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Abstract— In this work, a two players nonzero-sum differential
game is considered, where one player tries to minimize some
predefined cost and the other tries to maximize the same.
The game is described by a stochastic differential system and
the actions of the players serve as the control inputs to the
dynamical system. The cost being a function of the actions
chosen by the players and the state of the dynamical system,
the players aim to control the state in order to optimize the cost
functional. However in this problem the players do not have
the access to the states for every time, rather the states are
available at discrete time instances after some finite costs are
paid by the players. The inclusion of the information-cost makes
the structure of the cost functional non-classical. The work
presents the strategies for the players under no-cost information
access as well as under costly information access. Explicit time
instances for the information access are also derived by solving
certain finite dimensional optimization problems.

I. INTRODUCTION

To our best knowledge, differential games with the zero-
sum framework were first introduced in [1]. [2] studied an
special case of nonzero-sum framework extending the results
of zero-sum games. Soon after that, nonzero-sum games
were formally introduced and studied in the works of Starr
and Ho [3], [4]. Differential games were not merely studied
for the sake of game theory rather the study reveals many
facts about robust control, minimax stochastic control and
general stochastic control problems [5], [6], [7], [8], [9].
Nash equilibrium strategies and their properties for different
game frameworks have been studied for decades. Existence
and uniqueness of such strategies are of paramount interests
to [10], [11], [12] and many others.

Linear-Quadratic differential games (LQDG) are one of
the most important and most studied class of problems
among the various classes of differential games. In this
framework, the state of the game -i.e. the state of the
underlying dynamics- depends linearly on the strategies of
the players and the optimization criteria for the players
are quadratic. Most game problems either lack a closed
form expression for the Nash strategy or it is very intricate
to calculate one. However, for LQDGs, the closed form
expression for the Nash strategy is available and it can be
obtained by solving certain coupled Riccati type equations
[11], [13], [14]. While [10], [15] and many others studied the
necessary and sufficient conditions for a strategy to be a Nash
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strategy, [12] addressed the problem of uniqueness of a Nash
strategy. While a vast portion of the previous works address
LQDG of fixed, finite time, [11] studies the asymptotic
behavior of the Nash strategy when the duration of the
game extends to infinity. Alongside, the notion of Stackelberg
strategies [16] has been developed to model games where one
of the players does not know the performance criterion of
the opponent.

In principle a non-cooperative game is a decision making
problem and thus the information structures available to the
players play a great role in determining the strategies for the
players. In the class of Linear-Quadratic games (LQG), there
are notions of open-loop, close-loop, feedback information
patterns where the players can have the knowledge of the
initial state of the game only, or all present and past states, or
only the present state respectively. This limited information
determines the different structures of the corresponding Nash
equilibrium strategies [17]. [18] provided a counterexample
showing the existence of a nonlinear Nash strategy for some
LQG, startled the understanding that linear strategies are
optimal for LQGs. A very recent work [19] considered a
differential game with the noise depending linearly on the
state. The optimal strategy is shown to be a linear state
feedback for the game [19], however it requires solving a
stochastic Riccati-like equation for the players rather than a
deterministic one. The information pattern for this game is
feedback type and hence the players can access the current
state without paying any cost.

In this work, we consider a nonclassical LQDG framework
where we add a cost for acquiring state information. This
new structure of the cost introduces notable changes in the
well known structure of the Nash strategy for a similar game
with no-cost information acquisition. In the long history of
differential games, the problem of including information cost
somehow lacked attention. This work aims to address the
question of ‘value of information’ from an LQDG point
of view. The players can access state information only at
discrete time instances and each such access query carries a
finite cost. In addition to the costly and limited availability of
information, the players do not have any information about
the opponent’s information space.

In the cost function, we take an integral cost plus point-
wise quadratic costs at several intermediate time instances.
Pointwise cost at final time (T ) is mostly considered in
the framework of Linear-Quadratic control, however multiple
pointwise costs allow the possibility of putting extra empha-
sis on some discrete time instances. This unusual structure
of the cost changes the structure of the optimal strategy
even for no-cost information access case. The computation of
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the optimal strategy requires solving a Riccati-type equation
semi-coupled with a linear ordinary differential equation.

Since the information acquisition is costly, the players
should ask for information only at some optimal time in-
stances. One of our intentions is to study the relation (if any)
between the time instances of acquiring state information and
that of incurring pointwise cost. Our study shows that there is
no relation between them. To our surprise, the optimization
problems for finding the optimal strategy and that of finding
the optimal instances to acquire state information turn out to
be decoupled and the later can be solved offline.

The paper starts by finding the optimal strategy for the
players under no-cost information acquisition in Section III.
The analysis in Section III provides an indication on the
possible structures of the strategies for the costly information
access case. In the next section we add the cost for infor-
mation acquisition and solve the two decoupled optimization
problems to describe the structure of the optimal strategy and
the optimal way to construct the information sets.

II. PROBLEM FORMULATION

Let us consider a two-player game G(x, J, u, v) as defined
below,

Definition 2.1: A two-player game G(x, J, u, v) consists
of four components: x(t): state of the underlying dynamical
system at time t, u(t), v(t): actions chosen by the players at
time t, and J : the cost associated with the game. In a non-
cooperative game set up, the objective of one player is to
minimize the cost, whereas the other player maximizes the
cost.

The state of the game obeys the following linear stochastic
dynamics (1).

dx = Axdt+Budt+ Cvdt+GdWt (1)

where Wt is an r dimensional standard Wiener process and
the above dynamics should be treated in the sense of Ito.
x(t) ∈ Rn, u(t) ∈ Rm1 and v(t) ∈ Rm2 . The model
parameters A,B,C and G are time variant however, to
maintain notational brevity, we suppress the time argument.

The state of the game is linearly affected by the actions
taken by the players and also by a Wiener process noise on
which none of the players has any control.
The game is played for a finite time interval [0, T ] and the
cost function is considered to be (2).

J(u, v) = (2)

E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt+

N∑
i=1

‖x(ti)− ri‖2αi
]

where ‖p‖2Q = p′Qp for any two matrices p and Q of proper
dimensions, and L,R, S > 0. The cost function J consists
of a running cost (integral term) and pointwise costs at some
predefined time instances 0 ≤ t1 < t2 < · · · < tN ≤ T .

The cost function has to be minimized for player-1 (P1)
who selects the action u, while player-2 (P2) aims to max-
imize the cost by selecting the action v. In classical LQG
control, there is (if any) only terminal state cost however,

the cost which we have considered is more general and it
allows for penalization if the state at time ti deviates from
some given reference value ri.

Each player has only limited information about the state
of the game and they can ask for the current state of the
game by paying some finite cost. Let us denote the number
of times state information is requested by P1 up to time t
be n1(t) and that of P2 be n2(t). The cost associated with
these information acquisitions are λ1n1(t) and λ2n2(t). We
add these costs to the cost function J and can derive two
separate cost functions for the players (k = 1, 2):

Jk(u, v) =E
[ ∫ T

0

(‖x‖2L + ‖u‖2R − ‖v‖2S)dt (3)

+

N∑
i=1

‖x(ti)− ri‖2αi − (−1)kλknk(T )
]
.

−λ2n2(T ) was added in the last equation for the fact that
P2 will be maximizing that cost function.

The objective of P1 is to determine the time instances τ1
k

to construct its information set I1(t) = {x(τ1
k )}n1(t)

k=1 . P1
selects the control u, as a function of this information set,
so as to minimize J1(u, v). On the other hand, P2 forms
its information set I2(t) and selects v, with the limited
knowledge accumulated in I2(t), to maximize J2(u, v) given
in (3). The information sets are ordered i.e. τ ik < τ ik+1

and non-anticipative i.e. for any t, τ ini(t) ≤ t. The set of
admissible controls for P1 (or P2) is adapted to the sigma-
field generated by the information set I1(t) (or I2(t)).

III. OPTIMAL STRATEGIES WITH NO-COST
INFORMATION ACCESS

Before considering the actual problem, let us first consider
the situation where λ1 = λ2 = 0 i.e. full state information is
available without any cost. Under this situation, let us study
the optimal strategies for the players of this game.

Theorem 3.1: The optimal strategies for the players are:

u∗(t) = −R−1B′
(η

2
+ Px

)
(4)

v∗(t) = S−1C ′
(η

2
+ Px

)
. (5)

The optimal cost is

J∗ =E[‖x(0)‖2P (0) + x(0)′η(0)] +

N∑
i=1

‖ri‖2αi (6)

+

∫ T

0

(
tr(PGG′) +

1

4
‖η‖2CS−1C′ −

1

4
‖η‖2BR−1B′

)
dt],

where
Ṗ +A′P + PA+ L+ P (CS−1C ′ −BR−1B′)P = 0 (7)

P (T ) = 0

P (t−i )− P (t+i ) = αi

and η̇ = −
(
P (CS−1C ′ −BR−1B′) +A′

)
η (8)

η(T ) = 0

η(t−i )− η(t+i ) = −2αiri
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Proof: Let ψ(t, x) = x(t)′P (t)x(t) and using Ito rule,
ψ(t−i )−ψ(t+i−1) =

∫ t−i
t+i−1

((
∂ψ
∂t + 1

2 tr(G
′∇2ψG)

)
dt+∇ψdx

)
,

where ∇ and ∇2 denote the gradient and Hessian operators
respectively. Therefore,
E(ψ(t−i ) − ψ(t+i−1)) = E

[ ∫ t−i
t+i−1

[x′(Ṗ + A′P + PA)x +

x′P (Bu+ Cv) + (Bu+ Cv)′Px+ tr(PGG′)]dt
]

Thus,

E[ψ(T )− ψ(0) +

N∑
i=1

(ψ(t−i )− ψ(t+i ))] =

E
[ ∫ T

0

[x′(Ṗ +A′P + PA)x+ x′P (Bu+ Cv) (9)

+ (Bu+ Cv)′Px+ tr(PGG′)]dt
]
.

Similarly, let φ(t, x) = x(t)′η(t); following the above steps,

E[φ(T )− φ(0) +

N∑
i=1

(φ(t−i )− φ(t+i ))] =

E[

∫ T

0

[x′(η̇ +A′η) + (Bu+ Cv)′η]dt]. (10)

Using (9), (10) and (2), we obtain

J = E
[
‖x(0)‖2P (0) − ‖x(T )‖2P (T ) + x(0)′η(0)− x(T )′η(T )

+

N∑
i=1

(
‖x(ti)‖2∆P (ti)

+ x(ti)
′(∆η(ti)

)
+ ‖x(ti)− ri‖2αi

)
+

∫ T

0

(
‖x‖2

Ṗ+A′P+PA+L
+ ‖u‖2R − ‖v‖2S+

x′P (Bu+ Cv) + (Bu+ Cv)′Px+ x′(η̇ +A′η)+

η′(Bu+ Cv) + tr(PGG′)
)
dt
]

(11)

where ∆P (ti) = P (t+i ) − P (t−i ) and ∆η(ti) = η(t+i ) −
η(t−i ). Rearranging the above terms,

J = E
[
‖x(0)‖2P (0) − ‖x(T )‖2P (T ) + x(0)′η(0)− x(T )′η(T )

+

N∑
i=1

(
‖x(ti)‖2∆P (ti)+αi

+ x(ti)
′(∆η(ti)− 2αiri

)
+ ‖ri‖2αi

)
+

∫ T

0

(
‖u+R−1B′(Px+

η

2
)‖2R − ‖v − S−1C ′(Px+

η

2
)‖2S

+ x′
(
η̇ +A′η − P (BR−1B′ − CS−1C ′)η

)
(12)

+ ‖x‖2
Ṗ+A′P+PA+L−P (BR−1B′−CS−1C′)P

− 1

4
‖η‖2BR−1B′−CS−1C′ + tr(PGG′)

)
dt
]

With the assumptions that equations (7) and (8) have well
defined solutions1 in [0, T ], we have:

J = E
[
‖x(0)‖2P (0) + x(0)′η(0) +

N∑
i=1

‖ri‖2αi (13)

+

∫ T

0

(
‖u+R−1B′(Px+

η

2
)‖2R − ‖v − S−1C ′(Px+

η

2
)‖2S

− 1

4
‖η‖2BR−1B′−CS−1C′ + tr(PGG′)

)
dt
]

1a sufficient condition would be BR−1B′ − CS−1C′ > 0.

With this completion of squares, it is clear that the optimal
strategies for the players are

u∗ = −R−1B′(Px+
η

2
).

v∗ = S−1C ′(Px+
η

2
).

This is the only Nash Equilibrium for this game. Therefore,
the cost incurred for this optimal strategy is,

J∗(u∗, v∗) =E
[
‖x(0)‖2P (0) + x(0)′η(0) +

N∑
i=1

‖ri‖2αi (14)

+

∫ T

0

(
tr(PGG′)− 1

4
‖η‖2BR−1B′−CS−1C′

)
dt
]

Remark 3.2: The optimal strategy consists of an open
loop term to optimize the pointwise cost and a closed loop
term to optimize both the pointwise cost and the integral
cost.

Remark 3.3: For the case when tN = T , the jump and
boundary conditions for (7) and (8) are given as follows:

P (t−i )− P (t+i ) = αi

η(t−i )− η(t+i ) = −2αiri ∀ 1 ≤ i < N,

and P (T ) = αN , η(T ) = −2αNrN.
Remark 3.4: If the game parameters for both the players

are the same i.e. B = C and R = S, the game exhibits some
interesting properties:
• The optimal strategies can be computed by solving two

decoupled linear equations of P and η with the same
boundary and jump conditions as in (7) and (8).

• The optimal cost in this case will be

J∗ =E
[
‖x(0)‖2∑N

i=1 ‖ΦA(ti,0)‖2αi+
∫ T
0
‖ΦA(t,0)‖2Ldt

− 2x(0)′
N∑
i=1

ΦA(ti, 0)′αiri
]

+

N∑
i=1

‖ri‖2αi

+

∫ T

0

tr(PGG′)dt (15)

• Any pair of strategies (u, v) of the form (γ,−γ)
will achieve the optimal cost. However, the pair
(−R−1B′Px,R−1B′Px) is the Nash equilibrium strat-
egy.

IV. STRATEGIES WITH COSTLY INFORMATION

In the previous section, the explicit formulae for the
optimal strategies of both the players are obtained and they
require the knowledge of the state x(t) for all time t ∈ [0, T ].
In this section we will investigate how the strategies change
for both the players when they have state information only
at finite number of time instances; caused by the cost of
acquiring information. Before attacking this problem, we
consider a simpler problem where the Information sets I1(t)
and I2(t) are given to P1 and P2 respectively for all t and
they have to determine the strategies based on the given
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information. In the subsequent sections we will remove this
assumption and comment on the original problem. Making
this assumption for this section makes our problem tractable
for this initial step.

From (13), we can divide the cost in two parts J0, Jd -one,
(J0), being independent of the actions of the players and the
other, (Jd), that depends on the choice of u and v. Thus,

J0 =E
[
‖x(0)‖2P (0) + x(0)′η(0) +

N∑
1

‖ri‖2αi (16)

+

∫ T

0

(
tr(PGG′)− 1

4
‖η‖2BR−1B′−CS−1C′

)
dt
]

and,

Jd(u, v) =E[

∫ T

0

(
‖u+R−1B′(Px+

η

2
)‖2R (17)

− ‖v − S−1C ′(Px+
η

2
)‖2S
)
dt].

Since the players know the game structures i.e. A,B,C,G, S
and R, they can compute the open-loop terms without having
any knowledge of the current state. Thus, without loss of
generality, it is sufficient for the players to optimize (18).

Jd(u, v) =E[

∫ T

0

(
‖u+R−1B′Px‖2R− (18)

‖v − S−1C ′Px‖2S
)
dt].

Let us denote R̃ = PBR−1B′P and S̃ = PCS−1C ′P .
Without loss of generality one can show that optimal con-
trollers for P1 and P2 are of the forms u = −R−1B′Px̂1 and
v = S−1C ′Px̂2, where x̂i(t) = f(t, Ii(t), x̂i(τ)|τ∈[0,t)).
Thus rewriting Jd, we have,

Jd(x̂1, x̂2) = E[

∫ T

0

(‖x− x̂1‖2R̃ − ‖x− x̂2‖2S̃)dt] (19)

With these strategies, the state of the game evolves as:

dx = (Ax+Bu0 +Cv0−P−1R̃x̂1 +P−1S̃x̂2)dt+GdWt.
(20)

From equation (20), we can write the solution to be:

x(t) =ΦA(t, t0)x(t0) +Kt,t0 [Bu0 + Cv0](t) (21)

−Kt,t0 [P−1R̃x̂1 − P−1S̃x̂2](t) +Kt,t0
1 [GW ](t)

where Kt,t0 and Kt,t0
1 are linear operators defined as fol-

lows:

Kt,t0 [f ](t) =

∫ t

t0

ΦA(t, s)f(s)ds (22)

Kt,t0
1 [fW ](t) =

∫ t

t0

ΦA(t, s)f(s)dW (s) (23)

If P1 receives the state information at t0, then the first four
terms of (21) are known to P1. Let P1 select its strategy as:

x̂1 =ΦA(t, t0)x(t0) +Kt,t0 [Bu0 + Cv0 − P−1R̃x̂1](t)

+ f1(t) (24)

Similarly, P2 may select its strategy in the following way:

x̂2 =ΦA(t, t0)x(t0) +Kt,t0 [Bu0 + Cv0 + P−1S̃x̂2](t)

− f2(t) (25)

where f1 and f2 are to be determined by the players.
It should be noted at this point that the proposed structures

of x̂i in (24) and (25) do not restrict the choice of x̂i since
fis can be chosen freely. Using (24) for any interval [t0, t1],
we get:

Jd(x̂1, x̂2) = E[

∫ t1

t0

‖Kt,t0P−1S̃x̂2 − f1‖2R̃dt− (26)∫ t1

t0

‖Kt,t0P−1R̃x̂1 − f2‖2S̃dt+

∫ t1

t0

‖Kt,t0
1 GW‖2

R̃−S̃dt].

The objective of P1 would be to choose an optimal f1 to
optimize (26) without having any knowledge about f2 and
the noise Ws.

Jd(x̂1, x̂2) ≤J1
d (x̂1, x̂2) = E[

∫ t1

t0

‖Kt,t0P−1S̃x̂2 − f1‖2R̃dt

+

∫ t1

t0

‖Kt,t0
1 GW‖2

R̃
dt], (27)

where the equality holds when P2 accesses the state at every
time. P1 must minimize (27) in order to ensure that for any
choice f2 that P2 makes, the cost is always upper bounded
by the r.h.s. of (27). Similar arguments from the point of
view of P2 lead to the fact that f2 must be chosen in order
to maximize (28).

J2
d (x̂1, x̂2) = −E[

∫ t1

t0

‖Kt,t0P−1R̃x̂1 − f2‖2S̃dt

+

∫ t1

t0

‖Kt,t0
1 GW‖2

S̃
dt] (28)

The second term in both equations (27) and (28) are constant
and does not play any role in the solution of f1 and f2 that
optimize the equations.

Claim 4.1 (Main Result): For a given interval [t0, t1],
the optimal f1 satisfies the following differential equation:

ḟ1 = Af1 + P−1S̃ξ (29)
f1(t0) = 0

ξ̇ = (A+ P−1S̃)ξ +Bu0 + Cv0 − P−1R̃x̂1 (30)
ξ(t0) = x(t0)
Proof: The proof of the above claim is presented in

Appendix section.
Remark 4.2 (Main Result): x̂1 satisfies the following

system of equations for the time interval [t0, t1]:

˙̂x1 = (A− P−1R̃)x̂1 +Bu0 + Cv0 + P−1S̃ξ (31)

ξ̇ = (A+ P−1S̃)ξ +Bu0 + Cv0 − P−1R̃x̂1 (32)
x̂1(t0) = ξ(t0) = x(t0)

Comparing (20) and (31), ξ serves as the estimate of x̂2 for
the evolution of x̂1. The difference is that the latest state
information available to ξ is x(t0) whereas x̂2 may have an
old or updated state information x(t′0).
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Similarly for P2, equivalent results to Claim 4.1 and
Remark 4.2 are stated below.

Claim 4.3: For a given interval [t0, t1], the optimal f2

satisfies the following differential equation:

ḟ2 = Af1 − P−1R̃ζ (33)
f2(t0) = 0

ζ̇ = (A− P−1R̃)ζ +Bu0 + Cv0 + P−1S̃x̂2 (34)
ζ(t0) = x(t0)
Proof: The proof is similar to the proof of Claim 4.1.

Remark 4.4: x̂2 satisfies the following system of equa-
tions for the time interval [t0, t1]:

˙̂x2 = (A+ P−1S̃)x̂2 +Bu0 + Cv0 − P−1R̃ζ (35)

ζ̇ = (A− P−1R̃)ζ +Bu0 + Cv0 + P−1S̃x̂2 (36)
x̂2(t0) = ζ(t0) = x(t0)

Comparing (20) and (35), ζ serves as the estimate of x̂1 for
the evolution of x̂2. The difference is that the latest state
information available to ζ is x(t0) whereas x̂1 may have an
old or updated state information x(t′0).

In this problem, none of the players has any idea about the
information set of the other player and hence the structure
of the dynamics of x̂1 and x̂2 are as given in (31) and
(35). If any prior knowledge about the information set of the
opponent were known, the dynamics (31) and (35) would
possibly be different. Study of the later problem is beyond
the scope of this paper and will be studied elsewhere.

From (27), the cost incurred by P1 having the information
set I1(T ) = x(τ1

k )
n1(T )

k=1 is

E[

∫ T

0

‖x− x̂1‖2R̃dt] =

n1(T )+1∑
i=0

E[

∫ τ1
i+1

τ1
i

‖Kt,τ1
i [P−1S̃x̂2](t)− f1(t)‖2

R̃
dt+ (37)

∫ τ1
i+1

τ1
i

‖Kt,τ1
i

1 [GW ](t)‖2
R̃
dt+ λ1n1(T )]

where τ1
0 = 0 and τ1

n1(T )+1 = T .
In the optimal selection of Ii(T ), the first term in the

right hand side of (37) does not play any role since all the
extractable information from x̂2 is captured in f1 through
the term ξ (Claim 4.1). Therefore the Information set I1 is
formed such that

∑n1(T )+1
i=0 E[

∫ τ1
i+1

τ1
i
‖Kt,τ1

i
1 [GW ](t)‖2

R̃
dt+

λ1n1(T )] is minimized. Similar arguments reveal that
the information set I2 for P2 is chosen such that∑n2(T )+1
i=0 E[

∫ τ2
i+1

τ2
i
‖Kt,τ2

i
1 [GW ](t)‖2

S̃
dt+ λ2n2(T )] is min-

imized.
At this point we are ready to relax the assumption that

we made at the beginning of this section that I1 and I2

are given. The following optimization problems should be
solved by P1 and P2 in order to construct their information
sets.

For P1:

min
n1(T ),τ1

1 ,··· ,τ1
n1(T )

n1(T )+1∑
i=0

E
[ ∫ τ1

i+1

τ1
i

‖Kt,τ1
i

1 [GW ](t)‖2
R̃
dt+

λ1n1(T )
]

(38)

For P2:

min
n2(T ),τ2

1 ,··· ,τ2
n2(T )

n2(T )+1∑
i=0

E
[ ∫ τ2

i+1

τ2
i

‖Kt,τ2
i

1 [GW ](t)‖2
S̃
dt+

λ2n2(T )
]

(39)

Remark 4.5: The parameters of the information set i.e.
the number of elements in the set (ni(T )) and the instances of
sampling the state (τ ik) can be determined offline by solving
the above finite dimensional optimization problems.

Remark 4.6: The optimal choice of information set and
the optimal strategy selection are two decoupled problems
for each player.

A. Characteristics of τ1
k , τ2

k

For a fixed n1(T ) = N , τ1
k s are determined by minimizing

N+1∑
i=0

∫ τ1
i+1

τ1
i

E
[
‖Kt,τ1

i
1 [GW ](t)‖2

R̃
dt
]

where τ1
0 = 0 and τ1

N+1 = T .
From the properties of the Wiener process,

E[‖Kt,τ1
i

1 [GW ](t)‖2
R̃

] =

∫ t

τ1
i

tr(‖ΦA(t, s)G(s)‖2
R̃(s)

)ds

(40)
Thus, to select τ1

k , the optimization is performed on the
objective function:

H(τ1
1 , · · · , τ1

N ) =

N+1∑
i=0

∫ τ1
i+1

τ1
i

∫ t

τ1
i

tr(‖ΦA(t, s)G(s)‖2
R̃(s)

)ds.

(41)
If the initial state is not given, the players need to have that
information in the first place. The optimal choice of τ1∗

i

should satisfy the following necessary conditions:
For all i = 1, 2, · · · , N∫ τ1∗

i

τ1∗
i−1

tr(‖ΦA(τ1∗
i , t)G(t)‖2

R̃(t)
)dt = (42)

∫ τ1∗
i+1

τ1∗
i

tr(‖ΦA(t, τ1∗
i )G(τ1∗

i )‖2
R̃(τ1∗

i )
)dt.

Similarly for P2, the optimal choice of the τ2∗
i s needs to

satisfy ∫ τ2∗
i

τ2∗
i−1

tr(‖ΦA(τ2∗
i , t)G(t)‖2

S̃(t)
)dt = (43)

∫ τ2∗
i+1

τ2∗
i

tr(‖ΦA(t, τ2∗
i )G(τ2∗

i )‖2
S̃(τ2∗

i )
)dt

Remark 4.7: For a game where BR−1B′ = CS−1C ′,
the optimal choices of τ i∗k for both the players are the same.
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Remark 4.8: For a deterministic game (G ≡ 0) with the
Information structure considered here (i.e. no prior knowl-
edge about the information set of the opponent), the results
show that the players do not need any more information than
x(0). This fact might change if any of (or both) the players
have some knowledge about the opponent’s information set.

Remark 4.9: The set of state information acquisition
times {τk} selected by the players is independent of the time
instances of incurring the pointwise cost i.e. {ti}.

V. CONCLUSIONS

In this work a two-player stochastic Linear-Quadratic dif-
ferential game is considered. The Nash equilibrium strategy
for both the players under full state information is derived.
With costly state information, the optimal instances for
obtaining the state information for the players have been
studied. It turns out that the optimization problems for the
selection of the optimal strategy (u∗ or v∗) and the optimal
information acquisition instances (τ1∗

k or τ2∗
k ) are two

decoupled problems for each player. The optimal triggering
instances τ i∗k can be found offline.

This framework can easily be extended to related problems
such as the cost function being linear-exponential-quadratic
or quadratic with exponential forgetting factor.

This work does not assume any prior knowledge to the
players about the structure of the information sets of their
opponents. With some prior knowledge (may be in a prob-
abilistic sense or so), the structure of the optimal strategies
u∗ and v∗ will possibly be different from what derived here.

VI. APPENDIX

Proof of Claim 4.1.
For any t ∈ [t0, t1], let the latest element in the Informa-

tion set I2(t) be x(t′) (generally, t′ depends on t). Therefore
from (25),

x̂2(t) =

∫ t

t′
ΦA+P−1S̃(t, s)(B(s)u0(s) + C(s)v0(s)−

ḟ2 +Af2)ds+ ΦA+P−1S̃(t, t′)x(t′) (44)

Let us denote ΦS = ΦA+P−1S̃ and replacing ΦA with ΦS
in (22) and (23), we define two new operators KS and KS1

respectively. From the dynamics of x, we can write:

x(t′) = KS(t′, t0)[Bu0 + Cv0 − P−1R̃x̂1 − P−1S̃e2](t′)

+Kt′,t0
S1 [GW ](t) + ΦS(t′, t0)x(t0) (45)

where e2 = x− x̂2. Substituting (45) in (44) and rearranging
the terms,

x̂2(t) = ΦS(t, t0)x(t0) +Kt,t0
S [Bu0 + Cv0 − P−1R̃x̂1](t)

−
∫ t′

t0

ΦS(t, s)[P−1(s)S̃(s)e2(s))ds−G(s)dW (s)]

+

∫ t

t′
ΦS(t, s)[P−1(s)R̃(s)x̂1(s)− ḟ2 +Af2]ds (46)

In (46), the last two integrals cannot be estimated by P1 since
knowledges of W (s), f2 and t′, which are associated with
I2(t), are required.

Thus, at any t ∈ [t0, t1], the extractable information from
x̂2(t) is the amount ΦS(t, t0)x(t0) + Kt,t0

S [Bu0 + Cv0 −
P−1R̃x̂1](t).

Therefore, to optimize
∫ t1
t0
‖Kt,t0P−1S̃x̂2 − f1‖2R̃dt, the

choice of f1 should be of the form f1 = Kt,t0P−1S̃ξ, where
for t ≥ t0

ξ(t) = ΦS(t, t0)x(t0) +Kt,t0
S [Bu0 + Cv0 − P−1R̃x̂1](t)

(47)

These definitions of f1 and ξ are equivalent to the dynamics
proposed in Claim 4.1.
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