics of
the state of system 2 is also described by a linear Gaussian
model as follows :

X2
k+1 = A2X2

k +B2W 2
k , ∀ k ≥ 0,

where W 2
k is white noise process with zero mean and

covariance R2δkk′ . X2
0 is assumed to be Gaussian random

variable with zero mean and variance Σ2. We assume X1
k and

X2
k belong to RNs for all k. H (signifying the hypothesis)

is a Bernoulli random variable such that

P(H = 1) = p1, P(H = 0) = p0 = 1− p1.

Consider Observer 1. Under the alternate hypothesis, it
observes a function of the state of system 1 and is described
as follows :

Y 1
k = C1X1

k + V 1
k , ∀ k ≥ 0,

where V 1
k is white noise process with zero mean and

covariance Q1δkk′ . Under the null hypothesis, it observes a
function of the state of system 2 and is described as follows:

Y 2
k = C2X2

k + V 2
k , ∀ k ≥ 0,

where V 2
k is white noise process with zero mean and

covariance Q2δkk′ . Similarly, Observer 2, under the alternate
hypothesis, observes a function of the state of system 1
(different from the function observed by Observer 1) and
is described as follows :

Z1
k = D1X1

k + U1
k , ∀ k ≥ 0,

where U1
k is white noise process with zero mean and covari-

ance S1δkk′ . Under the null hypothesis, it observes a function
of the state of system 2 (different from the function observed
by Observer 1) which is described as :

Z2
k = D2X2

k + U2
k , ∀ k ≥ 0,

where U2
k is white noise process with zero mean and co-

variance S2δkk′ . Thus, the dynamics of the observations at
Observer 1 can be compactly written as :

Yk = [(C1X1
k + V 1

k )H + (C2X2
k + V 2

k )(1−H)],

and the dynamics of the observations at Observer 2 can be
compactly written as :

Zk = [(D1X1
k + U1

k )H + (D2X2
k + U2

k )(1−H)].

It is assumed that {W 1
k }k≥0, {W 2

k }k≥0, {V 1
k }k≥0, {V 2

k }k≥0,
{U1

k}k≥0 , {U2
k}k≥0, X1

0 , X2
0 and H are independent.

The dimension of Yk is assumed to be M1, while the
dimension of Zk is assumed to be M2. Let Y k

n denote
the complete σ algebra generated by {Yn, ..., Yk}. Let Z k

n

denote the complete σ algebra generated by {Zn, ..., Zk}. A
Y k
n stopping time is a random time τ : Ω→ {n, n+1, ...,∞}

such that {ω ∈ Ω : τ(ω) ≤ k} ∈ Y k
n . The sigma

algebra associated with a Y k
n stopping time τ is defined

as: Fτ = {A ∈ Y ∞n : A ∩ {τ ≤ k} ∈ Y k
n ∀ k}. Let

{S1
n , n ≥ 0} denote the set of all possible Y k

n stopping
time τ such that P(τ < ∞) = 1. Also, let {S2

n , n ≥ 0}
denote the set of all possible Z k

n stopping time τ such that
P(τ <∞) = 1.

B. Sequential Hypothesis Testing Problem

We consider the two observer problem given by :

Under H = 1 : X1
k+1 = A1X1

k +B1W 1
k ,

Under H = 0 : X2
k+1 = A2X2

k +B2W 2
k ,

Observer O1 :
Yk =

[
(C1X1

k + V 1
k )H + (C2X2

k + V 2
k )(1−H)

]
,

Observer O2 :
Zk =

[
(D1X1

k + U1
k )H + (D2X2

k + U2
k )(1−H)

]
.

We define the following collection of optimization problems
for each observer. n denotes the starting time for the op-
timization problem. The objective of Observer 1 is to find
τ1
n ∈ S1

n and D1
τ1
n
∈ {0, 1} which is Fτ1

n
measurable such

that following cost is minimized:

J1(τ1
n, D

1
τ1
n
) = E[α1τ1

n +H(1−D1
τ1
n
) + (1−H)D1

τ1
n
], (1)

where α1 > 0. The objective of Observer 2 is to find τ2
n ∈

S2
n and D2

τ2
n
∈ {0, 1} which is Fτ2

n
measurable such that

following cost is minimized:

J2(τ2
n, D

2
τ2
n
) = E[α2τ2

n +H(1−D2
τ2
n
) + (1−H)D2

τ2
n
], (2)

where α2 > 0.

C. Consensus

The optimal decisions (beliefs of the true hypothesis)
by Observer 1 and Observer 2 are obtained (as result of
the previous optimization problem) at random times. The
objective is to design an algorithm so that the two observers
arrive at consensus about their beliefs by only exchanging
their decisions.

III. SOLUTION

A. Sequential Probability Ratio Test

For solutions using the dynamic programming appraoch
we refer to [1]. Both finite horizon and infinite horizon
problems have been studied in detail. The main drawback
of this approach is that it is not computable. The sequential
probability ratio test (SPRT) is also very well studied in the
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literature [ [7], [8] and [1]] and is often used as a tool in
sequential analysis. In the following, we discuss the SPRT for
observations which are not i.i.d. We use ideas and techniques
which are similar to the instance where the SPRT is derived
for i.i.d observations. Consider the optimization problem (II-
B) for Observer 1 starting at time 0. Define :

π1
0 = f(H = 1|Y0 = y0).

It follows that,

π1
0 =

f(Y0 = y0|H = 1)× p1

f(Y0 = y0|H = 1)× p1 + f(Y0 = y0|H = 0)× p0
,

f(Y0 = y0|H = 1) =

∫
RNs

fV 1(y0 − C1x)fX1
0
(x)dx,

f(Y0 = y0|H = 0) =

∫
RNs

fV 2(y0 − C2x)fX2
0
(x)dx.

Minimizing the cost function [1] of the optimization problem
starting at time 0 is equivalent to minimizing:

J1(τ1
0 , D

1
τ1
0
) = E[α1τ1

0 ] + π1
0P(D1

τ1
0

= 0|H = 1)

+ (1− π1
0)P(D1

τ1
0

= 1|H = 0)

Define:

V1
1(π) = inf

{τ1
0 ∈ S10:τ1

0 (ω)≥1 ∀ω∈Ω},{D1

τ10

∈{0,1}}
E
[
α1τ1

0

]
+

π
[
P(D1

τ1
0

= 0|H = 1)
]

+ (1− π)
[
P(D1

τ1
0

= 1|H = 0)
]
.

For every τ1
0 ∈ S1

0, and D1
τ1
0
∈ {0, 1} , E

[
α1τ1

0

]
+

π
[
P(D1

τ1
0

= 0|H = 1)
]

+ (1 − π)
[
P(D1

τ1
0

= 1|H = 0)
]

is
affine function of π. Hence V1

1(π) is continuous and concave
in π. The posterior cost incurred at time 0 is min((1 −
π1

0), (π1
0)). Let φ0(π) = 1 − π and ϕ0(π) = π. Let π∗U =

{0 < π < 1 : V1
1(π) = φ0(π)} and π∗L = {0 < π < 1 :

V1
1(π) = ϕ0(π)}. By concavity of V1

1(π), it follows that if
π0 ≤ π∗L, it is optimal to stop with D1

0 = 0. If π0 ≥ π∗U , it
is optimal to stop with D1

0 = 1. Else the optimal strategy is
to collect the next observation. At time k, let

π1
k = f(H = 1|{Ym = ym}m=k

m=0).

Define :

V1
k+1(π) = inf

{τ1
0 ∈ S10:τ1

0 (ω)≥k+1 ∀ω∈Ω},{D1

τ10

∈{0,1}}
E
[
α1τ1

0

]
+

π
[
P(D1

τ1
0

= 0|H = 1)
]

+ (1− π)
[
P(D1

τ1
0

= 1|H = 0)
]
.

The posterior cost incurred at time k is α1k + min((1 −
π1
k), (π1

k)). Let πkU = {0 < π < 1 : V1
k+1(π) = α1k +

1 − π} and πkL = {0 < π < 1 : V1
k+1(π) = α1k + π}.

By same arguments as before, if πk ≤ πkL, it is optimal to
stop with D1

k = 0. Else if πk ≥ πkU , it is optimal to stop
with D1

k = 1. Else the optimal strategy is to collect the next
observation. Hence threshold policies are optimal. We define
the Likelihood Ratio (LLR ) at time k (denoted by λ1

k) as

follows :

λ1
k =

f(Yk = yk, Yk−1 = yk−1, ..., Y0 = y0|H = 1)

f(Yk = yk, Yk−1 = yk−1, ..., Y0 = y0|H = 0)

=
f(Y 1

k = yk, Y
1
k−1 = yk−1, ..., Y

1
0 = y0)

f(Y 2
k = yk, Y 2

k−1 = yk−1, ..., Y 2
0 = y0)

.

From the above definition and definition of π1
k, it follows,

that

π1
k =

p1λ
1
k

p0 + p1λ1
k

⇒π1
k ≥ πkU ⇔ λ1

k ≥
p0π

k
U

p1(1− πkU
)

π1
k ≤ πkL ⇔ λ1

k ≤
p0π

k
L

p1(1− πkL)

Hence, it suffices to compute the LLR and its associated
thresholds. It remains to find the thresholds. Instead of
finding the optimal thresholds, we find one pair of thresholds
which is used at every k to achieve a desired level of
performance. We denote the lower threshold associated with
LLR by A and the upper threshold by B. To find the pair
(A ,B), we use Wald’s approximation.

Lemma 3.1: (Wald’s approximation) Let βd denote the
desired probability of false alarm (P(D1

τ1
0

= 1|H = 0))
and γd denote the desired probability of miss detection
(P(D1

τ1
0

= 0|H = 1)) to be achieved . Then the thresholds
associated with LLR can be approximated as :

A =
γd

1− βd
, B =

1− γd
βd

. (3)

Further, if βd = γd, then the actual probabilities of false
alarm (βa) and miss detection (γa) are bounded above :

βa ≤ βd +O(β2
d), γa ≤ γd +O(γ2

d).
For proof, we refer to [8].

Thus, given desired probabilities of false alarm and miss
detection, the thresholds associated with LLR can be com-
puted. The test can be defined as :

SPRT(A ,B) :

λ1
k ≥ B ⇒ τ1

0 = k,D1
τ1
0

= 1,

A < λ1
k < B ⇒ collect next observation,

λ1
k ≤ A ⇒ τ1

0 = k,D1
τ1
0

= 0,

B. Detection Estimation Separation Lemma

To calculate the LLR, the joint distribution of the ob-
servations under either hypothesis needs to be found. The
calculation of the joint distribution can be be simplified
by invoking the following lemma. The general detection
estimation separation theorem was studied in [9].

Lemma 3.2: Consider Observer 1 with observations
{Ym = ym}m=k

m=0 . Then,

λ1
k =

∏j=k
j=1 fΓ1

j
(yj − C1A1x̂1

j−1)fY 1
0

(y0)∏j=k
j=1 fΓ2

j
(yj − C2A2x̂2

j−1)fY 2
0

(y0)
,
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where, for i = 1, 2, k ≥ 1,

x̂ik = Aix̂ik−1 + Kikηik,
ηik = yk − CiAix̂ik−1,

M i
k = AiP ik−1A

iT +BiRiB
iT ,

Kik = M i
kC

iT
[
CiM i

kC
iT +Qi

]−1

,

P ik = (I −KikCi)M i
k,

x̂i0 = ΣiC
iT
[
CiΣiC

iT +Qi

]−1

× y0,

P i0 = Σi − ΣiC
iT
[
CiΣiC

iT +Qi

]−1

CiΣi,

fΓik
= N (0, CiM i

kC
iT +Qi),

Φik = AiΦik−1A
iT +BiRiB

iT ,Φi0 = Σi;

Ψi
k = CiΦikC

iT +Qi,Ψ
i
0 = CiΣiC

iT +Qi

fY ik = N (0,Ψi
k).

Proof: Using the theory of Kalman filters, it follows
that the observation equations for Observer 1 under either
hypothesis can be equivalently written as :

H = 1 :

{
Y 1
k = C1A1X̂1

k−1 + Γ1
k,

X̂1
k−1 = A1X̂1

k−1 + K1
kΓ1

k.

H = 0 :

{
Y 2
k = C2A2X̂2

k−1 + Γ2
k,

X̂2
k−1 = A2X̂2

k−1 + K2
kΓ2

k.

where Kik follows the recursions mentioned in the statement
of the lemma and Γik are the innovation processes. Hence Γik
is independent of the past observations {Y im}m=k−1

m=0 . Using
the definition of λ1

k,

λ1
k =

∏j=k
j=1 f(Y 1

j = yj |Y 1
j−1 = yj−1, ..., Y

1
0 = y0)fY 1

0
(y0)∏j=k

j=1 f(Y 2
j = yj |Y 2

j−1 = yj−1, ..., Y 2
0 = y0)fY 2

0
(y0)

.

The numerator of the R.H.S can be further simplified as:

j=k∏
j=1

f(C1A1X̂1
j−1 + Γ1

j = yj |{Y 1
m = ym}m=j−1

m=0 )fY 1
0

(y0)

=

j=k∏
j=1

f(Γ1
j = yj − C1A1x̂1

j−1|{Y 1
m = ym}m=j−1

m=0 )fY 1
0

(y0).

A similar simplification for the denominator can also be
obtained. Since {Γik}k≥1 are the innovation processes, the
result of the lemma follows.

C. Consensus Algorithm

Each observer arrives at its decision about the true hy-
pothesis based on its own observations at random times. We
now present the algorithm used by the observers to arrive
at a consensus. We first mention the pseudo code for SPRT
[Algorithm 1]. The consensus algorithm is described in detail
in Algorithm 2. The summary of the consensus algorithm
is as follows : The observers start taking observations at
k = 0 with the objective of achieving certain probability of
error. At each time instant they collect their observations and

Algorithm 1 SPRT
1: function SPRT(λ,A ,B, n, τ,D, k) . Where
λ - LLR, A ,B are the thresholds, n denotes number of
decisions, τ denotes stopping time, D denotes current
decision and k denotes time

2: true← 0
3: if λ ≥ B then
4: n← n+ 1 , τ ← k
5: Store k , D = 1

6: A ← 1

(B + 1)× ν − 1
, B ← (B + 1)× ν− 1

7: true← 1
8: else if λ ≤ A then
9: n← n+ 1 , τ ← k

10: Store k , D = 0

11: A ← 1

(B + 1)× ν − 1
, B ← (B + 1)× ν− 1

12: true← 1
return [D,A ,B, n, τ, true]

Fig. 1. Consensus Algorithm

update their LLR. Using the updated likelihood ratio they
perform SPRT test. They could stop or continue collecting
observations depending on the result of the test. If both
the observers stop at the same time, then they exchange
their decisions. If their decisions are the same, then they
stop. If their decisions are different then they repeat SPRT
test starting from next time instant with updated thresholds.
If Observer 1 (Observer 2) stops first, it communicates its
decision to Observer 2 (Observer 1). Observer 2 (Observer
1) continues with SPRT (with updated thresholds). When
Observer 2 (Observer 1) stops, it checks its own decision
with the decision obtained from Observer 1 (Observer 2). If
the decisions are the same, then consensus has been achieved,
else Observer 1 (Observer 2) starts performing SPRT again.
When Observer 1 (Observer 2) starts performing SPRT again,
note that it has not collected observations from τ1

0 + 1 to τ2
0

(for Observer 2 it would be from τ2
0 + 1 to τ1

0 ). Observer 1
updates its LLR as follows:

λ1
τ2
0 +1 =

fY 1

τ20+1
(yτ2

0 +1)λ1
τ1
0

fY 2

τ20+1
(yτ2

0 +1)
,

λ1
k =

fΓ1
k
(yk − C1A1x̂1

k−1)λ1
k−1

fΓ2
k
(yk − C2A2x̂2

k−1)
, k ≥ τ2

0 + 2.
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Algorithm 2 Consensus Algorithm
1: procedure CONSENSUS
2: D1

f ← −1 , D2
f ← −2 , true← 0

3: τ1 ←∞ , τ2 ←∞ , count← 0
4: n← 0 , m← 0 , µ← 3 , ν ← 2

5: A j ← 1

µ− 1
, Bj ← µ− 1 , j = 1, 2

6: State← 1 , i← 0 ,
7: while D1

f 6= D2
f do

8: i← i+ 1 ,
9: if State = 1 then

10: Update λ1
i , λ

2
i

11: [D1
f ,A

1,B1, n, τ1, true] ←
SPRT (λ1

i ,A
1,B1, n,D1

f , τ
1)

12: [D2
f ,A

2,B2,m, τ2, true] ←
SPRT (λ2

i ,A
2,B2,m,D2

f , τ
2)

13: if τ1 = τ2 then
14: State← 1
15: else if τ1 > τ2 then
16: State← 2
17: else if τ1 < τ2 then
18: State← 3
19: else if State = 2 then
20: if count = 0 then
21: A 1 ← 1

µ× ν − 1
, B1 ← µ× ν − 1

22: count← 1
23: Update λ1

i

24: [D1
f ,A

1,B1, n, τ1, true] ←
SPRT (λ1

i ,A
1,B1, n,D1

f , τ
1)

25: if true = 1 then
26: State← 3
27: else if State = 3 then
28: if count = 0 then
29: A 2 ← 1

µ× ν − 1
, B2 ← µ× ν − 1

30: count← 1
31: Update λ2

i

32: [D2
f ,A

2,B2,m, τ2, true] ←
SPRT (λ2

i ,A
2,B2,m,D2

f , τ
2)

33: if true = 1 then
34: State← 2

The filter updates are done as per Lemma 3.2. The Kalman
filtering begins afresh, i.e., for k ≥ τ2

0 + 2, the observations
from τ2

0 +1 to k are considered while filtering. The influence
of the past information is considered in the LLR calculation.
The LLR is calculated as the product of the LLR at τ1

0 and
ratio of the joint distribution of the observations from τ2

0 +1
to k under H = 1 to that under H = 0. Observer 1 (Observer
2) performs SPRT based on the LLR computed and updated
thresholds. When Observer 1 (Observer 2) stops it compares
its decision to that of Observer 2 (Observer 1). If they are
not equal then Observer 2 (Observer 1) starts SPRT at time
τ1
τ2
0 +1

+ 1 (τ2
τ1
0 +1

+ 1). Hence, the observers alternatively
collect observations and perform SPRT until consensus is
achieved.

In algorithm 2, at the first iteration, if the observers stop
at the same time, then State = 1. At the first iteration, if
Observer 2 stops before Observer 1, then State = 2. Else if
Observer 1 stops before Observer 2, then State = 3. After
the first iteration, if the State = 1, the State remains at 1
if the observers stop at the same time in further iterations
as well. The first time, Observer 2 (Observer 1) stops before
Observer 1 (Observer 2), the State changes from 1 to 2 (3).
Once the State is equal to 2 or 3 it oscillates between these
two states until the algorithm stops. It is also possible that
the State remains at 1 until consensus is achieved.

In figure 1, a simple scenario is depicted where Observer
2 arrives at its decision first and sends it to Observer 1.
After Observer 1 has arrived at its decision, it compares
its own decision to that of Observer 2. Since they are
not equal, it communicates its decision to Observer 2 and
Observer 2 starts collecting observations from the next time
instant onwards. The algorithm is executed until consensus
is achieved.

The thresholds are updated for each observer after every
iteration. The lower threshold is monotonically decreasing
with every iteration while the upper threshold is monoton-
ically increasing. Thus, the consensus algorithm has been
designed in such way that at the nth iteration, i.e., after
both observers have made their final decisions n times, the
probability of error is bounded above by

2

µ× νn−1
where

µ and ν are greater than 1. Hence as n tends to ∞ the
probability of error tends to zero.

IV. SIMULATION RESULTS

The consensus algorithm described above involves infor-
mation exchange between the observers. Through simula-
tions we would like to understand if the exchange of the
decision information has led to reduction in false alarms and
miss detections. We consider the centralized decision of the
observers as the decision of the observers after the first iter-
ation. Hence each observer has its own centralized decision.
A heuristic way to calculate the value of information for this
specific problem would be to calculate the average reduction
in detection error as :
α = Number of simulations in which consensus occurs to
correct hypothesis after one iteration. We exclude the cases
in which decision of both the observers is equal to the
true hypothesis at the first iteration as exchange of decision
information is not useful.
β = Number of simulations in which consensus occurs to
wrong hypothesis, while the decision for either observers
after the first iteration was equal to true hypothesis. In such
cases the exchange of information is not useful, as the neither
of the observer gain from the information exchange.
γ = Total number of bits communicated in all the simulations.
total = Total number of simulations.

V alue of information =

α− β
total
γ

total

=
α− β
γ

.
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Hence the value of information captures the fraction of
the total bits communicated which led to correction of the
centralized decision of exactly one of the observers. Hence
it captures how much of the information exchange was
useful in the decision making process. Probability of error
is calculated as :
υ = Number of simulations in which consensus occurs to
wrong hypothesis.

Probability of error =
υ

total
.

Average time to consensus is calculated as :
% = Sum of the time to consensus over all simulations.

Average time to consensus = d %

total
e.

The simulations were performed with two Gaussian mod-
els. The states for both models were considered to be 3-
dimensional. The parameters defining the systems under
either hypothesis were considered as follows :

A1 =

−0.5 0 0
0 −0.25 0
0 0 0.6

 , A2 =

0.7 0 0
0 −0.4 0
0 0 0.35

 ,
B1 = B2 = I3, Σ1 = Σ2 = R1 = R2 = 3 × I3. Observer
1 was considered to have 3-dimensional observations. The
other parameters which define the observer were chosen as:

C1 =

1 3 5
2 4 0
7 0 0

 , C2 =

2 4 6
1 3 0
8 0 0

 ,
Q1 = Q2 = I3. Observer 2 was considered to have 2-
dimensional observations. The other parameters which define
the observer were chosen as :

D1 =

[
1 1 0
1 0 1

]
, D2 =

[
1 2 1
0 1 3

]
,

S1 = I2 , S2 = 2 × I2. The number of simulations was
varied from 10 to 104. The value of information, probability
of error and average time to consensus were calculated in
each case and have been tabulated [I],[II]. For the simulation
setting mentioned, the value of information is 0.27, which
means that approximately 27% of the bits communicated led
to correction of the centralized decision of exactly one of
the observers. From table II, on an average, each observer

Number of Value of Probability of
Simulations Information Error

10 0.3333 0.00
100 0.3066 0.03

1000 0.2609 0.068
10000 0.2719 0.0616

TABLE I
VALUE OF INFORMATION AND PROBABILITY OF ERROR

collects 7 observations. With the same simulation settings

and with minimum of 7 observations, the probability of error
of Observer 1 was found to be 0.137. For Observer 2, the
probability of error was found to be 0.184. By collecting
7 samples on an average, in a complementary manner and
by the information exchange, the observers achieve lower
probability of error equal to 0.062.

Number of Simulations Average Time to Consensus
10 10

100 13
1000 13

10000 12

TABLE II
AVERAGE TIME TO CONSENSUS

V. CONCLUSION AND FUTURE WORK

In this paper , two collaborating detectors perform sequen-
tial hypothesis testing based on observations generated by
Gaussian models. The SPRT is used to solve the hypothesis
testing problem. A consensus algorithm with monotonically
changing thresholds is presented. The convergence of the
algorithm is discussed. To understand the value of the one
bit communication used to achieve consensus, simulations
were performed. It was observed that there was a reduction in
erroneous detection. For the simulation settings mentioned,
on an average, 27% of the information exchange resulted
in an improved performance; i.e., the centralized decision of
one of the observers was wrong while the consensus decision
was the true hypothesis.

The stopping time problem for each one of the observers
could be studied using approximate dynamic programming
methods. It would also be interesting to consider the problem
in a framework where the observations used to make the
decision are chosen strategically and not all observations are
used.
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