
STAR: Semiring Trust Inference for Trust-Aware Social
Recommenders

Peixin Gao
Institute for Systems Research

University of Maryland
gaopei@umd.edu

Hui Miao
Dept. of Computer Science

University of Maryland
hui@cs.umd.edu

John S. Baras
Institute for Systems Research

University of Maryland
baras@umd.edu

Jennifer Golbeck
College of Information Studies

University of Maryland
jgolbeck@umd.edu

ABSTRACT
Social recommendation takes advantage of the influence of
social relationships in decision making and the ready avail-
ability of social data through social networking systems.
Trust relationships in particular can be exploited in such sys-
tems for rating prediction and recommendation, which has
been shown to have the potential for improving the quality of
the recommender and alleviating the issue of data sparsity,
cold start, and adversarial attacks. An appropriate trust in-
ference mechanism is necessary in extending the knowledge
base of trust opinions and tackling the issue of limited trust
information due to connection sparsity of social networks.

In this work, we offer a new solution to trust inference in
social networks to provide a better knowledge base for trust-
aware recommender systems. We propose using a semiring
framework as a nonlinear way to combine trust evidences
for inferring trust, where trust relationship is model as 2-
D vector containing both trust and certainty information.
The trust propagation and aggregation rules, as the build-
ing blocks of our trust inference scheme, are based upon the
properties of trust relationships. In our approach, both trust
and distrust (i.e., positive and negative trust) are considered,
and opinion conflict resolution is supported. We evaluate the
proposed approach on real-world datasets, and show that
our trust inference framework has high accuracy, and is ca-
pable of handling trust relationship in large networks. The
inferred trust relationships can enlarge the knowledge base
for trust information and improve the quality of trust-aware
recommendation.

1. INTRODUCTION
Recommender systems are continuously evolving to take

advantage of new sources of information. Social sources in
particular can be useful for building better recommenda-
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tions. The idea of integrating signals from social networks to
improve the performance of recommendation algorithms has
been well accepted and has attracted an increasing amount
of research [2, 28].

One type of social recommender system is the trust-aware
recommender, where the social connections are annotated
with trust relationship information in the recommendation
algorithm. A series of trust-aware recommenders have been
proposed, such as user-based approaches [12,16,25], and ma-
trix factorization based methods [17,22,24]. With the help of
the additional trust information, trust-aware recommenders
have been shown useful for improving recommendation qual-
ity in terms of accuracy and user experience, as well as
addressing challenges of classical recommender system ap-
proaches such as cold start and adversarial attacks [12,23].

However, trust-aware recommender systems face several
challenges: a) sparse social connections; b) inconsistency
and conflicts in trust opinions; c) trust data availability.

To address these challenges, there has been a line of study
regarding trust inference in trust-aware recommender sys-
tems, which can generally be categorized in two groups. One
group conducts theoretical studies on trust metrics and their
properties [3, 14, 18, 19, 30]. The other group proposes ef-
fective data-driven approaches for inferring trust, such as
graph-theoretic models [4, 10–12, 25, 27] and machine learn-
ing approaches [20].

Graph-theoretic models generally have good performance
in terms of efficiency and reasoning. However, as most work
applies linear weighted averaging over trust opinions from
neighbors, nonlinearity in human decision making and in-
teraction between trust and distrust may not be fully cap-
tured. The path-based design is also sensitive to the con-
nection sparsity in the trust network, since the trust path
will not exist if some edges in between are missing. These
defects restrain the accuracy of the models. On the other
hand, machine learning methods can solve the data sparsity,
sometimes with better label prediction accuracy. However,
due to the nature of the formulation, machine learning meth-
ods are slower in speed and have weak interpretation on how
trust is inferred.

It is ideal if there exist a method which addresses most
challenges at the same time. In [9], we introduced a the-
oretical semiring structure for nonlinear trust fusion with
distrust considered. It requires that both trust and cer-
tainty information are explicitly given. The model proposed
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in [9] is easy to interpret and runs fast. However,it cannot be
applied in real world scenarios, due to lack of certainty mod-
els and inference algorithms on the overall network dealing
with data sparsities. In order to apply it to trust evaluation
for trust-aware recommendation, the original design needs
revision and redefinition.

In this work, we propose a trust inference method for
trust-aware recommendation. Our technology extends the
semiring model proposed in [9]. The basic idea is to build
up a nonlinear trust aggregation rule that can handle both
trust and distrust information, and offer conflict resolution
in the opinion combination process. Apart from the flexi-
bility in modeling, this approach has the advantages of effi-
ciency inherited from graph theoretic models and better ac-
curacy due to an iterative component and optimization over
parameters. The evaluated trust can enlarge the knowledge
base for recommendation algorithms, and alleviate the issue
of the data sparsity and cold start in recommender systems.

The contributions of our work are four-fold:

1. a novel trust metric for trust-aware recommender sys-
tems is introduced

2. we introduce two certainty models for semiring-based
trust evaluation in our application, and discuss several
properties of the evaluation framework

3. we introduce trust iteration, as well as partial reci-
procity, in order to further improve the coverage and
accuracy of our proposed trust metric

4. we evaluate our model using real-world dataset, and
show that our approach can achieve the accuracy to
about 95%

Our paper is organized as follows. In Sec. 2, we discuss
some preliminaries and related work. Accordingly, we intro-
duce STAR, our semiring nonlinear model for trust inference
in a social recommender scenario in Sec. 3, with some ex-
tensions for better performance. We evaluate our proposed
approach in Sec. 4, and summarize our work in Sec. 5.

2. PRELIMINARIES

2.1 Trust relationships in SNS
The wide application of trust has made it an umbrella

term with multiple interpretations in different contexts. In
[18], two definitions of trust, reliability and decision trust,
are discussed. In social network scenario, the notion of deci-
sion trust can be applied, which links to the extent to which
an agent (i.e. the truster) is willing to depend on another
one (trustee) in a given situation for decision making, with
a feeling of similarity, closeness or security [30].

2.1.1 Trust & distrust
In social network scenario, trust relationship is based on

the social connection between truster and trustee. There are
various ways to quantitatively represent trust [13,18,30,31].
The trust value domain T is application dependent. For
instance, it can be a set of discrete labels {0, 1} or a con-
tinuous range like [0, 1]. It can have both positive values
and negative values, and can even be a multi-dimensional
vector space. When T contains negative trust values, it can
be used to differentiate unknown users (i.e. of trust value
0) from ones that are not trusted (e.g. negative trust val-
ues). The negative trust relationship is also called distrust.

Although recent research [8, 13, 30] shows an emerging in-
terest in modeling the notion of distrust, models that take
into account both trust and distrust are still limited. Intro-
ducing distrust makes the trust model complex as the non-
negativity of trust values no long exists, and the linearity of
trust aggregation is hard to argue. This can be especially
challenging for many trust inference approaches such as ma-
trix factorization [28]. Additionally, the subjective property
of trust makes it even more complicate as conflicts between
trust opinions may exist.

2.1.2 Trust networks
We refer to a Trust Network as the graph based on

the trust relationships in a social network. The trust net-
work can be defined as a directed graph with trust weight
on edges, G(V,E, te), where V is the set of users, E is the
set of connections denoting the directed trust relationships,
and te : E 7→ T is a mapping from an edge to the trust value
placed on the edge. We use 〈vi, vj〉trust to denote trust re-
lationship when eij ∈ E and tij > 0. For a user v ∈ V ,
we denote the 1-hop neighbors as Neighbor Set Nv. The
undirected situation can be seen as having two edges with
equal weights on both directions for the pair of vertices.

In the defined trust network, a directed path of length k
is a sequence of distinct nodes, {v1, v2 · · · , vm+1}, such that
(vi, vi+1) ∈ E, ∀i ∈ 1, 2, · · · ,m. Between two nodes in the
network, there might be multiple distinct paths.

2.1.3 Transitivity in trust
The transitivity of trust relationships is the foundation for

most trust metrics, it allows the truster to acquire informa-
tion about the trustee from friends and their friends (“word
of mouth”) [15]. For example, if node v1 and v3 are not di-
rected connected, but if v1 trusts v2, and v2 trusts v3, then
v1 can use such trust evidence to infer its opinion about v3
using transitivity.

Formally, transitivity in trust can be defined as:

〈vi, vj〉trust ∧ 〈vj , vk〉trust ⇒ 〈vi, vk〉trust ∀vi, vj , vk ∈ V (1)

Based on the assumption of transitivity (may be partial),
trust can propagate along the paths between two nodes in
the network and their trust relationship can be inferred.
When multiple paths exist, a combination scheme is needed
to derive the trust value. Due to the subjective nature, con-
flicts may happen in such occasion and need to be resolved.

Transitivity becomes more complex when considering dis-
trust relationships [7]. For example, the trust relation be-
tween node v1 and v3 is not obvious if v1 distrusts v2 and
v2 distrusts v3. The conflict resolution is also much more
difficult with distrust.

2.1.4 Reciprocity in trust
Trust reciprocity describes the extent of symmetry in di-

rected trust relationships between two users (i.e. nodes) in
the social network. Similar to Eq. 1, we can write the fol-
lowing expression for reciprocity.

〈vi, vj〉trust ⇒ 〈vj , vi〉trust (trust reciprocity)

〈vi, vj〉distrust ⇒ 〈vj , vi〉distrust (distrust reciprocity)

∀vi, vj ∈ V
(2)

As shown in [6, 10], trust relationships are asymmetric in
terms of values (especially magnitude) in social network sce-
narios, thus most trust evaluation approaches don’t consider
reciprocity. However, by relaxing the condition in Eq. 2 to
only sign agreement of positive trust relationships, partial
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reciprocity can be defined. As we will show in Sec. 4.1,
the partial reciprocity exists in the Epinions trust network
dataset. The partial reciprocity between nodes may be use-
ful in inferring indirect trust under some circumstances when
data is very sparse (e.g. social recommender).

2.2 Semirings
A semiring is an algebraic structure, consisting of a set A

and two binary operations, addition (⊕) and multiplication
(⊗), with several conditions over the operations.

Definition. A semiring is a tuple 〈A,⊕,⊗,0,1〉 such that

• A is a nonempty (possibly infinite) set with two special
elements 0,1 ∈ A
• ⊕ is the additive operation, which is commutative and

associative:
a⊕ b = b⊕ a

a⊕ (b⊕ c) = (a⊕ b)⊕ c ∀a, b, c ∈ A

with 0 as the unit element (a⊕ 0 = a = 0⊕ a)
• ⊗ is the multiplicative operation, which is associative,

a⊗ (b⊗ c) = (a⊗ b)⊗ c ∀a, b, c ∈ A

with 1 as the unit element and 0 as absorbing element
(a⊗ 1 = a = 1⊗ a, a⊗ 0 = 0 = 0⊗ a)
• ⊗ distributes over ⊕,

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

An example of a semiring is the set of nonnegative integers
N, with the usual addition (+) and multiplication (×).

The operations used in a semiring structure can be seen as
a generalization of addition and multiplication which have
used in trust inference for social recommendation. These
semiring operations, with careful design, are able to capture
the nonlinearity in trust evaluation [29].

2.3 Semiring-based trust fusion
The sets A in most semiring models only have nonnegative

elements (e.g. the range of [0, 1]) [5, 29]. Due to the com-
plexity and asymmetry introduced by negativity, the semir-
ing framework needs to be carefully modified. In [9], the
possibility of applying semiring for nonlinear trust fusion in
online decision making was discussed, and a semiring called
a Distrust Semiring was introduced. The semiring struc-
ture was defined on a 2-dimensional trust opinion model,
with both trust and distrust relationships being considered.

2.3.1 Trust opinion vectors
The 2-dimensional trust opinion vector τij ∈ T = [−1, 1]×

[0, 1] from truster i to trustee j is defined as

τij = (tij , cij) (3)

where tij ∈ [−1, 1] is the trust level representing how much
i trusts (likes)/distrusts (dislikes) the opinions (tastes) of j.
By making trust levels take values in the range of [−1, 1],
distrust is considered along with trust. cij ∈ [0, 1] is the
certainty level which shows how much i believes in the in-
tegrity of j. Note that certainty is orthogonal to trust value,
it denotes the quality and accuracy of the trustee’s opinion.
While a high trust value may be because of similarity in taste
or preference, a high certainty value may be due to direct
connection with the truster or large number of connections
(i.e. high degree). Certainty determines if the opinion will

be considered, and opinions with a high certainty value are
more useful in making trust decisions.

As both trust level and certainty level about the trustee
are considered in the opinion vector, more complicated sit-
uations can be modeled and analyzed.

Based on Sec. 2.1.2 and the definition of trust opinion
vector, the trust network can be derived.

Definition. A trust network based on the set T of trust
opinions is a directed and weighted graph G(V,E, te), te :
E 7→ T , where V is the set of users. E is the set of trust
relationships. For ∀eij = (vi, vj) ∈ E, vi, vj ∈ V, i 6= j,
te associates it with an opinion vector τij = (tij , cij) ∈ T ,
indicating the trust and certainty that node vi holds on vj .
Trust links are directed. Ni = {vj |eij ∈ E} is the neighbor
set of node vi.

2.3.2 Distrust semirings
A distrust semiring [9] is a 2-dimensional semring defined

on the trust opinion set T , such that

• A = T = [−1, 1]×[0, 1] the set of trust opinion vectors,
with two special elements 0 = (0, 0),1 = (1, 1)
• The additive operation ⊕ is defined as

(ta, ca)⊕ (tb, cb) = (t, c) (4)

with c = max{ca, cb}, and

t =


ta ca > cb
tb cb > ca
sign(ta + tb) ·max{|ta|, |tb|} ca = cb

(5)

• The multiplicative operation ⊗ is defined as

(ta, ca)⊗ (tb, cb) = (t, c) (6)

where c = cacb, and

t =

{
0 ta < 0, tb < 0

tatb otherwise
(7)

For the trust network shown in Fig. 1, there are three
paths from node v1 to v5. For the left path, when we multi-
ply τ12 and τ25 using ⊗, we have τ1 = τ12⊗τ25 = (0.36, 0.56).
Similarly, the middle path has τ2 = (0.12, 0.25) and the right
one τ3 = (−0.15, 0.56). When combining τ1, τ2, τ3, we can
use ⊕ defined in distrust semiring and have combined opin-
ion τ = τ1 ⊕ τ2 ⊕ τ3 = (0.36, 0.56).

Based its definition in [9], distrust semiring is a promising
algebra structure that can be used in designing trust metrics
for social recommender systems. However, [9] only proposed
the framework with some theoretical analysis, without ex-
periments and evaluation with real datasets. Also, in the
work, trust is represented by a 2-D vector with both trust
and certainty information, with the assumption that infor-
mation about both components are explicit and available.
However, in social recommender setting, certainty informa-
tion is generally missing. In order to use the 2-D represen-
tation of trust, a model for certainty based on social context
is required yet has not been discussed.

3. STAR: SEMIRING TRUST INFERENCE
FOR TRUST-AWARE RECOMMENDATION

In this section, we draw connections between distrust semir-
ing and trust inference in trust-aware social recommender
systems: a) we first show the distrust semiring definition
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Figure 1: An example trust network

(Eq.4-7) is consistent with the properties for trust prop-
agation and aggregation in Sec. 3.1; b) next in Sec. 3.2,
we propose practical certainty models and parameter tun-
ing framework in order to use distrust semiring in practice;
c) we then propose the overall Semiring trust inference for
Trust-Aware social Recommenders (STAR) framework in
Sec. 3.3; d) furthermore, to address the data sparsity and
improve accuracy and coverage, we introduce iterative trust
evaluation in semiring trust in Sec. 3.4.

3.1 Distrust semiring and trust properties
Trust information diminishes and becomes noisy in the

process of propagation, and increases when aggregating neigh-
borhood values. These are basic properties [19] of trust.
Distrust semiring essentially defines an algebraic way to cal-
culate trust, thus we first need to show whether the basic
operations, addition used in trust aggregation and multipli-
cation used in trust propagation, satisfies the commonsense.

By defining a partial ordering, we show that the semiring
framework is intuitive and consistent with requirements for
trust propagation and aggregation.

Definition. A partial order relation � can be defined upon
two 2-D opinion vectors τa = (ta, ca) and τb = (tb, cb):

τa � τb (8)

if and only if

ca ≤ cb, or |ta| ≤ |tb| and ca = cb ∀ τa, τb ∈ T

Theorem 3.1. The distrust semiring structure satisfies the
following two conditions,

1. the multiplication operation is non-increasing:

∀τa, τb ∈ T , τa ⊗ τb � τa ∧ τa ⊗ τb � τb (9)

2. the addition operation is non-decreasing

∀τa, τb ∈ T , τa � τa ⊕ τb ∧ τb � τa ⊕ τb (10)

Proof. Let τa ⊗ τb = (t, c). As ca, cb ∈ [0, 1], and ta, tb ∈
[−1, 1], based on the definition of the multiplication opera-
tion, it is easy to see that c = cacb ≤ ca, c = cacb ≤ cb.
For the trust value, if both ta and tb are negative, then
t = 0 < |ta|, |tb|. Otherwise, |t| = |tatb| = |ta||tb| ≤ |ta|, and
|t| = |tatb| ≤ |tb|. Thus Eq. 9 holds, and the non-increasing
property of the multiplication operation is proved.

The non-decreasing property of trust aggregation can be
shown in a similar way. In aggregation, τ = (t, c) = τa ⊕ τb.
based on definition, c = max{ca, cb} ≥ ca, cb. Thus the first
condition is satisfied, and the non-decreasing property of the
additive operation is proved.

The non-increasing property of the multiplication opera-
tion is in accordance with the requirement for trust propa-
gation process, whereas the non-decreasing property of the

addition operation connects to the trust aggregation pro-
cess. Thus the two operations for a distrust semiring can
be applied to modeling trust propagation and aggregation
respectively.

3.2 Certainty models
In the context of trust-aware recommenders, though trust

data is available, the certainty information is generally im-
plicit and contained in user interactions. Without certainty
data, it is infeasible to apply the 2-D semiring model for
trust inference. In practice, certainty may be derived by sen-
timent analysis or other natural language processing pipelines.
However, NLP toolboxes are not light-weight and require
rich text data in the SNS. In this paper, we consider the sit-
uation when only SNS connections and trust data are avail-
able. We propose two ways to model certainty. One is based
on length of the trust path, the other one is degree-oriented.

3.2.1 Path-based certainty models
Based on the fact that neighbors which are reachable via

a longer trust path carry less valuable trust information [12],
we come up with a path-based certainty model. We model
the certainty value of user vs about vt as a function of hops
(i.e. the length of the shortest path) between the two.

cst = g(dists,t) = αdists,t (11)

where α ∈ (0, 1] is a hyperparameter and can be seen as
the decay factor, and dists,t represents the shortest trust
path length between vs and vt. When α = 1, the decay
disappears and nodes of all distances are considered equally.
Such definition is equivalent to introducing a 1-hop decay
of magnitude α at each hop. Instead of calculating cst, we
consider the decay at node vi in the middle:

ci = g(vi) = α (the decay factor) (12)

then along pathst from vs to vt, cst =
∏
vi∈pathst

ci. In this

simple model, partial order relation between two paths is
stable for ∀α ∈ (0, 1).

3.2.2 Degree-based certainty models
Another way to model certainty in social recommender

setting is based on node degree, with the hypothesis that
nodes of higher degree are more reliable and their trust opin-
ions have more certainty. The certainty function of a node
vi can be accordingly denoted as

ci = g(vi) = g(di) (13)

where di is the degree of vi.
We consider two realizations for g(di), a linear model and

an exponential model. The linear model can be written as
g(di) = min(β + γdi, 1) (14)

which is determined by a cut-off degree value ∆, when di >
∆, g(di) = 1.

The exponential model can be described by

g(di) = 1− ηdi (15)

The coefficients β, γ, and η are tunable. Given the trust
metric, an optimization problem over the parameters can be
formulated accordingly to maximize its performance. The
optimization formulation, due to the complexity of network
structure and the semiring model we use, is non-convex and
hard to solve. However, as there’s only very few optimiza-
tion variables (i.e. model parameters), we can simplify the
problem by conducting parameter search schemes, such as
greedy search, random search or even annealing approach,
and measure its effect on system performance.
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3.3 Inferring trust via semiring operators
With the certainty model defined above, the trust between

two arbitrary users in the trust network can be inferred via
the trust metric developed in this work. The trust metric
consists of two components, i.e. trust propagation and ag-
gregation, which can be defined using the distrust-semiring.
In STAR, trust aggregation is conducted along different
paths first before trust propagation, in order to reduce the
noises caused by longer paths.

3.3.1 Trust propagation
In the trust metric, the trust value between two nodes vs

and vt, who have no direct connection, can be estimated via
the multiplicative operation ⊗ of trust values on edges along
the path between the two nodes. Along each path pathst,

(tst, cst) =
∏

⊗,eij∈pathst

(tij , cij) (16)

Considering the decay of influence along the path, a max-
imum hop value λ can be introduced in order to stop early
and accelerate the calculation. As shown in Sec. 4, 4-hop
semiring calculation already reaches about 95% accuracy.

When multiple paths between two nodes exist, trust opin-
ions reached along all paths should be aggregated together.

3.3.2 Trust aggregation
The trust aggregation component in the trust metric is to

combine trust information from different sources (i.e. paths).
It can be defined upon a semiring operation as follows:

(t, c) =
∑

⊕,{a|patha∈P}
(ta, ca) (17)

where P is the set of trust paths considered in aggregation,
and each (ta, ca) with patha ∈ P is the trust vector along
that trust path a.

3.3.3 Overall trust inference framework
A trust metric can be developed based on the trust prop-

agation and aggregation rules defined above. Given a pair
of users vs (truster) and vt (trustee), the proposed trust in-
ference method is a function f : V × V 7→ T , such that

(tst, cst) = f(vs, vt) =
∑

⊕,vj∈Ns

(tsj , csj)⊗ (tjt, cjt) (18)

where Ns is the neighbor set of vs. In order to save computa-
tion resources, a threshold for trust value (σt) and certainty
value (σc) can be introduced. When below the thresholds,
the trust opinion will not be considered in aggregation, i.e.

(tst, cst) =
∑

⊕,vj∈Ns,(σt,σc)�τsj⊗τjt

(tsj , csj)⊗ (tjt, cjt) (19)

The way that the trust metric is applied to trust inference
is shown in Alg. 1. The algorithm is to evaluate the trust
opinion (tst, cst) of vs (truster) about vt (trustee), with λ
the maximum hop number, σt and σc the lower bounds for
trust and certainty value respectively. One can interpret
the algorithm as follows: vs asks her neighbors for their
trust opinions about vt. Each neighbor vi ∈ Ns provides
her opinion about vt (i.e. tit and cit), either directly or
estimated using the trust inference algorithm recursively. At
each hop forward, λ, the current hop reached, will decrease
by 1 until reaching 0. Then vs aggregates all the evidence
and reach (tst, cst) about vt.

In such a trust inference framework, both trust and dis-
trust (i.e. negative trust) are taken into consideration for

Algorithm 1 STAR algorithm, fstar(vs, vt, λ, σt, σc)

Mark vs as visited
if tst exists then

return (tst, g(vt))
end if
tst ← 0
cst ← 0
if λ = 0 then

return (0, 0)
end if
for each vi ∈ Ns, the neighbor set of node vs do
csi = g(vi)
if (vi visited) or (|tsi| < σt) or (csi < σc) then

continue
end if
(tit, cit)← fstar(vi, vt, λ− 1, σt

|tsi|
, σc
csi

)

if (tsi < 0 and tit < 0) or (tit = 0) then
continue

end if
(tst, cst)← (tst, cst)⊕ ((tsi, csi)⊗ (tit, cit))

end for
return (tst, cst)

trust inference. As paths above the thresholds are all inte-
grated into the calculation, trust information are fully ex-
ploited in this approach for better coverage. At each node,
the trust information along different paths is first aggregated
together and then propagation to the node as a unified trust
opinion. Such scheme can reduce the noises caused by long
paths. The possible conflicts among opinions are handled
in a non-trivial way with the introduction of certainty value
and nonlinear addition operation (⊕).

3.4 Iterative trust evaluation
Alg. 1 is built on the trust paths between two users. In real

world data, the trust data often is sparse, thus the coverage
of STAR is limited by the amount of trust data present. In
order to address the sparsity, we propose collective method
from network analysis. Iterative method is a type of collec-
tive approaches in classification problem [21]. Such method
is used when the data contains interconnection and correla-
tion between objects, such as webpages and SNS, and has
been shown to be very effective over network data [26]. The
basic idea is treating the independent inference as a joint
inference problem, and use an iterative approach to predict
labels; the new label predicted in the previous iterations is
used in the following iterations.

In the trust inference problem, trust relationships among
users are intercorrelated, we introduce iterative trust evalu-
ation in Alg. 2 to improve the performance. The basic idea
of the design is to iteratively evaluate the trust opinions as-
sociated with the edges in the test dataset, conditioned on
the both ground truth and current predictions. Initially, the
knowledge base is the training dataset, and the result set is
empty. While running, the“diff” in Alg. 2 is used to measure
the difference of results between two iterations. Here the Eu-
clidean norm is used in calculating the difference. The iter-
ation ends when convergence on local predictions is reached
or maximum number of iterations has finished.

3.5 Discussions

3.5.1 Exploiting partial reciprocity in trust
As discussed in Sec. 2.1.4, partial reciprocity can be added

into the trust inference algorithm to improve both cover-
age and accuracy. We extend the trust inference algorithm
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Algorithm 2 Iterative trust evaluation

Let E: set of edges to evaluate
knowledge_base← known trust relationships
result_set← ∅
Let K: max number of iterations
for i : 1 to K do

diff ← 0
for edge ej ∈ E do

knowledge_base← knowledge_base \ (tj , cj)
calculate trust metric fstar(ej)
if ((tj , cj) /∈ result_set) then

diff ← diff + ‖fstar(ej)‖
else

diff← diff + ‖fstar(ej)− (tj , cj)‖
result_set← result_set \ (tj , cj)

end if
(tj , cj)← fstar(ej)
result_set← result_set ∪ (tj , cj)
knowledge_base← knowledge_base ∪ (tj , cj)

end for
if (diff < ε) then

return result_set
end if

end for
return result_set

(Alg. 1) by introducing partial reciprocity in a careful way.
Apart from considering trust evidences from neighbors, the
truster also treat the direct trust opinion about herself from
the trustee as a source of information, as a reflection of par-
tial reciprocity. In order to reduce the error due to asym-
metry in trust relationships, we only consider positive reci-
procity (i.e. the reciprocity in positive trust relationships),
and the certainty value in a trust opinion reached using reci-
procity has a smaller magnitude compared the one reached
through transitivity-based propagation.

3.5.2 Optimistic vs pessimistic semiring definitions
In Sec. 3.3, the trust metric takes an optimistic definition

for trust aggregation, as the binary operation ⊕ takes the
larger magnitude of the two and its sign as the combined
trust value when the certainty levels are the same. We use
this to define trust aggregation based on the hypothesis that
extreme opinions weigh more than neutral ones [11, 12]. In
a pessimistic model, when ca = cb, the addition operation
for trust aggregation (Eq. 5) can be modified as

t = sign(ta + tb) ·min{|ta|, |tb|} (20)

Such definition is “pessimistic”, as the aggregated trust
value conservatively picks the smaller magnitude between
the two incoming trust values. With such model, trust ag-
gregation is not non-decreasing any more, which is against
the basic properties of trust as mentioned in Sec. 3.1.

4. EVALUATION
In order to verify the model and evaluate the performance

of our semiring-based approach, we conduct experiments on
a real world dataset.

We use the Epinions trust network dataset for evaluation
[1]. The dataset contains both direct trust connections (with
edge weight of +1) and distrust ones (with edge weight of
−1), and form the trust network G(V,E, te) where te : E 7→
T = {−1, 1}. To the best of our knowledge, it is the largest
dataset available online that contains both explicit trust and
distrust information marked in a binary (+1 and−1) format.
The dataset has 91.053 users with 841,372 edges, 717,667

trust relationships and 123,705 distrust relationships. Notice
that the method works on continuous trust value domains as
well. However, large-scale public datasets are not available.

4.1 Transitivity and partial reciprocity in data
In order to evaluate our trust metric, we first verify the

transitivity and partial reciprocity of trust relationships us-
ing the Epinions dataset.

4.1.1 Transitivity
Inspired by previous works, we investigate the transitiv-

ity phenomenon. For transitivity, we count the number of
triangles represented by triplets (i, j, k) such that

vi, vj , vk ∈ V, eij , ejk, eik ∈ E (21)

and tijtjktik > 0 (structural balance) (22)

Based on this definition, among all 11033232 triangles that
satisfy Eq. 21, 10229847 (92.7%) are transitive. We also look
at the case when vi distrusts vj , vj distrusts vk (i.e. tij < 0
and tjk < 0), what the relationship between vi and vk is. It
turns out that ≈ 50% situations have tik < 0 with another
half having tik > 0, which endorses the setting “the enemy
of your enemy is actually unknown” in our trust metric.

4.1.2 Partial reciprocity
We also evaluate the partial reciprocity of trust relation-

ships in Epinions dataset. We consider partial reciprocity
of trust relationships as symmetry on signs, i.e. we consider
pairs (vi, vj) as having partial reciprocal trust relationships
when both eij and eji exists and tijtji > 0.

Based on the experimental results, we notice that partial
reciprocity commonly exists between nodes in the network.
Among all 259,751 pairs of nodes having bi-directional rela-
tionships, 254,345 (≈ 98%) are partially reciprocal relation-
ships (both directions are of the same sign, either positive or
negative), and 98% of reciprocal ones are of positive connec-
tions, which corresponds to the concept of partial reciprocity
that we discussed in Sec. 2.1.4.

However, as both trust and distrust relationships are single-
valued, the symmetry on magnitude of trust relationships is
unable to be evaluated.

4.2 Experimental design
In Epinions dataset, all trust values in the training dataset

are in the set T = {−1, 1}. Based on the definition of our
trust metric model, though certainty value of each predicted
edge varies in [0, 1], the set for predicted trust values will
be Tp = T ∪ {0} = {−1, 0, 1}, where the value of tst = 0
represents the case when not enough information is avail-
able for predicting the trust relationship associated with the
edge est. Unlike linear approach such as [14], no rounding
is needed for predicting discrete trust values.

To evaluate the performance of our trust evaluation ap-
proach, we measure and compare accuracy and coverage.
Accuracy is the fraction of correctly predicted trust rela-
tionships among all nonzero ones in the test data:

accuracy =
‖{eij ∈ Stest | tij = t′ij}‖
‖{eij ∈ Stest | tij 6= 0}‖

(23)

where Stest is the test edge set, tij is the trust value reached
using our trust inference algorithm, and t′ij is the ground
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(a) Large test dataset
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(b) Small test dataset
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Figure 2: Evaluation results of the proposed semiring trust inference framework

truth trust value. The denominator in Eq. 23 only take
edges that have nonzero predictions.

Coverage is defined as the number of edges predicted over
the number of edges predictable in test data:

coverage =
‖{eij ∈ Stest | tij 6= 0}‖

‖{eij ∈ Stest | ∃k, l ∈ V s.t. eik, elj ∈ Strain}‖
(24)

where an edge is predictable if both of its vertices are present
in the training set.

4.2.1 Test data partitioning
We partition Epinions dataset into two parts to evaluate

STAR. The first part contains all the known trust relation-
ships, i.e. the trust network before inference, while the sec-
ond part includes a set of edges serving as the ground truth
of our evaluation. We evaluate STAR using the known trust
information in the first part to predict the trust relationships
in the second part. This is a practice used in previous trust
inference work and link prediction literatures. On the par-
tition strategy, we examine the time-ordered partition and
the random partition. The evaluation results are consistent
between the two strategies. All numbers reported here are
under the time-ordered partition strategy.

We conduct experiments on datasets of two sizes, we re-
fer the test dataset generated with percentage ρ = 0.5% as
the small dataset, while the one using ρ = 5% as the large
test dataset. The experimental results for the two datasets
are shown in Fig. 2(a) and Fig. 2(b) respectively. From the
results, we see that the performance of our approach works
better on the smaller dataset, in terms of both accuracy and
coverage. The major reason is that more trust information
is known for the smaller test dataset, which means the trust
network used for prediction is more connected and has more
trust evidence for prediction. Thus, the performance is pos-
itively correlated with the known/test data ratio.

4.2.2 Experimental results
Varying trust path length λ: As discussed in previous lit-

erature [10, 25], the longer the trust path in graphical trust
evaluation models, the more noise may be introduced. While
the introduction of distant friends improves the coverage of
the social recommendation algorithm, it affects its accuracy.
As the average shortest path length in Epinions dataset is
about 4, in the experiment, we set the maximum hop length
λ as 2, 3 and 4 respectively, and evaluate the performance
of our trust metric under different settings.

In Fig. 2(a) and Fig. 2(b) we can see that, the coverage of
our approach is better with paths of more hops considered,
as more nodes are reachable and used in trust evaluation.
However, though the variation is subtler compared to cov-
erage change, the accuracy result is just slightly decreasing
with an increasing maximum hop length parameter.

Table 1: Alg.2 using random-ordered test data

random set # 1 2 3 4 5

Accuracy 0.9314 0.9314 0.9328 0.9314 0.9319

Coverage 0.9895 0.9899 0.9895 0.9899 0.9895

Iterative trust evaluation: Apart from data size and max-
imum hop length, we also compare the base STAR model
(Alg. 1) with the model applying collective methods (Alg. 2).
As shown in Fig. 2(c)(d), the iterative trust inference method
improves the performance in both coverage and accuracy.

When applying iterative approaches in classification prob-
lem [21], the ordering of value updates in the iterative trust
evaluation may affect the predictive accuracy and conver-
gence rate. Here, in order to investigate the stability in trust
iteration over test data, we randomize the order of the node
pairs for prediction, and compare the experimental results.
We list the results for the 4-hop case in Table 1. According
to the results, the application of iterative approach for the
trust metric in social recommender system setting is fairly
robust to randomized orderings of the test dataset.

Exploiting partial reciprocity : From Fig. 2(c) and Fig. 2(d),
by getting trust information based on partial reciprocity for
trust evaluation, the coverage and accuracy of the trust in-
ference algorithm are even better. By applying collective
methods and partial reciprocity, more trust evidence can be
used in the trust metric.

Parameter tuning in certainty : As discussed in Sec. 3.2,
we proposed two tunable models for certainty based on de-
gree. Here we vary the values of the parameters and in-
vestigate the influence of parameter tuning towards model
performance. In the linear model (Eq. 14), there are two
parameters, β and γ. β is in the range of [0, 1], and γ is de-
pendent on β and the cut-off degree. The exponential model
described in Eq. 15 has one parameter η ∈ [0, 1]. In the ex-
periment, we fix maximum degree value used in linear model
to be 5, 10 and 15, and let β and η both vary from 0 to 1
with step change to be 0.05. The results are shown in Fig. 3,
where ∆ represents maximum degree value. From the plots
we can see that the linear model leads to lower accuracy
and coverage, while the exponential model doesn’t change
very much with varying parameter values. Using exponen-
tial model for certainty with a relatively small η around 0.2
would be a good setting for trust inference.

4.3 Comparison with other approaches
Base on the experimental results discussed in Sec. 4.2, the

performance of our method STAR can be as small as 5.8%
error rate and as good as 98.3% coverage rate for reach-
able pairs, As a fair comparison, the graph-theoretic linear
approach based on matrix operations [14] has an optimal
prediction error rate of 6.4%. The machine learning ap-
proach introduced in [20] can reach an accuracy about 0.934
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Figure 3: Performance with parameter tuning

(i.e. ≈ 6.7% error rate). For [7] which used probabilistic
confidence models for trust inference, it achieved an accu-
racy of 89% (11% error rate) using Epinions dataset. From
comparison, we can see an improvement on accuracy can
be obtained using the STAR approach, not to mention its
computation efficiency and interpretability.

4.4 Discussions
Because the trust (and distrust) relationships in the dataset

are binary (+1 and −1), a lot of nuance and variance in the
trust relationships are lost. This prevents us from conduct-
ing some evaluations. For example, since the trust values are
not continuous in [−1, 1], the deviation of evaluated trust
value from ground-truth difficult to measure and analyzed.

The high accuracy of STAR on this dataset shows its flex-
ibility and power in SNS trust-aware recommendation.

5. CONCLUSIONS
In this work, we propose STAR, a novel trust inference

method for trust-aware social recommenders. It not only
has high accuracy comparing with machine learning meth-
ods, but also has the efficiency from graph-theortical models.
Our method is based on a 2-D semiring framework reflecting
trust propagation and aggregation properties over the trust
network. The nonlinearity and inconsistency in human’s
opinion formulation process are captured in the trust infer-
ence algorithm. To address the data sparsity, we introduce
collective semiring methods and propose partial reciprocity.
In order to validate the model and evaluate the performance
of our approach, we conduct a series of experiments using
the Epinions dataset. The experimental results show that
the approach proposed in this work has advantages in both
accuracy and coverage. The trust relationships inferred via
our approach can be used to improve the quality of trust-
aware recommendations.
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