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Abstract—We study asymptotic dynamical patterns that
emerge among a set of nodes interacting in a dynamically evolving
signed random network, where positive links carry out standard
consensus and negative links induce relative-state flipping. A
sequence of deterministic signed graphs defines potential node
interactions that take place independently. Each node receives a
positive recommendation consistent with the standard consensus
algorithm from its positive neighbors, and a negative recom-
mendation defined by relative-state flipping from its negative
neighbors. After receiving these recommendations, each node
puts a deterministic weight to each recommendation, and then
encodes these weighted recommendations in its state update
through stochastic attentions defined by two Bernoulli random
variables. We establish a number of conditions regarding almost
sure convergence and divergence of the node states. We also
propose a condition for almost sure state clustering for essentially
weakly balanced graphs, with the help of several martingale con-
vergence lemmas. Some fundamental differences on the impact
of the deterministic weights and stochastic attentions to the node
state evolution are highlighted between the current relative-state-
flipping model and the state-flipping model considered in Shi et
al., IEEE Transaction on Control of Network Systems, 2015.

Keywords. Random graphs, Signed networks, Consensus
dynamics, Belief clustering

I. INTRODUCTION

The emergent behaviors, such as consensus, swarming,
clustering, and learning, of the dynamics evolving over a large
complex network of interconnected nodes have attracted a
significant amount of research attention in the past decades
[2]–[6]. In most cases node interactions are collaborative,
reflected by that their state updates obey the same rule
which is spontaneous or artificially designed aiming for some
particular collective task. This however might not always be
true since nodes take on different, or even opposing, roles,
where examples arise in biology [8], [9], social science [10]–
[12], and engineering [13].

Consensus problems aim to compute a weighted average
of the initial values held by a collection of nodes, in a
distributed manner. The DeGroot’s model [2], as a standard
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consensus algorithm, described how opinions evolve in a
network of agents, and showed that a simple deterministic
opinion update based on the mutual trust and the differences
in belief between interacting agents could lead to global
convergence of the beliefs. Consensus dynamics have since
then been widely adopted for describing opinion dynamics in
social networks, e.g., [6], [7], [14]. In engineering sciences,
a huge amount of literature has studied these algorithms for
distributed averaging, formation forming and load balancing
between collaborative agents under fixed or time-varying in-
teraction networks [15]–[22]. Randomized consensus seeking
has also been widely studied, motivated by the random nature
of interactions and updates in real complex networks [23]–
[30].

This paper aims to study consensus dynamics with both
collaborative and non-collaborative node interactions. A con-
venient framework for modeling different roles and relation-
ships between agents is to use signed graphs introduced in the
classical work by Heider in 1946 [10]. Each link is associated
with a sign, either positive or negative, indicating collabora-
tive or non-collaborative relationships. In [34], a model for
consensus over signed graphs was introduced for continuous-
time dynamics, where a node flips the sign of its true state
to a negative (antagonistic) node during the interaction. The
author of [34] showed that state polarization (clustering) of
the signed consensus model is closely related to the so-called
structural balance in classical social signed graph theory [37].
In [35], the authors proposed a model for investigating the
transition between agreement and disagreement when each
link randomly takes three types of interactions: attraction,
repulsion, and neglect, which was further generalized to a
signed-graph setting in [36].

We assume a sequence of deterministic signed graphs
that defines the interactions of the network. Random node
interactions take place under independent, but not necessar-
ily identically distributed, random sampling of the environ-
ment. Once interaction relations have been realized, each
node receives a positive recommendation consistent with the
standard consensus algorithm from its positive neighbors.
Nodes receive negative recommendations from its negative
neighbors. After receiving these recommendations, each node
puts a (deterministic) weight to each recommendation, and
then encodes these weighted recommendations in its state
update through stochastic attentions defined by two Bernoulli
random variables. In [1], we studied almost sure convergence,
divergence, and clustering under the definition of Altafini [34]
for negative interactions, for which we referred to as a state-
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flipping model.
In this paper, we further investigate this random consen-

sus model for signed networks under a relative-state-flipping
setting, where instead of taking negative feedback of the
relative state in standard consensus algorithms [2], [4], a
positive feedback takes place along every interaction arc of
a negative sign. This relative-state flipping formulation is
consistent with the models in [35], [36], and can be viewed as
a natural opposite of the DeGroot’s type of node interactions.
For the proposed relative-state-flipping model, we establish a
number of conditions regarding almost sure convergence and
divergence of the node states. We also propose a condition
for almost sure node state clustering for essentially weakly
balanced graphs, with the help of several martingale conver-
gence lemmas. Some fundamental differences on the impact of
the deterministic weights and stochastic attentions to the node
state evolution are highlighted between the current relative-
state-flipping model and the state-flipping model.

The remainder of the paper is organized as follows. Section
II presents the network dynamics and the node update rules,
and specifies the information-level difference between the
relative-state-flipping and state-flipping models. Section III
presents our main results; the detailed proofs are given in
Section IV. Finally some concluding remarks are drawn in
Section V.

Graph Theory, Notations and Terminologies

A simple directed graph (digraph) G = (V, E) consists of
a finite set V of nodes and an arc set E ⊆ V × V , where
e = (i, j) ∈ E denotes an arc from node i ∈ V to j ∈ V
with (i, i) /∈ E for all i ∈ V . We call node j reachable from
node i if there is a directed path from i to j. In particular
every node is supposed to be reachable from itself. A node
v from which every node in V is reachable is called a center
node (root). A digraph G is strongly connected if every two
nodes are mutually reachable; G has a spanning tree if it has
a center node; G is weakly connected if every two nodes are
reachable from each other after removing all the directions of
the arcs in E . A subgraph of G = (V, E), is a graph on the
same node set V whose arc set is a subset of E . The induced
graph of Vi ⊆ V on G, denoted G|Vi, is the graph (Vi, Ei) with
Ei = (Vi × Vi) ∩ E . A weakly connected component of G is
a maximal weakly connected induced graph of G. If each arc
(i, j) ∈ E is associated uniquely with a sign, either ’+’ or ’−’,
G is called a signed graph and the sign of (i, j) ∈ E is denoted
as σij . The positive and negative subgraphs containing the
positive and negative arcs of G, are denoted as G+ = (V, E+)
and G− = (V, E−), respectively.

Depending on the argument, | · | stands for the absolute
value of a real number, the Euclidean norm of a vector or
the cardinality of a set. The σ-algebra of a random variable
is denoted as σ(·). We use P(·) to denote the probability and
E{·} the expectation of their arguments, respectively.

II. RANDOM NETWORK MODEL AND NODE UPDATES

In this section, we present the considered random network
model and specify individual node dynamics. We use the same

definition of random signed networks as introduced in [1],
where each link is associated with a sign indicating cooperative
or antagonistic relations. In the current work we study relative-
state-flipping dynamics along each negative arcs, in contrast
with the state-flipping dynamics studied in [1]. The main
difference of the information patterns between the two models
will also be carefully explained.

A. Signed Random Dynamical Networks

Consider a network with a set V = {1, . . . , n} of n nodes,
with n ≥ 3. Time is slotted for t = 0, 1, . . .. Let

{
Gt =

(V, Et)
}∞
0

be a sequence of (deterministic) signed directed
graphs over node set V . We denote by σij(t) ∈ {+,−} the
sign of arc (i, j) ∈ Et. The positive and negative subgraphs
containing the positive and negative arcs of Gt, are denoted
by G+t = (V, E+t ) and G−t = (V, E−t ), respectively. We say
that the sequence of graphs {Gt}t≥0 is sign consistent if the
sign of any arc (i, j) does not evolve over time, i.e., if for any
s, t ≥ 0,

(i, j) ∈ Es and (i, j) ∈ Et =⇒ σij(s) = σij(t).

We also define G∗ = (V, E∗) with E∗ =
⋃∞
t=0 Et as the total

graph of the network. If {Gt}t≥0 is sign consistent, then the
sign of each arc E∗ never changes and in that case, G∗ =
(V, E∗) is a well-defined signed graph. The notion of positive
cluster in a signed directed graph is defined as follows.

Definition 1: Let G be a signed digraph with positive
subgraph G+. A subset V∗ of the set of nodes V is a positive
cluster if V∗ constitutes a weakly connected component of
G+. A positive cluster partition of G is a partition of V into
V =

⋃Tp

i=1 Vi for some Tp ≥ 1, where for all i = 1, . . . ,Tp,
Vi is a positive cluster.

Note that G admitting a positive-cluster partition is a
generalization of the classical definition of weakly structural
balanced graph for which negative links are strictly forbidden
inside each positive cluster [38]. Given any node i, there is a
unique weakly connected component of G+ that contains the
node i (particularly, if all arcs pointing to and leaving from
node i are negative, node i by itself is a weakly connected
component of G+ from the definition). Therefore, it is clear
that for any signed graph G, there is a unique positive cluster
partition V =

⋃Tp

i=1 Vi of G, where Tp is the number of
positive clusters covering the entire set V of nodes.

Each node randomly interacts with her neighboring nodes
in Gt at time t. We present a general model on the random
node interactions at a given time t. At time t, some pairs
of nodes are randomly selected for interaction. We denote by
Et ⊂ Et the random subset of arcs corresponding to interacting
node pairs at time t. To be precise, Et is sampled from the
distribution µt defined over the set Ωt of all subsets of arcs in
Et. We assume that E0, E1, . . . form a sequence of independent
sets of arcs. Formally, we introduce the probability space
(Θ,F ,P) obtained by taking the product of the probability
spaces (Ωt,St, µt), where St is the discrete σ-algebra on Ωt:
Θ =

∏
t≥0 Ωt, F is the product of σ-algebras St, t ≥ 0, and

P is the product probability measure of µt, t ≥ 0. We denote
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Figure 1. A signed network and its three positive clusters. The positive arcs are solid, and the negative arcs are dashed. Note that negative arcs are allowed
within positive clusters.

by Gt = (V, Et) the random subgraph of Gt corresponding
to the random set Et of arcs. The disjoint sets E+

t and E−t
denote the positive and negative arc set of Et, respectively.
Finally, we split the random set of nodes interacting with
node i at time t depending on the sign of the corresponding
arc: for node i, the set of positive neighbors is defined as
N+
i (t) :=

{
j : (j, i) ∈ E+

t

}
, whereas similarly, the set of

negative neighbors is N−i (t) :=
{
j : (j, i) ∈ E−t

}
.

B. Node updates

Each node i holds a state si(t) ∈ R at t = 0, 1, . . . . To
update her state at time t, node i considers recommendations
received from her positive and negative neighbors:
(i) The positive recommendation node i receives at time t is

h+i (t) := −
∑

j∈N+
i (t)

(
si(t)− sj(t)

)
;

(ii) The negative recommendations node i receives at time t
is defined as:

h−i (t) :=
∑

j∈N−i (t)

(
si(t)− sj(t)

)
.

In the above expressions, we use the convention that summing
over empty sets yields a recommendation equal to zero, e.g.,
when node i has no positive neighbors, then h+i (t) = 0. In
view of the definition of h−i (t) in contrast to h+i (t), the model
is referred to as the relative-state-flipping model.

Remark 1: In [1], we have considered another notion of
negative recommendations, namely the state-flipping model
introduced in [34], defined as h−i (t) := −

∑
j∈N−i (t)

(
si(t) +

sj(t)
)
. We remark that for the relative-state-flipping model, the

network does not require a central global coordinate system
and nodes can interact based on relative state only. As has been
pointed in [1], in the state-flipping model, the network nodes
are necessary to share a common knowledge of the origin of
the state space.

Remark 2: The two definitions of negative recommen-
dations, the relative-state-flipping model considered in the

current paper, and the state-flipping model studied in [1],
[34], have different physical interpretations and make different
assumptions on the knowledge that nodes possess about their
neighbor relationships. In the state-flipping model, naturally
it is the head node along each negative arc, that possesses
the knowledge of sign of that arc. In the relative-state-flipping
model, on the other hand, it is the tail node knows the sign of
each directed arc so that nodes know if a specific neighbor is
positive or negative to implement the state updates that cause
the repulsive influence from its negative neighbors.

Let {Bt}t≥0 and {Dt}t≥0 be two sequences of indepen-
dent Bernoulli random variables. We assume that {Bt}t≥0,
{Dt}t≥0, and {Gt}t≥0 define independent processes. For
any t ≥ 0, define bt = E{Bt} and dt = E{Dt}. The
processes {Bt}t≥0 and {Dt}t≥0 represent how much attention
node i pays to the positive and negative recommendations,
respectively. Node i updates her state as follows:

si(t+ 1) = si(t) + αBth
+
i (t) + βDth

−
i (t), (1)

where α, β > 0 are two positive constants marking the weight
each node put on the positive and negative recommendations,
respectively. For the value of α, we impose the following
assumption.

A1. (i) There holds α ∈ (0, (n−1)−1); (ii) There is a constant
p∗ ∈ (0, 1) such that for all t ≥ 0 and i, j ∈ V , P

(
(i, j) ∈

Et
)
≥ p∗ if (i, j) ∈ Et.

The Assumption A1.(i) is just to ensure that the node
update rule (1) falls to standard consensus algorithms with
positive recommendations only, which has to be made a bit
conservative since we aim to build the results on general
random dynamical networks. This bound for α can certainly
be relaxed without affecting any of our results if the random
dynamical network takes certain particular forms, e.g., it will
only require α ∈ (0, 1) for the upcoming analysis if gossiping
processes [24] are considered. The Assumption A1.(ii) is a
regularity condition to the arc existence in different time slots,
which is in fact quite general and holds for many existing
random network models, e.g., [23], [25], [26]. The Assumption
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A1 will be adopted throughout this paper without specific
further mention.

Let s(t) =
(
s1(t) . . . sn(t)

)T
be the random vector rep-

resenting the network state at time t. The main objective
of this paper is to analyze the behavior of the stochastic
process {s(t)}t≥0. In the following, we denote by P the
probability measure capturing all random components driving
the evolution of s(t).

In the remainder of the paper, we establish the asymptotic
properties of the network state evolution under relative-state-
flipping model. As will be shown in the following, the state-
flipping and relative-state-flipping models share some com-
mon nature, e.g., almost sure state convergence/divergence,
no-survivor property, etc. In the mean time these common
properties can be driven by fundamentally different parameters
regarding network connectivity and recommendation weights
and attentions. We introduce a few assumptions on the random
graph process and dynamical environment.

A2. {Gt}t≥0 is sign consistent admitting a total graph G∗.

A3. The events {(i, j) ∈ Et}, i, j ∈ V , t = 0, 1, . . . are
independent and there is a constant p∗ ∈ (0, 1) such that for
all t ≥ 0 and i, j ∈ V , P

(
(i, j) ∈ Et

)
≤ p∗ if (i, j) ∈ Et.

The Assumption A2 ensures that although the arc sets of
G+t and G−t can be time-varying, there is no arc that varies its
sign over time. This means that the nature of the relationship
(positive or negative) between any two nodes is fixed while the
underlying interaction structure is changing. The Assumption
A3 is a technical assumption, which again can be verified for a
large class of random network models studied in the literature,
e.g., [23], [25], [26].

III. MAIN RESULTS

In this section, we present the main results for the asymp-
totic behaviors of the random process defined by the consid-
ered relative-state-flipping model.

A. General Conditions

First of all, the following theorem provides general condi-
tions for convergence and divergence.

Theorem 1: Assume that for any t ≥ 0, Gt ≡ G for
some digraph G, and that each positive cluster of G admits
a spanning tree in G+. For Algorithm (1) under the relative-
state-flipping model, we have:
(i) If

∑∞
t=0 dt < ∞, then P

(
limt→∞ si(t) exits

)
= 1 for

all node i ∈ V and all initial states s(0);

(ii) If
∑∞
t=0 dt = ∞, G has two positive clusters with no

negative links in each cluster, and there is a negative arc
between any two nodes from different clusters, then there
exist an infinite number of initial states s(0) such that

P
(

lim
t→∞

max
i,j∈V

|si(t)− sj(t)| =∞
)

= 1. (2)

Note that by saying limt→∞ si(t) exits, we mean si(t)
converges to a finite limit. The first part of the above theorem

indicates that when the environment is frozen, and when
positive clusters are properly connected, then irrespective of
the mean of the positive attentions {bt}∞0 , the system states
converge if the attention each node puts in her negative
neighbors decays sufficiently fast over time. The second part
of the theorem states that when this attention does not decay,
divergence can be observed.

Remark 3: Theorem 1 shows that well-structured positive
arcs and asymptotically decaying attention guarantee state con-
vergence for relative-state-flipping model. The essential reason
is that when

∑∞
t=0 dt <∞, the first Borel-Cantelli lemma (cf.

Theorem 2.3.1, [32]) ensures that along almost every sample
path, negative interactions happen only for a finite number of
time instants. The positive interactions continue to guide the
network states to a finite limit under suitable connectivity. It
is then clear that the same condition can also guarantee state-
convergence for the state-flipping model considered in [1].

In fact, for the state convergence property of the state-
flipping model, a much stronger conclusion regarding state
convergence was shown (Theorem 1 in [1]) indicating that
each positive/negative arc contributes to the state convergence
under constant attention {bt} and {dt}, as long as α + β ≤
(n− 1)−1. We can easily build examples showing that it is a
completely different story on this matter for the relative-state-
flipping model considered in the current paper.

Remark 4: The divergence statement in Theorem 1 is not
true for the state-flipping model [1], where almost sure state
divergence always requires sufficiently large β.

B. Deviation Consensus

We define almost sure deviation consensus as follows.

Definition 2: Algorithm (1) achieves almost sure deviation
consensus if

P
(

lim sup
t→∞

max
i,j∈V

|si(t)− sj(t)| = 0
)

= 1.

Note that almost sure deviation consensus means that the
distances among the node states converge to zero, but con-
vergence of each node state is not required. We need the
following condition on the positive graphs, which assumes a
directed spanning tree in the union graph of the environment
over certain bounded time intervals [19].

A4. There is an integer K ≥ 1 such that the union graph
G+
(
[t, t + K]

)
=
(
Vi,
⋃
τ∈[t,t+K−1] E+τ

)
has a spanning tree

for all t ≥ 0.

Theorem 2: Assume that A4 holds. Denote K0 = (2n−3)K
and ρ∗ = min{α, 1− (n− 1)α}. Define

Xm =
pn−1∗ ρK0

∗
2

(m+1)K0−1∏
t=mK0

(
bt(1− dt)

)
,

and

Ym =
(
1 + 2β(n− 1)

)K0
(
1−

(m+1)K0−1∏
t=mK0

(1− dt)
)
.
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Then under the relative-state-flipping model, if 0 ≤ Xm −
Ym ≤ 1 for all m ≥ 0 and

∑∞
m=0(Xm−Ym) =∞, Algorithm

(1) achieves almost sure deviation consensus for all initial
states.

The following corollary is a direct consequence from
Theorem 2, obtained by straightforward verification of the
parameter conditions in Theorem 2.

Corollary 1: Assume that A4 holds. Let bt ≡ b and dt ≡ d
with b, d ∈ (0, 1). Then there exists d? > 0 such that deviation
consensus is achieved almost surely whenever d < d?.

Note that, deviation consensus does not necessarily guaran-
tee the convergence of the state of each node. In fact, simple
examples can be constructed with arbitrarily small β such that
under the relative-state-flipping model, the state of each node
grows arbitrarily large while deviation consensus still holds.
This fact is in sharp contrast with the result for the state-
flipping model: the condition α+ β < (n− 1)−1 prevents the
state of individual nodes to diverge (i.e., Theorem 1 in [1]).

C. Almost Sure Divergence

We continue to provide conditions under which the maximal
gap between the states of two nodes grows large almost surely.
We introduce a new technical condition on the negative graph,
which assumes that the negative arcs span the entire network
leading to a weakly connected graph over certain bounded
time intervals.

A5. There is an integer K ≥ 1 such that the union graph
G−
(
[t, t+K]

)
=
(
V,
⋃
τ∈[t,t+K−1] E−τ

)
is weakly connected

for all t ≥ 0.

Theorem 3: Assume that A3 and A5 hold. Let bt ≡ b
and dt ≡ d for some constants b, d ∈ (0, 1). In addition
we require α ∈ [0, (n − 1)−1/2). Then for Algorithm (1)
under the relative-state-flipping model, there is b? > 0 such
that whenever b < b?, we have P

(
limt→∞maxi,j∈V |si(t)−

sj(t)| = ∞
)

= 1 for almost all initial states (under the
standard Lebesgue measure).

Remark 5: Theorem 3 indicates that in relative-state-flipping
model, almost sure relative-state divergence can be achieved
as long as negative interactions happen sufficiently more often
than the positive interactions. As explained in above remarks,
for state-flipping model, state divergence necessarily require
sufficiently large weight on negative recommendations.

D. State Clustering

Finally, we investigate the clustering of states of nodes
within each positive cluster. The following assumption ensures
a minimum level of connectivity inside each positive cluster
as the environment changes.

A6. Assume that A2 holds and let V =
⋃Tp

i=1 Vi be a positive-
cluster partition of the total graph G∗. There is an integer
K ≥ 1 such that the union graph G+

(
[t, t+K]

)∣∣
Vi

=(
Vi,
⋃
τ∈[t,t+K−1] E+τ

∣∣
Vi

)
has a spanning tree for all t ≥ 0.

Theorem 4: Assume that A2 and A6 hold and let
V =

⋃Tp

i=1 Vi be a positive-cluster partition of G∗. Define
J(m) =

∏(m+1)K0−1
t=mK0

bt and W (m) =
∑(m+1)K0−1
t=mK0

dt with
K0 = (2n − 3)K. Further assume that

∑∞
m=0 J(m) = ∞,∑∞

t=0 dt < ∞, and limm→∞W (m)/J(m) = 0. Then under
the relative-state-flipping model, for any initial state s(0),
Algorithm (1) achieves a.s. state clustering in the sense that
there are Tp real-valued random variables, w∗1 , . . . , w

∗
Tp

, such
that

P
(

lim
t→∞

si(t) = w∗j , i ∈ Vj , j = 1, . . . ,Tp

)
= 1.

Theorem 4 shows the possibility of state clustering for
every positive cluster, whose proof is based on a martingale
convergence lemma.

IV. PROOFS OF STATEMENTS

In this section, we establish the proofs of the various
statements presented in the previous section.

A. Supporting Lemmas

The following is a martingale convergence lemma (see e.g.
[33]).

Lemma 1: Let{vt}t≥0 be a sequence of non-negative ran-
dom variables with E{v0} <∞. Assume that for any t ≥ 0,

E{vt+1|v0, . . . , vt} ≤ (1− ξt)vt + θt,

where {ξt}t≥0 and {θt}t≥0 are two (deterministic) sequences
of non-negative numbers satisfying ∀t ≥ 0, 0 ≤ ξt ≤ 1,∑∞
t=0 ξt = ∞,

∑∞
t=0 θt < ∞, and limt→∞ θt/ξt = 0. Then

limt→∞ vt = 0 a.s..

We define h(t) := mini∈V si(t), H(t) := maxi∈V si(t),
and H(t) := H(t)− h(t), which will be used throughout the
rest of the paper. The following lemma holds.

Lemma 2: Assume that
∑∞
t=0 dt < ∞. Then under the

relative-state-flipping model, for all initial states, each of h(t),
H(t), H(t) converges almost surely, respectively, to some
random variables that take finite values with probability one.
Proof. If Dt = 0, then there hold

H(t+ 1) ≤ H(t);

h(t+ 1) ≥ h(t);

H(t+ 1) ≤ H(t);

(3)

in view of the condition α ∈ [0, (n− 1)−1].
Based on the first Borel-Cantelli Lemma (cf. Theorem 2.3.1,

[32]),
∑
t dt <∞ ensures that

P
(
Dt = 1 for finitely many t

)
= 1.

In other words, we can define1

TD := sup
t

{
Dt = 1

}
,

1From its definition it is clear that TD is not a stopping time. Our argument
however relies only on the fact that P(TD <∞) = 1.
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which is finite with probability one. This is to say, the
inequalities in (5) hold almost surely for t ≥ TD.

As a result, we conclude that

h(TD) ≤ h(t) ≤ h(t+ 1) ≤ H(t+ 1) ≤ H(t) ≤ H(TD)
(4)

for all t ≥ TD. It is obvious that both h(TD) and H(TD)
are random variables taking finite values with probability
one. The almost sure convergence of h(t) and H(t) therefore
follows directly from (4), which in turn implies the almost
sure convergence of H(t).

We have now completed the proof. �

Lemma 3: Assume that
∑∞
t=0 dt <∞. Assume that for any

t ≥ 0, Gt ≡ G for some digraph G. Let V† be a positive cluster
of G. Then H†(t) := maxi∈V† si(t) and h† := mini∈V† si(t)
converge almost surely, respectively, to some random variables
that take finite value with probability one.
Proof. Similarly, there hold

H†(t+ 1) ≤ H†(t);
h†(t+ 1) ≥ h†(t);
H†(t+ 1) ≤ H†(t);

(5)

if Dt = 0. The desired conclusion follows from the same
argument as the proof of Lemma 2. �

Lemma 4: Assume that Dt = 0 for t = 0, . . . , 2(n−2)K−1.
Take i ∈ V . Then for any t = 0, . . . , 2(n − 2)K − 1, there
hold

(i) If si(t) ≤ ζ0h(0) + (1 − ζ0)H(0) for some ζ0 ∈ (0, 1),
then si(t + 1) ≤ λ∗ζ0h(0) + (1 − λ∗ζ0)H(0), where
λ∗ = 1− α(n− 1);

(ii) If si(t) ≤ ζ0h(0) + (1 − ζ0)H(0) for some ζ0 ∈ (0, 1),
Bt = 1, and (i, j) ∈ Gt, then sj(t+1) ≤ αζ0h(0)+(1−
αζ0)H(0).

Proof. Note that the conditions that Dt = 0 for t =
0, . . . , 2(n−2)K−1 and α ∈ (0, (n−1)−1) yield H(t+1) ≤
H(t) and h(t+ 1) ≥ h(t) for all t = 0, . . . , 2(n− 2)K − 1.

(i). If Dt = 0 and si(t) ≤ ζ0h(0) + (1 − ζ0)H(0) for some
ζ0 ∈ (0, 1), then

si(t+ 1) = si(t) + αBth
+
i (t)

≤ si(t)− α
∑

j∈N+
i (t)

(
si(t)− sj(t)

)
≤ (1− α|N+

i (t)|)si(t) + α|N+
i (t)|H(t)

≤ (1− α|N+
i (t)|)

(
ζ0h(0) + (1− ζ0)H(0)

)
+ α|N+

i (t)|H(0)

≤ λ∗ζ0h(0) + (1− λ∗ζ0)H(0) (6)

in light of the fact that α ∈ (0, (n − 1)−1), where λ∗ =
1− α(n− 1).

(ii) If si(t) ≤ ζ0h(0) + (1 − ζ0)H(0) for some ζ0 ∈ (0, 1),
Bt = 1, and (i, j) ∈ Gt, there holds that

sj(t+ 1) = sj(t)− α
∑

k∈N+
j (t)

(
sj(t)− sk(t)

)
= (1− α|N+

j (t)|)sj(t) + αsi(t)

+ α
∑

k∈N+
j (t)\{i}

sk(t)

≤ (1− α)H(t) + α
(
ζ0h(0) + (1− ζ0)H(0)

)
≤ αζ0h(0) + (1− αζ0)H(0). (7)

This proves the desired lemma. �

B. Proof of Theorem 1

(i). Let
∑∞
t=0 dt < ∞. Then as long as

∑∞
t=0 bt < ∞,

the first Borel-Cantelli Lemma guarantees that almost surely,
each node revises its state for only a finite number of slots,
which yields the desired claim follows straightforwardly. In
the following, we prove the desired conclusion based on the
assumption that

∑∞
t=0 bt =∞.

With
∑∞
t=0 dt <∞, from the first Borel-Cantelli Lemma,

K∗ := inf{k ≥ 0 : Dt = 0,∀t ≥ k}

is a finite number almost surely. We note that K∗ is not a
stopping time for {Dt}t≥0, but a stopping time for {Bt}t≥0
by the independence of {Bt}t≥0 and {Dt}t≥0. Hence, we can
recursively define

Km+1 := inf{t > Km : Bt = 1}, m = 0, 1, . . .

with K0 := inf{t ≥ K∗ : Bt = 1}, which are are stopping
times for {Bt}t≥0. Now in view of the independence of
{Gt}t≥0 and {Bt}t≥0, we know that {GKm

}m≥0 is an inde-
pendent process and each GKm satisfies P

(
(i, j) ∈ EKm

)
≥

p∗ for all (i, j) ∈ G under Assumption A1.
Let V† be a positive cluster of G. By assumption, G|V† has

a spanning tree. Since α < 1/(n − 1), the above discussion
shows that at times Km,m = 0, 1, . . . , the considered relative-
state-flipping model defines a standard consensus dynamics on
independent random graphs where each arc exists with prob-
ability at least p∗ for any fixed time slot. Therefore, applying
Theorem 3.4 in [39] on randomized consensus dynamics with
arc-independent graphs, we conclude that the connectivity of
V† ensures that

P
(

lim
m→∞

H†(Km) = 0
)

= 1,

where H†(t) = maxi∈V† si(t)−mini∈V† si(t). This immedi-
ately gives us

P
(

lim
t→∞

H†(t) = 0
)

= 1

by the definition of the Km.
Finally, according to Lemma 3, both maxi∈V† si(t) and

mini∈V† si(t) converge almost surely. Define their limits as,
respectively, H†∗ and h†∗, which are finite with probability one.
The fact that P

(
limt→∞H†(t) = 0

)
= 1 immediately leads

to H†∗ = h†∗ almost surely. As a result, we conclude that

P
(

lim
t→∞

si(t) = H†∗ = h†∗
)

= 1
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for all i ∈ V†.
Since V† is chosen arbitrarily, we further know

P
(

limt→∞ si(t) exits
)

= 1 for all node i ∈ V and all
initial states s(0). This proves the desired statement.
(ii) Let V1 and V2 be the two positive-clusters of G. Let
si(0) = 0, i ∈ V1 and si(0) = C0, i ∈ V2 for some C0 > 0.
We define

f1(t) := max
i∈V1

si(t); f2(t) := min
i∈V2

si(t).

Since the either of the positive cluster contains positive links
only and α ∈ (0, (n− 1)−1), there always holds that

f1(t+ 1) ≤ f1(t); f2(t+ 1) ≥ f2(t).

Now that there is a negative arc between any two nodes from
different clusters, it is straightforward to see that

f2(t+ 1)− f1(t+ 1) ≥ (1 + β)
(
f2(t)− f1(t)

)
≥ f2(t)− f1(t) + C0 (8)

whenever Dt = 1 and either (i∗, j∗) ∈ Et or (j∗, i∗) ∈ Et
with i∗ = arg maxi∈V1 si(t) and j∗ = arg mini∈V2 si(t). In
light of Assumption A1, the second Borel-Cantelli Lemma
(cf., Theorem 2.3.6, [32]) leads to that the event defined in (8)
happens infinitely often with probability one when

∑∞
t=0 dt =

∞. The desired conclusion follows immediately.
The proof is now complete. �

C. Proof of Theorem 2

The proof relies on Lemma 1, cf., [29] for the analysis of
randomized consensus. We proceed in steps.

Step 1. Consider 2n− 3 intervals [mK, (m+ 1)K − 1],m =
0, . . . , 2(n−2). In this step, we select a few key intervals from
them.

With Assumption A4, there is a center node vm ∈ V in each
of G([mK, (m+1)K−1]). Therefore, we count 2n−3 center
nodes (repetitions are allowed, of course) in the 2n− 3 inter-
vals. There must hold that either svm(0) ≤ (h(0)+H(0))/2 or
svm(0) > (h(0) +H(0))/2 for each m = 1, . . . , 2n− 3. This
is to say, we can find n − 1 center nodes (again, repetitions
are allowed) out of the vm’s, denoted vm1

, . . . , vmn−1
, such

that either

svmj
(0) ≤ h(0)

2
+
H(0)

2
, j = 1, . . . , n− 1 (9)

or

svmj
(0) >

h(0)

2
+
H(0)

2
, j = 1, . . . , n− 1 (10)

holds.

Step 2. In this step, we establish a probabilistic bound for
H(K0). To this end, we first assume that (9) holds.

Let Dt = 0 for t = 0, . . . , 2(n− 2)K− 1. We carry out the
following recursive argument:

1) By our selection vm1 is a center node of the graph
G([τ1K, (τ1 + 1)K − 1]) for some τ1 = 0, . . . , 2(n− 2)
with svm1

(0) ≤ (h(0)+H(0))/2. Applying Lemma 4.(i)
we conclude that

svm1

(
K0

)
≤ ρK0

∗
2
h(0) +

(
1− ρK0

∗
2

)
H(0),

where K0 and ρ∗ are defined in the statement of Theorem
2.

2) Since vm1 is a center, there exist t1 ∈ [τ1K, (τ1 + 1)K−
1] and j∗ 6= vm1

∈ V such that (vm1
, j∗) ∈ Et1 with

probability at least p∗. If Bt1 = 1 and (vm1
, j∗) ∈ Et1 ,

then we can apply Lemma 4 and then conclude

sj∗
(
K0

)
≤ ρK0

∗
2
h(0) +

(
1− ρK0

∗
2

)
H(0).

For convenience we re-denote vm1 and j∗ as u1 and u2,
respectively.

3) We proceed for vm2
. If vm2

/∈ {u1, u2}, applying
Lemma 4.(i) again and we can obtain the same bound
for sj∗

(
K0

)
. Otherwise either vm2

= u1 or vm2
= u2

allows us to find another node u3 with the bound for
su3

(
K0

)
obtained as step 2).

From the selection of vm1 , . . . , vmn−1 , the above procedure
eventually gives us the same bound for nodes u1, . . . , un, and
calculating the probability of the required events in the above
argument we obtain

P
(
si
(
K0

)
≤ ρK0

∗
2
h(0) +

(
1− ρK0

∗
2

)
H(0), i ∈ V

)
≥ pn−1∗

K0−1∏
t=0

(
bt(1− dt)

)
.

This implies

P
(
H
(
K0

)
≤
(
1− ρK0

∗
2

)
H(0)

)
≥ pn−1∗

K0−1∏
t=0

(
bt(1− dt)

)
.

(11)

Using a simple coordinate change by yi(t) = −si(t) and
repeating the above analysis to the yi(t), we immediately know
that (11) continues to hold for the case with (10).

Step 3. In this step, we conclude the proof making use of
Lemma 1.

From the definition of the algorithm there always hold

P
(
H
(
t+ 1

)
≤
(
1 + 2β(n− 1)

)
H(t)

)
= 1 (12)

and

P
(
H
(
K0

)
> H(0)

)
≤ 1−

K0−1∏
t=0

(1− dt). (13)

Since {Bt}t≥0, {Dt}t≥0, and {Gt}t≥0 define independent
processes, we conclude from (11), (12), and (13) that

E
{
H
(
(m+ 1)K0

)∣∣H(mK0

)}
≤
(
1−Xm + Ym

)
H
(
mK0

)
.

Then from Lemma 1 we immediately conclude the almost sure
convergence of H

(
mK0

)
as m tends to infinity. The desired

almost sure convergence of H(t) holds by further noticing
(12). This completes the proof. �
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D. Proof of Theorem 3

We first establish a technical lemma.
Lemma 5: Let α ∈ [0, (n− 1)−1/2). Then
(i) P

(
H(t+ 1) ≥

(
1− 2(n− 1)α

)
H(t)

)
= 1;

(ii) P
(
H(t+ 1) < H(t)

)
≤ b.

Proof. (i) Take i, j ∈ V satisfying si(t) = h(t) and sj(t) =
H(t). Similarly as the proof of Lemma 4, we can establish
that almost surely,

si(t+ 1) ≤ λ∗h(t) + (1− λ∗)H(t) (14)

and

sj(t+ 1) ≥ λ∗H(t) + (1− λ∗)h(t) (15)

hold, where λ∗ = 1 − α(n − 1). Noting that (14) and (15)
yield

H(t+ 1) ≥ |sj(t+ 1)− si(t+ 1)|
≥ |2λ∗ − 1|H(t)

=
(
1− 2(n− 1)α

)
H(t). (16)

Claim A is proved.
(ii) If bt = 0, only negative recommendations can be

effective in the node state update. The desired conclusion is
obvious. �

Now we define

L0 := inf{t ∈ Z : (1 + β)t ≥ 2(n− 1)}

and
KL0 = K((n2 − n)(L0 − 1) + 1).

Consider the KL0
/K = (n2 − n)(L0 − 1) + 1 time intervals

[mK, (m+ 1)K − 1]

for m = 0, 1, . . . , (n2 − n)(L0 − 1). In view of Assumption
A5, each of the graph G−

(
[mK, (m + 1)K − 1]

)
is weakly

connected.
As a result, there must be a pair of nodes, saying (um, vm),

such that (um, vm) ∈ G−
(
[mK, (m + 1)K − 1]

)
and

|sum
(mK) − svm(mK)| ≥ H(mK)/(n − 1). Note that

(um, vm) ∈ G−
(
[mK, (m + 1)K − 1]

)
means that there is

tm ∈ [mK, (m + 1)K − 1] such that (um, vm) ∈ G−tm . If
tm > mK, we now construct the following event2

Em :=
{
Bt = Dt = 0, t ∈ [mK, tm − 1]

}
.

Conditioned on Em, obviously there holds |sum(tm) −
svm(tm)| ≥ H(tm)/(n− 1) since H(tm) = H(mK).

There are however at most n(n− 1) different arcs. Conse-
quently, there are two nodes i∗, j∗ ∈ V and L0 intervals

[m1K, (m1 + 1)K − 1], · · · , [mL0
K, (mL0

+ 1)K − 1],

such that (i∗, j∗) ∈ G−
(
[mzK, (mz + 1)K − 1]

)
for z =

1, . . . , L0 with

|si∗(m1K)− sj∗(m1K)| ≥ H(m1K)/(n− 1). (17)

2Note that, um, vm, tm are all deterministic.

There are therefore L0 instants τ1 < τ2 < · · · < τL0 with
τz ∈ [mzK, (mz + 1)K − 1] such that (i∗, j∗) ∈ G−τz for all
z = 1, . . . , L0.

Consider the following event:

E∗ :=
{
Dτk = 1, i∗ = N−j∗(τk), k = 1, . . . , L0;

Bt = 0 for all t ∈ [0,KL0 − 1]
}
. (18)

From the above argument we know that the event E∗ implies3

H(KL0
) ≥ |si∗(KL0

)−sj∗(KL0
)| ≥ H(0)(1+β)L0 ·(n−1)−1.

As a result, we can bound the probability of E∗ and conclude

P
(
H(KL0

) ≥ H(0)(1 + β)L0 · (n− 1)−1
)

≥
(
dp∗(1− p∗)n−2

)L0
(1− b)KL0 . (19)

We can now apply the same argument as the proof of
Proposition 1 in [1]. With (19) and Lemma 5 there holds

E
{

logH(KL0
)− logH(0)

}
≥
(
dp∗(1− p∗)n−2

)L0
(1− b)KL0

· log
(

(1 + β)L0 · (n− 1)−1
)

+ b log
(
1− 2(n− 1)α

)
≥
(
dp∗(1− p∗)n−2

)L0
(1− b)KL0 log 2

+ b log
(
1− 2(n− 1)α

)
> 0 (20)

when b < b? for some sufficiently small b? > 0. We can
proceed to define U(m) = logH(mKL0

) for m = 0, 1, . . . .
Recursively applying the above arguments to the process
{Um} we obtain that U(m) has a strictly positive drift when
b < b?, which implies that lim infm→∞ U(m) = ∞ holds
almost surely.

This completes the proof. �

E. Proof of Theorem 4

Let us focus on a given positive cluster V† of G. We use
the following notations

Ψ(t) = max
i∈V†

si(t), ψ(t) = min
i∈V†

si(t),Θ(t) = Ψ(t)− ψ(t).

Applying Lemma 2 on the positive cluster V†, we conclude
that each of Θ(t), Ψ(t), and ψ(t) converge to a finite limit
almost surely if

∑∞
t=0 dt <∞.

In light of Assumption A6, applying the same argument we
used in order to establish (11) of Theorem 2 on the cluster
V†, we similarly have

P
(

Θ
(
(m+ 1)K0

)
≤
(
1− ρK0

∗
2

)
Θ(mK0)

)
≥ pn−1∗

(m+1)K0−1∏
t=mK0

(
bt(1− dt)

)
. (21)

3Here it is crucial to notice that H(t+1) ≥ H(t) always holds if Bt = 0.
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Moreover, from the effect of the negative recommendations on
nodes in V†, we can easily modify (12) and (13) to that for
all t,

P
(
Θ
(
t+ 1

)
> Θ(t)

)
≤ dt (22)

and

P
(

Θ
(
t+ 1

)
≤ (1 + 2β(n− 1))H(t)

)
= 1. (23)

With (21), (22) and (23), we arrive at

E
{

Θ
(
(m+ 1)K0

)∣∣Θ(m(K0)
)}

≤
(
1−Xm

)
Θ
(
mK0

)
+ (1 + 2β(n− 1))

(m+1)K0−1∑
t=mK0

dtH(t), (24)

where Xm is defined in Theorem 2.
On the other hand, it holds from the structure of the

algorithm that H(t + 1) ≤ H(t) if Dt = 0, and that
H(t + 1) ≤ (1 + 2β(n − 1))H(t) if Dt = 1. We therefore
deduce that:

E
{
H(t+ 1)|H(t)

}
≤
(
1 + 2β(n− 1)dt

)
H(t). (25)

From (25) we know

E(H(t)) ≤ H0

∞∏
t=0

(
1 + 2β(n− 1)dt

)
for all t ≥ 0. Taking the expectation from the both sides of
(24), we obtain:

E
{

Θ
(
(m+ 1)K0

)}
≤
(
1−Xm

)
E
{

Θ
(
mK0

)}
+
[
(1 + 2β(n− 1))H0

∞∏
t=0

(
1 + 2β(n− 1)dt

)]
W (m),

(26)

where W (m) =
∑(m+1)K0−1
t=mK0

dt.
Note that it is well known that

∑∞
t=0 dt < ∞ implies∏∞

t=0(1 − dt) > 0 and
∏∞
t=0

(
1 + 2β(n − 1)dt

)
< ∞.

Consequently,
∑∞
m=0 J(m) = ∞ implies

∑∞
m=0Xm = ∞.

In view of Lemma 1, we have

lim
m→∞

E
{

Θ
(
(m+ 1)K0

)}
= 0 (27)

if limm→∞W (m)/J(m) = 0. Invoking Fatou’s lemma (e.g.,
Theorem 1.6.5, [32]), we further conclude that

E
{

lim inf
m→∞

Θ
(
(m+ 1)K0

)}
≤ lim
t→∞

E
{

Θ
(
(m+ 1)K0

)}
= 0,

(28)

which actually implies

E
{

lim
m→∞

Θ
(
(m+ 1)K0

)}
= 0 (29)

since Θ
(
(m+ 1)K0

)
converges almost surely. Therefore, we

have reached

P
(

lim
m→∞

Θ
(
(m+ 1)K0

)
= 0
)

= 1, (30)

which in turn leads to

P
(

lim
t→∞

Θ(t) = 0
)

= 1, (31)

again, from the fact that Θ(t) converges almost surely.
Finally, Θ(t) converging almost surely to zero means that

Ψ(t) and ψ(t) must converge to the same limit (their con-
vergence is established in the beginning of the proof), which
must be the limit of the each node state in V†. We have now
completed the proof. �

V. CONCLUSIONS

This paper continued the study of [35], [36] investigating
a relative-state-flipping model for consensus dynamics over
signed random networks. A sequence of deterministic signed
graphs define potential node interactions that happen indepen-
dently but not necessarily i.i.d. The positive recommendations
are consistent with the standard consensus algorithm; negative
recommendations are defined by relative-state flipping from its
negative neighbors. Each node puts a (deterministic) weight
to each recommendation, and then encodes these weighted
recommendations in its state update through stochastic atten-
tions defined by two Bernoulli random variables. We have
established several fundamental conditions regarding almost
sure convergence and divergence of the network states. A
condition for almost sure state clustering was also proposed
for weakly balanced graphs, with the help of martingale
convergence lemmas. Some fundamental differences were also
highlighted between the current relative-state-flipping model
and the state-flipping model considered in [1], [34].
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[31] P. Erdős and A. Rényi, “On the evolution of random graphs,” Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Sciences, pp. 17–61, 1960.

[32] R. Durrett. Probability Theory: Theory and Examples. 4th ed. Cambridge
University Press: New York. 2010.

[33] B. T. Polyak. Introduction to Optimization. Optimization Software, New
York: NY, 1987.

[34] C. Altafini, “Consensus Problems on networks with antagonistic interac-
tions,” IEEE Trans. on Automatic Control, vol. 58, no. 4, pp. 935–946,
2013.

[35] G. Shi, M. Johansson, and K. H. Johansson, “How agreement and
disagreement evolve over random dynamic networks,” IEEE J. on
Selected Area in Communications, vol. 31, no.6, pp. 1061–1071, 2013.

[36] G. Shi, A. Proutiere, M. Johansson, J. S. Baras and K. H. Johansson,
“The evolution of beliefs over signed social networks,” Operations
Research, in press, (preprint arXiv:1307.0539).

[37] D. Cartwright and F. Harary, “Structural balance: a generalization of
Heider’s theory,” Psychol Rev., vol. 63, pp. 277–293, 1956.

[38] J. A. Davis, “Structural balance, mechanical solidarity, and interpersonal
relations,” American Journal of Sociology, vol, 68, pp. 444–462, 1963.

[39] G. Shi, B. D. O. Anderson, and K. H. Johansson, “Consensus over
random graph processes: network Borel-Cantelli lemmas for almost sure
convergence,” IEEE Trans. on Information Theory, 61(10): 5690–5707,
2015.

Guodong Shi received his Ph.D. from the Academy
of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing, China, in July 2010.
From Aug. 2010 to Apr. 2014 he was a postdoctoral
researcher at the ACCESS Linnaeus Centre, School
of Electrical Engineering, KTH Royal Institute of
Technology, Stockholm, Sweden. From May 2014
he has been with the College of Engineering and
Computer Science, The Australian National Univer-
sity, Canberra, Australia, as a Lecturer and Future
Engineering Research Leadership Fellow. Dr. Shi

was selected in the triennial IFAC Young Author Prize Finalist in 2011,
and received the Best Paper Award in Control Theory from the 11th World
Congress on Intelligent Control and Automation in 2014.

Alexandre Proutiere graduated in Mathematics
from Ecole Normale Superieure (Paris), and got an
engineering degree from Ecole Nationale Superieure
des Telecoms (Paris). He was an engineer from
Corps of Mines, and received his PhD in Applied
Mathematics from Ecole Polytechnique, Palaiseau,
France in 2003. He joined France Telecom R&D in
2000 as a research engineer. From 2007 to 2011, he
held a position of researcher at Microsoft Research
in Cambridge (UK). He is now Associate Professor
in Automatic Control at KTH, Sweden. Alexandre

was the recipient in 2009 of the ACM Sigmetrics rising star award, and
received the best paper awards at ACM Sigmetrics conference in 2004 and
2010, and at the ACM Mobihoc conference in 2009. He was an associate
editor of IEEE/ACM Transactions on Networking, and is currently editor of
IEEE Transactions on Control of Network Systems and of Queuing Systems.

Mikael Johansson received the M.Sc and Ph.D. de-
grees in electrical engineering from Lund University,
Sweden, in 1994 and 1999, respectively. He held
postdoctoral positions at Stanford University and
U.C. Berkeley before joining KTH in 2002, where he
now serves as full professor. He has published two
books and over hundred papers, several which are
highly cited and have received recognition in terms
of best paper awards. He has served on the editorial
boards of Automatica and the IEEE Transactions on
Control of Networked Systems, as well as on the

program committee for several top-conferences organized by IEEE and ACM.
He has played a leading role in several national and international research
projects in control and communications.



2325-5870 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2015.2506905, IEEE
Transactions on Control of Network Systems

IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS 11

John S. Baras received the Diploma in Electrical
and Mechanical Engineering with highest distinction
from the National Technical University of Athens,
Greece, in 1970. He received the M.S. and Ph.D.
degrees in Applied Mathematics from Harvard Uni-
versity, Cambridge, MA, in 1971 and 1973 respec-
tively. Since 1973 he has been with the Department
of Electrical and Computer Engineering, University
of Maryland at College Park, where he is currently
Professor, member of the Applied Mathematics,
Statistics and Scientific Computation Program Fac-

ulty, and Affiliate Professor in the Fischell Department of Bioengineering and
the Department of Mechanical Engineering. From 1985 to 1991 he was the
Founding Director of the Institute for Systems Research (ISR) (one of the first
six NSF Engineering Research Centers). In February 1990 he was appointed
to the Lockheed Martin Chair in Systems Engineering. Since 1991 Dr. Baras
has been the Director of the Maryland Center for Hybrid Networks (HYNET),
which he co-founded. Dr. Baras has held visiting research scholar positions
with Stanford, MIT, Harvard, the Institute National de Reserche en Informa-
tique et en Automatique (INRIA), the University of California at Berkeley,
Linkoping University and the Royal Institute of Technology (KTH) in Sweden.
Among his awards are: the 1980 George S. Axelby Award of the IEEE Control
Systems Society; the 1978, 1983 and 1993 Alan Berman Research Publication
Awards from the NRL; the 1991, 1994 and 2008 Outstanding Invention of
the Year Awards from the University of Maryland; the 1998 Mancur Olson
Research Achievement Award, from the Univ. of Maryland College Park;
the 2002 and 2008 Best Paper Awards at the 23rd and 26th Army Science
Conferences; the 2004 Best Paper Award at the Wireless Security Conference
WISE04; the 2007 IEEE Communications Society Leonard G. Abraham Prize
in the Field of Communication Systems; the 2008 IEEE Globecom Best
Paper Award for wireless networks; the 2009 Maryland Innovator of the
Year Award. In November 2012 he was honored by the Awards for both
the Principal Investigator with Greatest Impact and for the Largest Selling
Product with Hughes Network Systems for HughesNet, over the last 25 years
of operation of the Maryland Industrial Partnerships Program. These awards
recognized Dr. Baras pioneering invention, prototyping, demonstration and
help with commercialization of Internet protocols and services over satellites
in 1994, which created a new industry serving tens of millions worldwide.
In 2014 he was awarded the 2014 Tage Erlander Guest Professorship by the
Swedish Research Council, and a three year (2014-2017) Hans Fischer Senior
Fellowship by the Institute for Advanced Study of the Technical University
of Munich. Dr. Baras has been the initial architect and continuing innovator
of the pioneering MS on Systems Engineering program of the ISR. Dr. Baras
research interests include control, communication and computing systems. He
holds eight patents and has four more pending. He is a Fellow of IEEE, a
Fellow of SIAM and a Foreign Member of the Royal Swedish Academy of
Engineering Sciences (IVA).

Karl Henrik Johansson is Director of the AC-
CESS Linnaeus Centre and Professor at the School
of Electrical Engineering, KTH Royal Institute of
Technology, Sweden. He is a Wallenberg Scholar
and has held a Senior Researcher Position with
the Swedish Research Council. He also heads the
Stockholm Strategic Research Area ICT The Next
Generation. He received MSc and PhD degrees in
Electrical Engineering from Lund University. He
has held visiting positions at UC Berkeley, Califor-
nia Institute of Technology, Nanyang Technological

University, and Institute of Advanced Studies, Hong Kong University of
Science and Technology. His research interests are in networked control
systems, cyber-physical systems, and applications in transportation, energy,
and automation systems. He has been a member of the IEEE Control Systems
Society Board of Governors and the Chair of the IFAC Technical Committee
on Networked Systems. He has been on the Editorial Boards of several
journals, including Automatica, IEEE Transactions on Automatic Control,
and IET Control Theory and Applications. He is currently a Senior Editor
of IEEE Transactions on Control of Network Systems and Associate Editor
of European Journal of Control. He has been Guest Editor for a special issue
of IEEE Transactions on Automatic Control on cyber-physical systems and
one of IEEE Control Systems Magazine on cyber-physical security. He was
the General Chair of the ACM/IEEE Cyber-Physical Systems Week 2010
in Stockholm and IPC Chair of many conferences. He has served on the
Executive Committees of several European research projects in the area of
networked embedded systems. He received the Best Paper Award of the IEEE
International Conference on Mobile Ad-hoc and Sensor Systems in 2009 and
the Best Theory Paper Award of the World Congress on Intelligent Control and
Automation in 2014. In 2009 he was awarded Wallenberg Scholar, as one of
the first ten scholars from all sciences, by the Knut and Alice Wallenberg
Foundation. He was awarded Future Research Leader from the Swedish
Foundation for Strategic Research in 2005. He received the triennial Young
Author Prize from IFAC in 1996 and the Peccei Award from the International
Institute of System Analysis, Austria, in 1993. He received Young Researcher
Awards from Scania in 1996 and from Ericsson in 1998 and 1999. He is a
Fellow of the IEEE.


