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Abstract— Consider an observer (reporter) who desires to
inform optimally a distant agent regarding a physical stochastic
process in the environment while the directed communication of
the observer to the agent has a price. We define a metric, from
a task oriented perspective, for the information transferred
from the observer to the agent. We develop a framework
for optimizing an augmented cost function which is a convex
combination of the transferred information and the paid price
over a finite horizon. We suppose that the decision making
takes place inside a source encoder, and that the sampling
schedule is the decision variable. Moreover, we assume that no
measurement at the current time is available to the observer for
the decision making. We derive the optimal self-driven sampling
policy using dynamic programming, and we show that this
policy corresponds to a self-driven sampling policy based on
a quantity that is in fact the value of information at each
time instant. In addition, we use a semi-definite programming
relaxation to provide a suboptimal sampling policy. Numerical
and simulation results are presented for a simple unstable
system.

Index Terms—Approximate Dynamic Programming, Estima-
tion, Self-Driven Sampling, Value of Information.

I. INTRODUCTION

Consider an observer (reporter) who desires to inform
optimally a distant agent regarding a physical stochastic
process in the environment. In practice, the directed com-
munication of the observer to the agent has a price due
to the associated energy consumption. For instance, in a
simple scenario the energy for transmitting a single bit
by radio over a distance of 100 meters is the same as
that for executing 3000 instruction lines [1]. Consequently,
the observer should transmit only measurements that are
of more valuable information to the agent. Applications of
this study include surveillance and reconnaissance, planetary
exploration, wearable sensing, teleoperation, and many other
examples of networked systems.

We define information transferred from the observer to the
agent as the change in the knowledge possessed by the agent
about the state of the process. We develop a framework for
optimizing an augmented cost function which is a convex
combination of the transferred information and the paid
price over a finite horizon. We suppose that the decision
making takes place inside a source encoder, and that the
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sampling schedule is the decision variable. Moreover, we
assume that no measurement at the current time is available
to the observer for the decision making.

Nonuniform sampling is a new paradigm for improving
the performance of systems in signal processing, estimation,
and control when communication effects and its limitations
matter [2], [3]. A special and important case in nonuniform
sampling is event-driven sampling. In event-driven sam-
pling for estimation, a measurement is sampled whenever
an event is generated. The mechanism that generates such
an event is called event-triggering mechanism. In the last
few years, several event-triggering mechanisms have been
proposed including ones based on the error between the
current measurement and the last transmitted measurement
[4], [5], on the error between the current measurement and
the predicted measurement [6], and on the Kullback-Leibler
divergence between the prior and the posterior conditional
distributions [7].

In a seminal work, Åström and Bernhardsson [8] show
that event-driven sampling can outperform periodic sampling
with respect to the estimation error of a scalar linear system
under a sampling rate constraint. Rabi et al. [9] study optimal
sampling as a stopping time problem for a scalar system
under a finite transmission budget constraint. Molin and
Hirche [10] investigate the optimal design for sampling in
a scalar system with a communication cost by considering
a two-player problem. Moreover, Sijs and Lazar [11] study
event-driven sampling for the estimation problem with an
asymptotic bound on the estimation error covariance.

Event-driven sampling can reduce communication cost
while providing a good estimation performance. However,
it requires the observer to monitor the process constantly.
Roughly similar to [12], we define self-driven sampling for
estimation as a technique in which the observer is self-
contained in decision making and can compute the sampling
schedule without monitoring the process constantly. An
example of a self-triggering mechanism for sampling in the
estimation problem is the one based on the covariance of
the estimation error [13]. In [14], we proposed an optimized
LMI-based self-triggering mechanism in which the parameter
of the mechanism is found by solving an optimization
problem. However, we showed that the sampling policy
specified by this mechanism is not necessarily optimal. In
this paper, we do not make any assumption on the structure
of the self-triggering mechanism. In contrast, we derive the
optimal sampling policy using dynamic programming (DP),
and we show that this policy corresponds to a self-driven
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Fig. 1. Three layers of source encoding/decoding. The focus of this study
is on designing an optimal self-driven sampler.

sampling policy based on a quantity that is in fact the value
of information (VOI) at each time instant.

The outline of this paper is as follows. After an intro-
duction on notation, the problem formulation is presented
in Section II. In Section III, we obtain the optimal sampling
policy and the corresponding self-driven policy. We illustrate
numerical and simulation results in Section IV. Finally,
concluding remarks are made in Section V.

A. Notations

In this paper, we represent an n dimensional vector with
x = [x1, . . . , xn]T where xi is its ith component. We write
xT to denote the transpose of the vector x. The identity
matrix with dimension n is denoted by In. We use x1:k to
denote the sequence {x1, . . . , xk}. We write δt−t′ and δss′ to
denote the Dirac and Kronecker delta functions, respectively.
We write p(x) to denote the probability distribution of the
stochastic variable x. The normal distribution with mean µ
and covariance σ2 is denoted by N(µ, σ2). For matrices A
and B, we write A � 0 and B � 0 to mean that A and B
are positive definite and positive semi-definite, respectively.

II. PROBLEM FORMULATION

A. Physical Process and Source Encoder Models

We use a continuous-discrete time model [15] to describe
our system. This is due to the fact that the state of the process
evolves in continuous time, and that the measurements are
obtained at discrete instants of time. Consider a stochastic
continuous-time physical process in the environment which
is generated by the following linear stochastic differential
equation:

ẋt = Atxt +Btwt (1)

where xt ∈ Rn is the state of the system at time t, At and Bt
are the state and the input matrices at time t, and wt ∈ Rm
is a white noise process with

E[wt] = 0, E[wtw
T
t′ ] = Qtδt−t′ (2)

where Qt � 0. The initial state x0 is assumed to be a
Gaussian vector with zero mean and covariance P0. An
observer who desires to inform a distant agent regarding the
state of the process employs a source encoder to transmit
its measurements in the form of a sequence of bits. Fig. 1
illustrates in general the three layers of source encoding
in digital communication, i.e., sampling, quantization, and
encoding.

In particular, first a sampler that is equipped with a sensor
samples the process at time instants ts for s = 1, . . . ,M .
The measurement model of the sensor is given by

ys = Csxs + vs (3)

where ys ∈ Rp is the output of the sampler at time instant
ts, xs is the state of the process at time instant ts, Cs is
the output matrix at time instant ts, and vs is a white noise
sequence with

E[vs] = 0, E[vsv
T
s′ ] = Rsδss′ (4)

where Rs � 0.
The sample ys is then quantized by a lattice quantizer.

Following the high-resolution quantization assumption, we
model the quantizer output by

zs = ys + ns (5)

where zs is the quantizer output at time instant ts and ns is
an uncorrelated white additive noise sequence with

E[ns] = 0, E[nsn
T
s′ ] =

b2

12
Ipδss′ (6)

where b is the quantization step-size. We use the convention
b = 0 for the ideal quantization. The validity of the additive
white noise model for quantization is studied in [16].

Finally, an encoder codes the quantized sample zs. The
bits encoding the codewords of zs are then transmitted to
the agent through a noiseless zero-delay binary channel.
Therefore, at time t ≥ ts the set of measurements z1:s is
available to the agent. Through this study, the agent assumes
that the observer is trustable and that measurements are never
compromised.

Remark 1: In this setting, the decision making takes place
inside the source encoder, and the decision variable is the
sampling schedule t1:M .

B. Fisher Information Matrix Dynamics

The conditional distribution p(xt|z1:s) = N(x̂t, Pt),
which is Gaussian given the system’s model introduced
before, evolves in time due to the system dynamics, and is
updated at time instants ts due to the measurements.

Consider the transformation It = P−1
t and İt = −ItṖtIt

where It is the Fisher information matrix (FIM) [17]. Fol-
lowing the Kolmogorov forward equation [15], which in our
case reduces to the propagation of the conditional mean and
conditional covariance matrix of the state, the rate of change
of the FIM during the interval [ts−1, ts), in which there are
no measurements, is obtained as

İt = −ATt It − ItAt − ItBtQtBTt It, t ∈ [ts−1, ts) (7)

with initial condition Is−1 = I(s−1)− + ∆Is−1 where we
mean by Is− the left hand side limit of It as t tends to
ts from the left. In addition, following Bayes’ rule [15], the
change in the FIM at the time instant ts, when a measurement
is available, is obtained as

∆Is = Is − Is− = CTs R̄
−1
s Cs , Gs (8)
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where

R̄s = Rs +
b2

12
Ip (9)

and Gs is called quality matrix.
Remark 2: The time evolution of the FIM in the

continuous-discrete time iterative filtering problem is charac-
terized by the jump dynamics defined by the equations (7),
(8). Hence, given the sampling schedule t1:M and the initial
FIM I0 the whole trajectory of the FIM can be obtained.

C. Measure of Information

Let the agent’s knowledge regarding the state of the
process given the measurements at times ts, ts ≤ t, be
represented by the conditional distribution p(xt|z1:s) =
N(x̂t, Pt). The differential entropy [17] of the knowledge
is given by

H(xt|z1:s) =
1

2
log2

[
(2πe)n det I−1

t

]
(10)

where n is the dimension of xt.
Definition 1 (Information from agent’s perspective):

Information is the change in the knowledge possessed by
the agent about the state of the process given the transmitted
measurements over the time interval [t0, t] with t ≥ ts, i.e.,

Πt , H0 −H(xt|z1:s) (11)

where H0 is the entropy at the reference time t0.
In fact, this information has a destination (i.e., the agent)

and is defined with respect to an epoch (i.e., time t0).
Remark 3: Stochastic dynamical systems evolve in the

direction in which entropy increases. The dissipated infor-
mation is the amount of information loss through the natural
evolution of the system. However, the entropy can decrease
as a result of measurements. The mutual information between
the state and a measurement is the amount of information
gain about the state provided by that measurement.

For maximizing the cumulative information about the state
of the process, from the measurements, which is the integral
of the information defined in (11) over the time horizon
[0, T ], we can minimize the following cost function:

JI(I0, t1:M ) = −
∫ T

0

log2 det It dt (12)

where I0 is the initial FIM.

D. Communication Price

The directed communication of the observer to the agent
is costly. In general, the communication price depends on
the state of the channel and on the measurements. Let the
communication price per measurement at time ts be denoted
by λs. Then, the communication cost over the time horizon
[0, T ] is given by

JII(t1:M ) =

M∑
s=1

λs (13)

where M is the number of samples over the time horizon
[0, T ]. In the following, we assume that λs = λ is constant.

E. Objective

We define the augmented cost function over the time
horizon [0, T ] as a convex combination of the cost functions
(12) and (13), i.e.,

J(I0, t1:M ) = θJI(I0, t1:M ) + (1− θ)JII(t1:M ). (14)

where θ ∈ [0, 1]. The goal of this paper is to solve the
following problem.

Problem 1: Given the system defined by (7), (8), design
a source encoder parametrized by a sampling schedule t1:M
that minimizes the augmented cost function J(I0, t1:M )
defined in (14) over the time horizon [0, T ].

III. OPTIMAL SELF-DRIVEN SAMPLING

A. Optimal Policy

We first discretize the time variable t. Let tk = kε and
N = T/ε where ε is the time step-size. We define a logical
decision variable δk at time step k as

δk =

{
1, if tk = ts,
0, otherwise. (15)

Note that by specifying the decision set δ1:N , the sampling
schedule t1:M is determined.

Using the Riemann method and the equation (15), the
augmented cost function in discrete time is written as

J(I0, t1:M ) =

N∑
k=0

g(Ik, δk) (16)

where gk(Ik, δk) is the stage cost at time step k defined by

gk(Ik, δk) = −θε log2 det Ik + (1− θ)λδk (17)

where δ0 = 0. Moreover, using the Euler method and the
equation (15) we write the FIM dynamics by the following
difference equation

Ik = φk(Ik−1, δk) (18)

where

φk(Ik−1, δk) = −εATk−1Ik−1 − εIk−1Ak−1 + Ik−1 (19)

− εIk−1Bk−1Qk−1B
T
k−1Ik−1 +Gkδk.

Now, we can mathematically formulate Problem 1 by the
following finite horizon optimization problem

minimize

N∑
k=0

−θε log2 det Ik + (1− θ)λδk (20)

subject to Ik = −εATk−1Ik−1 − εIk−1Ak−1 + Ik−1

− εIk−1Bk−1Qk−1B
T
k−1Ik−1 +Gkδk,

with variables Ik � 0 and δk ∈ {0, 1} for all k =
1, 2, . . . , N , and with initial condition I0.
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Define the value function Vk(Ik−1) at time step k as

Vk(Ik−1) = inf
δk:N

N∑
l=k

gl(Il, δl)

= inf
δk:N

N∑
l=k

gl
(
φl(Il−1, δl), δl

)
. (21)

Proposition 1: Let Vk(Ik−1) be the value function at time
step k with condition

VN+1(IN ) = 0. (22)

Then, the optimal policy δ?k(Ik−1) at time step k is given by

δ?k(Ik−1) (23)

= argmin
δk

{
gk
(
φk(Ik−1, δk), δk

)
+ Vk+1

(
φk(Ik−1, δk)

)}
.

Proof: The optimal decision set δ?1:N is obtained by
solving Bellman’s optimality equation backward in time from
k = N to k = 1:

Vk(Ik−1) (24)

= min
δk

{
gk
(
φk(Ik−1, δk), δk

)
+ Vk+1

(
φk(Ik−1, δk)

)}
.

Therefore, the optimal solution δ?k is given by the argument
of the minimum in (24).

One can calculate the optimal sampling policy using DP
as stated in Proposition 1 backward in time. However, the
DP calculation for obtaining the value function becomes
intractable when the time space and the state space are large
(known as curse of dimensionality). In the following, we aim
at providing an approximate solution.

B. One-Step Lookahead Policy

We would like to reduce the computation complexity
required by DP. In addition, we are interested in solving the
problem online. To this goal, we make a trade-off between
the convenient implementation and adequate performance
using approximate dynamic programming (ADP). In fact, in
ADP we step forward in time and settle for a suboptimal
policy.

We propose a one-step lookahead policy in which the
horizon is truncated and the optimal cost-to-go of the remain-
ing horizon is approximated. Assume that Ṽk+1(Ik) is an
approximation of the optimal cost-to-go function Vk+1(Ik).
We can obtain a suboptimal policy δ+k (Ik−1) at time step k
by

δ+k (Ik−1) (25)

= argmin
δk

{
gk
(
φk(Ik−1, δk), δk

)
+ Ṽk+1

(
φk(Ik−1, δk)

)}
.

In the following, we use a semi-definite programming
(SDP) relaxation [18] to find a lower bound on the optimal
cost-to-go function Vk+1(Ik).

Theorem 1: A lower bound on the optimal cost-to-go
function Vk+1(Ik) defined in (21) is given by the solution

of the following SDP:

minimize

N−k∑
j=1

−θε log2 det Ij + (1− θ)λδj (26)

subject to Ij = −εATj−1Ij−1 − εIj−1Aj−1 + Ij−1

− εDj−1 +Gjδj ,[
Dj Ij
Ij (BjQjB

T
j )−1

]
� 0,

with variables Ij � 0, Dj � 0, and δj ∈ [0, 1] for all j =
1, 2, . . . , N − k, and with initial conditions I0 = Ik and
D0 = IkBkQkB

T
k Ik.

Proof: We can obtain the optimal cost-to-go starting
at time step k + 1 by solving the following finite horizon
optimization problem:

minimize

N∑
j=k+1

−θε log2 det Ij + (1− θ)λδj (27)

subject to Ij = −εATj−1Ij−1 − εIj−1Aj−1 + Ij−1

− εIj−1Bj−1Qj−1B
T
j−1Ij−1 +Gjδj ,

with variables Ij � 0 and δj ∈ {0, 1} for all j = k +
1, k + 2, . . . , N , and with initial condition Ik. Note that the
functions −ε log2 det Ij and λδj are convex in Ij and δj
given that Ij � 0 and δj ∈ {0, 1}. Following the optimization
problem in (27), we relax the integrality constraint to δj ∈
[0, 1]. Then, we aim at relaxing the quadratic term in the FIM
dynamics. Since this equality constraint does not influence
the set of admissible decisions δj , such a relaxation does
not violate the feasibility of the problem. By defining Dj =
IjBjQjB

T
j Ij , we have

Ij =− εATj−1Ij−1 − εIj−1Aj−1 + Ij−1 (28)

− εDj−1 +Gjδj

which is a linear equation. We substitute the new constraint
Dj = IjBjQjB

T
j Ij with its convex relaxation, i.e., Dj −

IjBjQjB
T
j Ij � 0. Then, this nonlinear convex inequality

can be converted into an LMI by using the Schur comple-
ment: [

Dj Ij
Ij (BjQjB

T
j )−1

]
� 0. (29)

Substituting the constraints Ij = φj(Ij−1, δj) and δj ∈
{0, 1} with the constraints (28), (29), and δj ∈ [0, 1] in the
optimization problem in (27), and following the convexity of
the cost function we obtain the relaxed problem (26) which
yields a lower bound for the original problem.

Remark 4: The lower bound obtained in Theorem 1 can
be used as an approximation to the optimal cost-to-go
function Vk+1(Ik) defined in (21).

C. Value of Information and the Self-Triggering
Mechanism

Transferring information to the agent on one side has a
value as it decreases the entropy. On the other side, the
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directed communication of the observer to the agent has
a price. Consequently, at each time instant the observer is
dealing with the question whether it is worth to transmit
a measurement or not. In the following, we quantify this
worthiness.

Definition 2 (Value of information): The value of infor-
mation (VOI) is the maximum value that the observer would
be willing to pay for the transmission of a measurement zk
at time instant tk, i.e.,

VoIk(Ik−1) = gk(φk(Ik−1, 0), 0)− gk(φk(Ik−1, 1), 0)

+ Vk+1

(
φk(Ik−1, 0)

)
− Vk+1

(
φk(Ik−1, 1)

)
. (30)

This is closely connected to the VOI in [19] which is used
in a prioritization mechanism for multi-sensor scheduling.

Proposition 2: Let VoIk(Ik−1) be the VOI at time step
k. Then, the self-driven sampling policy specified by the
following self-triggering mechanism

δ?k(Ik−1) =

{
1, if VoIk(Ik−1) ≥ (1− θ)λ,
0, otherwise, (31)

is optimal.
Proof: Following (23), the optimal decision variable at

time step k is δ?k = 1 if

gk(φk(Ik−1, 0), 0) + Vk+1

(
φk(Ik−1, 0)

)
(32)

− gk(φk(Ik−1, 1), 1)− Vk+1

(
φk(Ik−1, 1)

)
≥ 0

and is δ?k = 0 otherwise.
We can write gk(φk(Ik−1, 1), 1) = gk(φk(Ik−1, 1), 0) +

(1− θ)λ. Substituting this in (32) and from Definition 2, we
can obtain the optimal sampling policy as specified in (31).

Using the lower bound obtained in Theorem 1, we can
calculate the approximate VOI at time step k

ṼoIk(Ik−1) = gk(φk(Ik−1, 0), 0)− gk(φk(Ik−1, 1), 0)

+ Ṽk+1

(
φk(Ik−1, 0)

)
− Ṽk+1

(
φk(Ik−1, 1)

)
. (33)

Then, we can implement the following self-triggering mech-
anism

δ+k (Ik−1) =

{
1, if ṼoIk(Ik−1) ≥ (1− θ)λ,
0, otherwise.

(34)

The sampling policy provided by this mechanism is subop-
timal, computationally cheap, and easily implementable.

D. State Estimate Dynamics

The agent can estimate the state of the process based on
the transmitted measurements from the observer. As it is said,
at time t ≥ ts the set of measurements z1:s is available to the
agent. The Kalman filter is the optimal estimator since the
conditional distribution is Gaussian. Hence, the dynamics of
the state estimate in the intervals [ts−1, ts) is

˙̂xt = Atx̂t, t ∈ [ts−1, ts) (35)

with initial condition x̂s−1 = x̂(s−1)− + ∆x̂s−1, and the
change in the state estimate at the time instant ts is

∆x̂s = x̂s − x̂s− = Ks(zs − Csx̂s−) (36)

0 20 40 60 80 100

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time step

In
fo

rm
at

io
n 

(b
its

)

 

 

λ = 0.2
λ = 0.3

Fig. 2. Information diagrams corresponding to the self-driven sampling
for two different communication prices.

where Ks is the optimal gain given by

Ks = I−1
s CTs R̄

−1
s . (37)

Notice that Is here is the FIM at time instant ts after being
updated.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we present numerical and simulation results
for a simple unstable system.

Example 1: Consider a system with dynamics defined by

ẋt = 0.1xt + wt (38)

yk =
√

0.1xk + vk

zk = yk + nk

where the covariances are P0 = 2, Q = 0.5, R = 1.245, and
R̄ = 1.25. It is assumed that the time step-size is ε = 0.1,
the horizon is N = 100, and θ = 0.5. We employ the self-
driven sampling policy introduced in (34) for two different
communication prices per measurement λ = 0.2, 0.3.

Fig. 2 shows the information diagrams corresponding to
the self-driven sampling policy in (34) for λ = 0.2, 0.3. As
we can see, the amount of information transferred from the
observer to the agent is higher for the lower communication
price.

V. CONCLUSION

In this work, we developed a framework for obtaining
the optimal self-driven sampling policy to be used by an
observer who desires to inform a distant agent regarding a
physical stochastic process in the environment. We assumed
that no measurement at the current time is available to the
observer for the decision making. Therefore, the observer
should resort to the information that exists in the FIM (or the
covariance) of the estimation error. We used DP to find the
optimal sampling policy that optimizes an augmented cost
function defined as a convex combination of the transferred
information and the paid price over a finite horizon. We
showed that this policy can be generated by a self-triggering
mechanism based on the VOI at each time instant. In
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addition, we used an SDP relaxation to find an approximation
to the optimal cost-to-go function, and proposed a one-step
lookahead policy in order to obtain a suboptimal sampling
policy which can cheaply be computed.
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