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Abstract— In this paper we address the problem of interac-
tive robot movement adaptation under various environmental
constraints. A common approach is to adopt motion primitives
to generate target motions from demonstrations. However,
their generalization capability is weak for novel environments.
Additionally, traditional motion generation methods do not
consider versatile constraints from different users, tasks, and
environments. In this work, we propose a co-active learning
framework for learning to adapt the movement of robot end-
effectors for manipulation tasks. It is designed to adapt the
original imitation trajectories, which are learned from demon-
strations, to novel situations with different constraints. The
framework also considers user feedback towards the adapted
trajectories, and it learns to adapt movement through human-
in-the-loop interactions. Experiments on a humanoid platform
validate the effectiveness of our approach.

I. Introduction

Trajectory learning from human demonstrations has been

studied in the field of Robotics for decades because of its

wide range of applications in both industrial and domestic

environments. A popular approach uses so-called Motion

Primitives (MPs) to parameterize the observed human motion

and reproduce similar motions with different initial and

target states. However, it is widely known that general MPs

methods, such as Dynamic Movement Primitives (DMPs)

[1], exhibit limited capability for generalizing to new envi-

ronments involving other constraints. Moreover, the learning

used in standard MPs does not allow incorporating user

preferences, such as preferred movements under geometric

constraints. However, humanoid applications in real world

environments would greatly benefit from a practical robot

movement learning framework that take user preferences and

environmental constraints into consideration.

Let’s start with a common example. A human user teaches

a humanoid how to transfer a bottle in different situations.

Using an off-the-shelf approach, the robot can learn the

motion by acquiring MPs from demonstrations and applying

them to generate new trajectories. However, solely following

the generated trajectories may fail in a slightly altered

environment, such as when a bowl is blocking the path as

illustrated in Fig. 2(a). Here we assume that these constraints

are presented to the robot only during the testing phase, and

not during the training phase. In this work, we propose an

optimization based framework for adapting trained move-

ments to novel environments. The first goal of our system is
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Fig. 1. System for learning movement adaptation for manipulation tasks.
Dashed lines indicate feedback.

to generate adapted trajectories, as shown in Fig. 2(b), that

can: 1) follow demonstrated trajectories for the purpose of

preserving movement patterns, and 2) fulfill novel constraints

perceived from the environment during the testing phase.

Moreover, new environmental constraints perceived dur-

ing the testing phase could be more complex than simply

encountering an obstacle. Building on the last example, this

time, let’s consider the situation where the target bottle is

leaking. Ideally an intelligent robot that understands the

situation should avoid moving the bottle over the bowl, but

follow the movement path around it. We could simply adjust

the objective function in movement adaptation. But what if

in another scenario the robot is asked to transfer a knife

while avoiding obstacles above them to prevent potential

scratches? Constraints of this nature are not only associated

with the context of the task, i.e, leaking bottle or knife as the

manipulated object, but also with the user’s preference, i.e,

avoiding the bowl in a certain manner. To account for these

preferences, a human-in-the-loop on-line adaptation system

is necessary. In the optimization framework for generating

trajectories presented in this paper, we firstly treat the reward

weights as adjustable parameters that adapt the quality of

the trajectory. Then based on user feedback, the framework

learns the preferred behavior, that fulfills constraints, by

updating the reward weights. Therefore, the learned behavior

can be generalized to different situations with similar con-

straints. As illustrated in Fig. 2(c), after a few iterations of

on-line learning, the robot is able to generate a trajectory

adapted in accordance with the learned preferences.

This paper proposes an approach for interactive learning
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(a) (b) (c)

Fig. 2. Baxter Transferring Leaking Bottle: (a) Movement imitation, failed to avoid the bowl; (b) Movement adaptation with initial weights, successfully
avoided the bowl with a path above it but spilled water into the bowl; (c) Movement adaptation with weights learned for user preferences, successfully
avoided the bowl with a path around it and avoided spilling water in the bowl.

of movement adaptation for manipulation tasks. Fig. 1 il-

lustrates the proposed system. The main contributions of

this work are: 1) A system to generalize robots’ movements

learned from demonstrations to fulfill constraints perceived in

a new environment. It is able to adapt trajectories according

to user preferences; 2) An approach for robot learning to

adapt trajectories by updating reward weights based on

users’ feedback. The user thus can co-actively train the

robot in-the-loop by demonstrating desired trajectories; 3)

An implementation of the optimization schema for the skill

of ”transferring objects,” considering obstacles and different

geometric user preferences for the movements. We validate

the implementation on a humanoid platform (Baxter), and

the experimental results support our claims.

II. RelatedWork

Various approaches have been proposed in robotics for

learning manipulation movements. A well known approach

is imitation learning [2], which focuses on mimicking human

demonstrations, and this approach works well when learning

from demonstration (LfD) techniques [3], [4] are applicable.

However, it only allows to reproduce learned movements in

similar environments.

Approaches [5] for encoding the trajectory as motion

primitives have been proposed for various forms of gen-

eralization and modulation, such as Gaussian mixture re-

gression and Gaussian mixture models [6], [7]. In [8], a

mixture model was used to estimate the entire movement

skill from several sample trajectories. Another class of ap-

proaches employs Hidden Markov models [9]. One popular

representation to encode motion from demonstrated trajec-

tories, originally introduced in [1], is Dynamic Movement

Primitives (DMPs). It consists of differential equations with

a non-linear learnable component that allows modeling of

almost arbitrarily complex motion. Recently, Probabilistic

Movement Primitives (ProMPs) [10] was proposed as an

alternative representation. It learns a trajectory distribution

from multiple demonstrations and modulates the movement

by conditioning on desired target states. Incorporating the

variance of demonstrations, the ProMPs approach handles

noise from different demonstrations and provides increased

flexibility for reproducing movement. However, all these

approaches hardly deal with novel environments such as

involving different obstacles. In our work, we first train the

robot using ProMPs, and then generalize these trained motion

primitives to newly introduced environmental constraints.

In order to enable MPs to adapt to novel environments with

obstacles [11], [12], Kober et al. [4] proposed an augmented

version of DMPs which incorporates perceptual coupling to

an external variable. Ghalamzan et al. [13] proposed a three-

tiered approach that can generalize noisy task demonstrations

to new situations with obstacles. They generated the nominal

path with DMPs and then adapted the trajectory to avoid ob-

stacles by formulating an optimal control problem regarding

the reward function learned from demonstrations via inverse

optimal control. This approach allows users to teach a robot

the desired response to different objects but requires offline

training in the environment containing the obstacles for

the reward function. However, in practice, the human users

often have different preferences for various environments and

tasks, while it is extremely challenging to provide the optimal

training trajectories in every situation. To account for this,

in our approach, the human users can interactively provide

sub-optimal suggestions on how to improve the trajectory

and the robot learns the preference for different constraints,

and incorporates it to generate more applicable trajectories.

User preferences for a robot’s trajectories have been stud-

ied in the field of human robot interaction (HRI). Sisbot

et al. [14] proposed to model user specified preferences

as constraints such as the distance of the robot from the

user. Then a path planner fulfilling those user preferences

was provided. Ashesh Jain et al. [15] proposed a co-active

learning method to learn user preferences over generated

trajectories for manipulation tasks by iteratively taking user

sub-optimal feedback, and the optimal trajectory was selected

based on the learned reward function. In our work, we adopt

the co-active learning paradigm and further propose a reward

formulation to model user preferences over constraints for

movement generation. Then we integrate it with movement

adaptation through optimization based planning.

III. Co-active Learning forMovement Generalization

For the problem of robot learning from demonstrations [3],

a common practice is to offline learn the skills by encoding

the trajectories with movement patterns such as DMPs [16].

During the testing phase, they can then be used to generalize

the movement to novel situations with slight alterations.

However, this generalization capability does not apply to

novel environments with different obstacles or to a new task

contexts with a variety of manipulated objects. In this paper,

we propose a complementary framework for generalizing

off-line learned movement skills to novel situations, and in
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addition we incorporate on-line learning preferences of how

to generalize from human’s feedback co-actively.

While facing a novel situation, the robot is given a

manipulation task context xc that describes the initial and

target states of the robot, and the locations of relevant

objects in the environment. It could compute an imitation

movement trajectory yD by generalizing offline learned skills

and execute if the new environment does not have obstacles

and there are no other constraints inherited from the task.

To further generalize learned movement skills to more

challenging situations, the robot has to generate an adapted

trajectory y based on the task contexts xc and the computed

imitation trajectory yD. Here we use a reward function

f ∗(y,xc,yD) to reflect how much reward the adapted trajec-

tory y can achieve for different contexts. This way, we can

adapt the movement by solving an optimal control problem

by maximizing the reward function f ∗. The reward function

consists of a Imitation Reward fD describing the tendency

to follow the imitation trajectory yD, a Control Reward fC
describing the smoothness of executing the adapted trajec-

tory y and a Response Reward fE describing the expected

response given the environment. To learn the reward function

which controls how the robot adapts trajectories under new

contexts, we apply a co-active learning technique [15] in

which the user only corrects the robot by providing an

improved trajectory ȳ and then the robot updates the pa-

rameter w of f (·;w) based on the user’s feedback. It is

worth noting that this feedback only indicates f ∗(ȳ,xc,yD) >
f ∗(y,xc,yD), and ȳ may be non-optimal trajectories. With

iterations of improvement, the robot could learn a function

that approximates the oracle f ∗(·) tightly.

IV. Our System

Overall, after the robot has offline learned the movement

skill from demonstrations, when facing a different task

context xc in a novel environment, the testing phase includes

three stages: 1) Movement Imitation, which computes an imi-

tation trajectory yD by generalizing demonstrated movement

to new initial and target states; 2) Movement Adaptation,

which generates an adapted trajectory y under new task

and environment contexts by maximizing the given reward

function; 3) Rewards Learning, which updates the parameters

of estimated reward function according to the user’s feedback

through co-active learning. We formulate each stage in our

framework presented in Fig. 1 as following.

A. Movement Imitation

At the beginning, our system offline learns movement

skills in an environment without obstacle or other constraints.

In this work, we adopt the Probabilistic Movement Primitives

(ProMPs) [10] for imitation learning. It obtains a distribu-

tion over trajectories from multiple demonstrations, which

captures the variations, and can be easily generalized to new

initial and target states while imitating the movement.

To be specific, we consider that a robot’s end-effector has

d degrees of freedom (DOF) along with its arm, with its

state denoted as y(t) = [y1(t), . . . , yd(t)]T . The trajectory of

the robot’s end effector is represented as a sequence T =
{y(t)}t=0,...,T . We model each dimension i of y(t) using linear

regression with n Gaussian time-dependent basis functions ψ
and a n-dimensional weight vectors wi as yi(t) = ψ(t)T wi+ εy
where εy ∼ N(0, σ2

y) denotes zero-mean i.i.d. Gaussian noise.

With the underlying weight vectors w = [wT
1 , . . . ,w

T
d ]T , the

probability of observing a trajectory T can be given by

p(T |w) =
∏

t

p(y(t)|w) =
∏

t

N(y(t)|Ψ(t)Tw,Σy), (1)

where Ψ(t) = diag(

d︷����������︸︸����������︷
ψ(t), . . . , ψ(t)) and Σy = σ

2
yId×d.

1) Learning from Demonstrations: For each demonstra-

tion, the trajectory can be easily represented by a weight vec-

tor w. To capture trajectory variations from multiple demon-

strations, a Gaussian distribution p(w;θ) = N(w|μw,Σw)

over the weights w is estimated. Therefore, the distribution

of the trajectory p(T |w) can be represented as

p(T ;θ) =

∫
p(T |w)p(w;θ)dw (2)

=
∏

t

N(y(t)|Ψ(t)Tμw,Ψ(t)TΣwΨ(t)T +Σy) (3)

We can then estimate the parameters θ = {μw,Σw} by using

maximum likelihood estimation as suggested in [10].

2) Trajectory Generation: In novel situations, the tra-

jectory could be modulated by conditioning with different

observed states. By adding an observation vector of Y ∗ =
[y∗T0 ,y

∗T
T ]T indicating the desired initial state y∗0 and target

state y∗T with accuracy Σ∗y , we apply Bayes theorem and

represent conditional distribution for w as

p(w|Y ∗) = N(w|μ′w,Σ′w) ∝ N
(
Y ∗|Ψ∗Tw,Σ∗Y

)
p(w)

μ′w = μw +ΣwΨ∗
(
Σ∗Y +Ψ

∗TΣwΨ∗
)−1 (

Y ∗ −Ψ∗Tμw

)
Σ′w = Σw −ΣwΨ∗

(
Σ∗Y +Ψ

∗TΣwΨ∗
)−1

Ψ∗TΣw

(4)

where Ψ∗ = [Ψ(0),Ψ(T )] and Σ∗Y = diag(Σ∗y ,Σ∗y) are

augmented for observation vector Y ∗. With a conditional

distribution of w, we can generate conditional trajectory

distribution and easily evaluate the mean yD and the variance

ΣD of the trajectory T for any time point t according to

Eq.(1) and Eq.(2). Therefore, the mean yD(t) can be used

as the imitation trajectory in movement adaptation and the

variance ΣD(t) can be used to indicate which parts of the tra-

jectory are more flexible to adapt. A larger variance reflects

higher variations in demonstrations. It means more flexibility

for modifying the corresponding part of the trajectory.

It is worth mentioning that, although we adopt ProMPs for

movement imitation in this work, the proposed Movement

Adaptation framework can be integrated into any other

movement imitation learning technique.

B. Movement Adaptation

As mentioned before, if the environment of a new situation

is exactly the same as the one during demonstration when

ProMPs are learned, e.g, no obstacle, safety constraints or
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other new considerations, the robot can perform the move-

ment optimally by directly following the imitation trajectory

yD ∈ �d generated by learned ProMPs in discrete time.

In this work, we want to have a system that can adapt to

an environment with novel constraints. Thus, we model the

movement adaptation as an optimal control problem with

fixed time horizon T in discrete time. The output of the

adaptation system is a new trajectory y ∈ �d in discrete

time. The input consists of the task context xc which is

obtained from the perception module, the imitation trajectory

yD which is generated from learned ProMPs, and the reward

function f (y,xc,yD) which represents the reward of the

adapted trajectory y corresponding to the new situation.

1) Optimization with Constraints: Let’s consider that the

perception module detects Nob j objects in the environment,

which may be obstacles. Each object is abstracted as a sphere

in the space represented by its center location and semi-

diameter {Ok, dk}, k = 1, . . . ,Nob j. We assume that the reward

function can be modeled as accumulated sum of rewards

from each state y(t) at time step t:

f (y,xc,yD) =

T∑
t=0

ft(y(t),xc,yD). (5)

Because we are only modulating the trajectory, the adaptation

system can be modeled as linear dynamics with the control

signal a ∈ �m, as it does not involve real physical dynamics.

Considering the embodiment of robotic end-effectors, we

can compute the end-effector’s position in spatial space

E(y) following the kinematics modeling [17]. Then, con-

sidering obstacles avoidance, the target optimal policy π∗ =
{a(t)∗}t=0,...,T−1 can be defined from Eq. (6) with constraints.

π∗ = arg max
π

∑T
t=0 ft(y(t),xc,yD) (6)

subj. to ∀t = 0, · · · ,T − 1 (7)

z(t + 1) = Az(t) +Ba(t) (8)

y(t) = Cz(t) (9)

U ≥ y(t) ≥ L (10)

‖E(y(t)) −Ok‖2 ≥ d2
k , ∀k = 1, · · · ,Nob j (11)

y(T ) = yD(T ), (12)

where A,B,C are system matrices, Eq.(12) constrains the

final position of the adapted trajectory, Eq.(10) constrains

it within feasible limits, and Eq.(11) ensures it can avoid

obstacles safely by keeping a minimum distance dk between

the robot’s end-effector and any object.

2) Model Predictive Control: In order to find an optimal

solution of such a system with continuous state and action

spaces, we adopt Model Predictive Control which computes

the optimal actions in a finite prediction horizon. Therefore,

by considering a prediction time horizon Tp, the optimal

action a(i)∗, at time step i = 0, . . . ,T − 1, can be solved

by (13). At each step i, the optimal actions {a(i)∗, · · · ,a(i+
Tp − 1)∗} for Tp decision steps in the future are computed

but only the action for the current step a(i)∗ is performed.

Therefore, it can deal with changing environments as these

changes could be considered in the next decision steps.

max
(a(i),··· ,a(i+Tp−1))

∑i+Tp

t=i+1
ft(y(t),xc,yD)

subj. to ∀t = i, · · · , i + Tp − 1

z(t + 1) = Az(t) +Ba(t)
y(t) = Cz(t)
U ≥ y(t) ≥ L

‖E(y(t)) −Ok‖2 ≥ d2
k , ∀k = 1, · · · ,Nob j

y(T ) = yD(T ).
(13)

3) Reward Function: In order to adapt robot movements

to perform well in novel situations, considering only hard

constraints such as obstacle avoidance, Eq.(11), does not suf-

fice. Thus, we further model a reward function f (y,xc,yD)

that reflects the amount of rewards that an adapted trajectory

y can gain within the context xc and yD. As the reward

function f (y) is assumed temporally discrete in Eq.(5), we

model the reward function ft(y(t)) at t by three parts:

ft(y(t);w) = fD,t(y(t);wD) + fC,t(y(t);wC) + fE,t(y(t);wE),
(14)

where the Imitation Reward fD models the tendency to follow

the imitation trajectory yD, the Control Reward fC models

the smoothness of executing the adapted trajectory y and the

Response Reward fE characterizes the expected response to

the environment. Meanwhile, w = [wT
D,w

T
C ,w

T
E ]T are pa-

rameters that affect the behavior of the movement adaptation.

Next we describe each reward function in detail.

a) Imitation Reward: The Imitation Reward character-

izes how well the adapted trajectory can imitate the demon-

strations by the distance between points on y and yD. Recall

that we have the variance ΣD(t) of the imitation trajectory

yD in IV-A.2, which indicates how flexible we can adapt the

trajectory. Considering ΣD(t) = diag(σ2
1(t), . . . , σ2

d(t)) to be

diagonal for the sake of simplicity, we model the Imitation

Reward by the weighted distance:

fD,t(y(t);wD) = −(y(t) − yD(t))TV (t)(y(t) − yD(t)) (15)

V (t) = diag(wD)diag(e−σ
2
1
(t), . . . , e−σ

2
d(t)), (16)

where V (t) is a weight matrix consisting of parameters wD

and {e−σ2
i (t)} in which the variances learned from demonstra-

tions ΣD(t) are modeled to affect adaptation rewards.

b) Control Reward: The Control Reward fC character-

izes the smoothness of executing the adapted trajectory y
using the following formulation:

fC,t(y(t);wC) = −wC‖(y(t) − y(t − 1))‖2, (17)

where wC is the parameter to weigh this reward.

c) Response Reward: The Response reward fE de-

scribes the expected response to the environment, such as

safety considerations for obstacles and objects under manip-

ulation. Here we give intuitive examples. Although we can

ensure minimum distance to avoid obstacles using Eq.(13),

as human users we still expect the robot to transfer a cup

full of water around a laptop instead of above it, to avoid

potential spills. Another example is that the user would prefer
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that the robot when manipulating sharp objects, such as

knives, keeps a relatively larger distance from the human for

safe. All the above preferences are specific to objects under

manipulation and the exact environment. Thus, we set the

Response Reward such that the better the adapted trajectory

fulfills the preferences, the higher the reward is.

To formally represent the Response Reward, let us con-

sider a scenario with Nob j obstacles on the table. The leftmost

and rightmost locations of the table are B1,B2 and the table

surface is S, we then can formulate it as follows:

fE,t(y(t);wE) = −
⎛⎜⎜⎜⎜⎜⎜⎝

Nob j∑
k=1

wT
O,kφO,k + wBφB + wSφS

⎞⎟⎟⎟⎟⎟⎟⎠ (18)

φT
O,k =

[
−‖E(y(t)) −Ok‖, (E(yD(t)) −E(y(t)))T

]
· exp

(
−‖E(y(t))−Ok‖2

dk

)
(19)

φB =

2∑
i=1

exp

(
−‖E(y(t)) −Bi‖2

dmin

)
(20)

φS = ‖E(y(t)) − S ‖2, (21)

where φO,k represents the feature vector for preferences in

avoiding obstacle Ok, of which the first element denotes

avoiding distance and the second element denotes the devi-

ation direction. The preferred deviation direction is given as

reward weights and the inner product indicates the rewards of

deviation considering the given preference. The exponential

decay function is applied so that the features are only effec-

tive when the robot’s end-effector is close to the obstacles. φB

and φS are features related to safety by considering boarders

and surface of the table. wE = [wT
O,1, . . . ,w

T
O,Nob j
,wB,wS ]T

are weights corresponding to the features respectively.

Given a set of parameters w = [wT
D,w

T
C ,w

T
E ]T , the

MPC module generates an adapted trajectory by maximizing

f (·;w). The robot could follow the trajectory and execute

the task facing the novel situation. However, the generated

trajectory may not be sufficiently satisfying from a user’s

perspective, since the given or initialized parameters may not

be accurate for modeling the rewards. To accommodate this

issue, after the movement execution, our system allows the

user to provide a better trajectory as feedback to update the

parameters during the following Rewards Learning section.

C. Rewards Learning

In this section, we describe how our system learns the

reward function. Let us assume there is an oracle reward

function f ∗(y,xc,yD) that reflects exactly how much reward

the adapted trajectory y can gain for each context. The

goal of this module is to estimate such a reward function

f (y,xc,yD;w), where w are the parameters to be learned,

that approximate the oracle reward f ∗(·) tightly.

By rewriting Eq.(5) and Eq.(14) for the entire trajectory,

we can have the reward function in a linear form represented

by features and weights:

f (y,xc,yD;w) = wT
DφD +w

T
CφC +w

T
EφE (22)

φD =
[
φD,1, . . . , φD,d

]T , φD,i = −
T∑

t=0

(
yi(t) − yD,i(t)

)2 e−σ
2
i (t)

(23)

φC = −
T∑

t=1

‖(y(t) − y(t − 1))‖2 (24)

φE = −
T∑

t=0

[
φT

O,1(y(t)), . . . ,φT
O,Nob j

(y(t)), φB(y(t)), φS (y(t))
]T

(25)

where φD,φC ,φE represent features of the entire trajectory

corresponding to Imitation, Control and Response Rewards.

Since the user only provides a feedback trajectory ȳ and

the system can not directly observe the reward function, we

apply the co-active learning technique [15] in which the robot

iteratively updates the parameter w of f (·;w) based on user’s

feedback. Note that this feedback only needs to indicate

f ∗(ȳ,xc,yD) > f ∗(y,xc,yD) and ȳ could be non-optimal

trajectories. Algorithm 1 gives our learning algorithm.

Algorithm 1 Rewards Learning for Movement Adaptation

Initialize w(0) = [w(0)T
D ,w(0)T

C ,w(0)T
E ]T

for Iteration i = 0 to Tl do
Task Context and Environment Perception: x(i)

c
Movement Imitation:

y(i)
D ,Σ

(i)
D ← p(T |x(i)

c )

Movement Adaptation:

π∗(i) = arg maxπ f (y,x(i)
c ,y

(i)
D ;w(i))

y(i) ← π∗(i)

Movement Execution: y(i)

if User Provides Feedback: ȳ(i) then
α(i) = 1/

√
i

w(i+1)
D = w(i)

D + α
(i)(φD(ȳ(i),y(i)

D ) − φD(y(i),y(i)
D ))

w(i+1)
C = w(i)

C + α
(i)(φC(ȳ(i)) − φC(y(i)))

w(i+1)
E = w(i)

E + α
(i)(φE(ȳ(i),x(i)

c ) − φE(y(i),x(i)
c ))

Weights Projection:

w̄(i+1) = [w(i+1)T
D ,w(i+1)T

C ,w(i+1)T
E ]T

w(i+1) = arg minw∈C‖w − w̄(i+1)‖2
else w(i+1) = w(i)

end if
end for

Note that α is a learning rate, which decays along itera-

tions, and C in the weights projection part is a bounded set

to ensure that the updated parameters w are in a feasible

space. After iterations of improvements, the robot can learn

an estimated reward function f (·;w∗) that approximates the

oracle reward f ∗(·) as proven in [18]. By maximizing the

estimated reward function f (y,xc,yD;w∗), the robot can

generate an adapted trajectory y that maximizes the rewards

facing situation xc based on imitation trajectory yD.
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V. Experiments

To validate the system described above, we design and

conduct the following experiments on a Baxter humanoid

platform. The Baxter robot is asked to do manipulation

tasks such as cleaning on a table top. The workspace is

defined with the surface as S = (0, 0,−0.1), the leftmost

location as B1 = (0, 0.8, 0) and the rightmost location as

B2 = (0,−0.8, 0) described in meters in robot spatial space,

where the coordination system is shown in Fig. 4(a). It needs

to learn transferring the manipulated object between different

locations while avoiding obstacles in desired manners.

A. Movement Imitation

In the first stage of the experiments, we have our robot

learn off-line the movement skill from kinethestic demon-

strations with no obstacles on the table. All trajectories are

sampled discretely and normalized to T = 200 steps for

transferring movement in joint space, and the left arm of the

Baxter has d = 7 degrees of freedom for joints from shoulder

to wrist denoted as joint 1 to 7. The training trajectories are

encoded by ProMPs with n = 10 Gaussian basis functions so

that it can be generalized to different initial and target states.

Fig. 3(a) shows an example of our generated imitation tra-

jectory in spatial space for new task contexts using ProMPs.

Fig. 3(b) shows the corresponding imitation trajectory of

joint 1 (first shoulder joint) in joint space. The blue crosses

here are desired new initial and target states, and the shaded

area is the estimated variance for the imitation trajectory,

which reflects the variations of demonstrations. True trajec-

tory here means a trajectory recorded from user demonstra-

tion in the testing scenario for comparison. It is not hard to

see that the predicted mean of the imitation trajectory well

generalizes to new initial and target states and follows the

same movement pattern as the prior mean trajectory learned

from demonstrations. Therefore, the robot can perform the

task well by following this imitation trajectory if there are

no obstacles or other safety constraints.

B. Learning Adaptation

We consider the situation, where the robot, while facing

the task of transferring a leaking bottle, finds a bowl filled

with food as obstacle on the table. We assume that the

bowl’s center location O1 and minimum safety distance d1

are obtained through perception. For movement adaptation,

we set the prediction horizon Tp = 11 in the model predictive

control and select system matrices A = 0.9 · I ,B = C = I
to make the system stable in the prediction window as sug-

gested in [13]. The limits of joints could be found from the

Baxter hardware specification. The minimum safety distance

to the table boarder is set as dmin = 0.1. And the weights for

reward function are initialized to wD = 30·1,wC = 10,wE =

0. We apply the native Matlab Gradient-based optimization

method fmincon to solve the optimization at each time step.

Fig. 3(c) shows the movement imitation for transferring

the leaking bottle, which failed to avoid the obstacle even

though the trajectory generalizes to a novel initial and target

states. Fig. 3(d) shows the movement adaptation with initial

weights. There is no preference specified in the reward func-

tion about how to avoid obstacles. Therefore, even though

the adapted trajectory could avoid the obstacle successfully,

it may be not an ideal trajectory.

To learn the user preference, we then provide feedback

via kinethestic demonstration illustrated in Fig. 4(a) and the

feedback trajectory is shown in Fig. 3(d) as dashed line

to indicate user preferences. Following Algo. 1, the robot

iteratively updates the rewards weights based on the user

feedback. Weights are limited via projection in the feasible

set C where wD ∈ [1, 100]7,wC ∈ [1, 100],wE ∈ [0, 100] ex-

cept that the last two parameters in wO,k indicating preferred

deviation direction could be [−100, 100]. To quantitatively

validate the performance of our method in movement adap-

tation, we consider the metric of cumulative error between

the adapted trajectory and the feedback trajectory e(i) =
1
T
∑T

t=0

(
ȳ(i)(t) − y(i)(t)

)2
as the learning error at iteration i.

Since the metric is affected by different situations such as

obstacles’ locations, we consider the feedback trajectory as

fixed and let the robot iteratively learn several times to see

how it performs, and we record the “learning curve” under

the same feedback. From Fig. 4(b), we can see that the error

decreases and converges after several iterations, and it only

requires a few iterations to achieve an adapted trajectory as

desired preference according to the feedback. After learning,

the robot uses the updated weights for movement adaptation

in a different situation with novel initial/target states and

obstacles’ locations. Fig. 3(e) shows the adapted trajectory

based on the updated weights after one iteration, where it

successfully avoids the obstacle via the desired direction.

In a second scenario where a robot is transferring a

knife around some fragile obstacle, the user may prefer

the robot to avoid the obstacle above it instead of around

it. With the same methods here, we could also generate

adapted trajectories as shown in Fig. 5(a) and Fig. 5(c) for

initial weights. With the user provided feedback, the robot

successfully learns the specified preferences for movement

adaptation and generates the improved adapted trajectories

for different situations as shown in Fig. 5(b) and Fig. 5(d).

VI. Conclusion and FutureWork

We presented a framework for learning to adapt robot

end effector movement for manipulation tasks. The proposed

method generalizes offline learned movement skills to novel

situations considering obstacle avoidance and other task-

dependent constraints. It adapts the imitation trajectory gen-

erated from demonstrations, while maintaining the learned

movement pattern and considering variations in the geometry.

Here we considered as variations, avoiding obstacles with

movements in desired directions, and keeping certain dis-

tances for a safety margin within a workspace. The methods

also provides a way to learn how to adapt the movement in

on-line interactions with user’s feedback.

Another interesting way to incorporate environmental con-

straints would be to consider visual information of objects

and the environment as an indication of the preferences for

movement adaptation. For instance, the deviation direction
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(a) (b) (c) (d) (e)

Fig. 3. Learning to Transfer a Leaking Bottle: (a) Imitation trajectory in spatial space; (b) Imitation trajectory for joint 1 in joint space, shaded area
indicating the predicted variance.(a) Movement Imitation failed to avoid the obstacle; (b) Movement adaptation with initial weights successfully avoided
the obstacle by a path above it but has a potential danger of spilling water, feedback trajectory is provided afterwards; (c) Movement adaptation for a
different situation with updated weights after learning from feedback trajectory, successfully avoids the obstacle through a path around. Corresponding
execution on the Baxter platform is given by Fig. 2.

(a) (b)

Fig. 4. Rewards Learning from User Feedback for Transferring Leaking
Bottle: (a) User feedback via kinethestic demonstration; (b) Learning curve
for adaptation under the same feedback.

(a) (b)

(c) (d)

Fig. 5. Baxter Learning to Adapt Movement for Transferring Knife: (a) (c)
Movement adaptation with initial weights using a path around the duck doll
successfully avoided it but risked scratches; afterwards feedback trajectory
is provided for preferences; (b) (d) Movement adaptation for different
situations, with updated weights after learning from feedback trajectory,
successfully avoided the duck doll using a path above it as desired.

for avoiding a knife could be directly inferred from the

location and orientation of its blade from visual input. In

ongoing work we are further investigating the possibility of

directly learning the preferences to adapt movement from

visual perception for the task context.
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and modulation of periodic movements with nonlinear dynamical
systems,” Autonomous robots, vol. 27, no. 1, pp. 3–23, 2009.

[6] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced
Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.

[7] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation,” Robotics
& Automation Magazine, IEEE, vol. 17, no. 2, pp. 44–54, 2010.

[8] S. M. Khansari-Zadeh and A. Billard, “Imitation learning of globally
stable non-linear point-to-point robot motions using nonlinear pro-
gramming,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 2010, pp. 2676–2683.

[9] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied sym-
bol emergence based on mimesis theory,” The International Journal
of Robotics Research, vol. 23, no. 4-5, pp. 363–377, 2004.

[10] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in neural information processing
systems, 2013, pp. 2616–2624.

[11] D.-H. Park, P. Pastor, S. Schaal et al., “Movement reproduction and
obstacle avoidance with dynamic movement primitives and potential
fields,” in Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS
International Conference on. IEEE, 2008, pp. 91–98.

[12] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference on. IEEE,
2009, pp. 2587–2592.

[13] A. M. Ghalamzan E., C. Paxton, G. D. Hager, and L. Bascetta,
“An incremental approach to learning generalizable robot tasks from
human demonstration,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. IEEE, 2015, pp. 5616–5621.

[14] E. A. Sisbot, L. F. Marin, and R. Alami, “Spatial reasoning for human
robot interaction,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, 2007, pp. 2281–2287.

[15] A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learning preferences
for manipulation tasks from online coactive feedback,” The Interna-
tional Journal of Robotics Research, p. 0278364915581193, 2015.

[16] R. Mao, Y. Yang, C. Fermuller, Y. Aloimonos, and J. S. Baras,
“Learning hand movements from markerless demonstrations for hu-
manoid tasks,” in Humanoid Robots (Humanoids), 2014 14th IEEE-
RAS International Conference on. IEEE, 2014, pp. 938–943.

[17] Z. Ju, C. Yang, and H. Ma, “Kinematics modeling and experimental
verification of baxter robot,” in Control Conference (CCC), 2014 33rd
Chinese. IEEE, 2014, pp. 8518–8523.
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